宽温域多循环状态下陶瓷用封闭涂层性能演变规律研究

易敏华, 王贤明, 张术伟, 刘文轩, 宁亮, 王志勇, 吴连锋

表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 174-183.

PDF(2930 KB)
PDF(2930 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 174-183. DOI: 10.16490/j.cnki.issn.1001-3660.2025.18.017
表面功能化

宽温域多循环状态下陶瓷用封闭涂层性能演变规律研究

  • 易敏华1, 王贤明1,*, 张术伟2, 刘文轩1, 宁亮1, 王志勇1, 吴连锋1
作者信息 +

Properties Evolution of Sealing Coatings for Ceramic Material in Wide Temperature Ranges and Multiple thermal Cycles

  • YI Minhua1, WANG Xianming1,*, ZHANG Shuwei2, LIU Wenxuan1, NING Liang1, WANG Zhiyong1, WU Lianfeng1
Author information +
文章历史 +

摘要

目的 在多孔陶瓷(SiO2f/SiO2)表面喷涂改性硅溶胶封闭涂层,分析涂层在200~650 ℃多循环状态下耐热性、疏水性、介电参数等性能的演变规律,从而探究封闭涂层的失效原因及失效路径,为涂层在长航时高温电磁窗表面的推广应用探明可能性。方法 采用空气喷涂法在石英陶瓷表面制备了一种陶瓷基用改性硅溶胶封闭涂层材料,以不同的温度在马弗炉中循环加热处理涂层样板,并采用水接触角测试仪、扫描电镜、矢量网络分析仪等表征涂层性能。结果 涂层在300 ℃以内可循环使用。400 ℃下,漆膜中Si—C键及C—H键开始断裂、分解,形成亲水通道,水接触角从初始的114°下降至96°,但仍然具备疏水性。500 ℃下,涂层经历1次热循环后水接触角下降至92°,并且随着温度和循环次数增加涂层形成裂纹并扩张。200~650 ℃范围内,涂层经历6次热循环后介电常数平均值为3.39,介电损耗角正切值平均值为0.003 6,与基材本体值基本相当(8~12 GHz)。结论 制备的改性硅溶胶封闭涂层具有良好的耐热性、疏水性、介电性能,涂层长时循环耐高温可达400 ℃,短时(1 h)耐高温可达500 ℃,涂层失效过程遵循热分解-鳞片化-裂纹出现-裂纹扩张的规律,鉴于涂层优异的综合性能,该涂层有望在长航时高温陶瓷天线罩表面使用。

Abstract

With the continuous development of modern equipment, hypersonic aircraft has become a key technology that countries are competing to develop. Under the high-speed flight, the radome surface faces serious aerodynamic heating problems. Therefore, radomes are mainly fabricated with ceramic materials which show excellent dielectric and high-temperature resistance properties, such as quartz ceramics, alumina ceramics, silicon nitride ceramic, etc. However, ceramic materials are prone to absorb water and moisture, which seriously affect the transmission performance of radomes. Therefore, it is usually necessary to seal the surface of ceramic radomes to prevent water from entering inside. Although there have been various sealing coatings applied in equipment, these coatings were inevitably failed as long as suffering high-temperature above 400 ℃ in several minutes. Based on this issue, a modified silica sol coating with excellent high-temperature resistance, hydrophobicity and dielectric properties was prepared and sprayed on the surface of porous ceramics materials (SiO2f/SiO2). By analyzing the evolution of heat resistance performance under multiple thermal cycles range from 200 ℃ to 650 ℃, as well as hydrophobicity and dielectric parameters of the coating, the failure mechanism and path of coatings were explored, and possibilities for promoting its application on surfaces of long-haul high-temperature electromagnetic windows were identified. The coating was characterized with a water contact angle tester, a Fourier infrared spectrometer, a scanning electron microscope and a vector network analyzer. Experimental results indicated that the water contact angle, infrared characteristic peaks, microscopic morphology, and hydrophobicity of the film did not change significantly after undergoing six thermal cycles below 300 ℃. When the temperature reached 400 ℃, the Si—C and C—H bonds in the film began to break and decomposed, causing a decrease in coating density and forming hydrophilic channels. As a result, the water contact angle decreased from an initial value of 114° to 96°. The water contact angle of the film dropped from 114° to 92° after one cycle at 500 ℃, and generated scales after six cycles, which meant that the coating film was failed. Cracks formed at 600 ℃ and continued to expand with the rise of temperature and thermal cycles. The reason was that stress appeared in various regions after coating decomposition, resulting in local bulges of the paint film, showing a scaly shape and gradually intensifying. When the temperature became higher, the decomposition of the film became worse and suffered greater stress, leading to the generation of cracking. The average dielectric constant of the coating between 8 and 12 GHz was measured at 3.39 with an average dielectric loss of 0.003 6 after six thermal cycles within 650 ℃, which was comparable to that of substrate material with a dielectric constant of 3.33 and a dielectric loss of 0.003 0. The coating exhibited long-term thermal resistance up to 400 ℃ and short-term thermal (1 hour) resistance up to 500 ℃. Microscopic characterization showed that the failure path at high temperature above 500 ℃ followed the step of thermal decomposition-scaling-crack generation-crack expansion. Considering the excellent performance under high temperature, the coating is potential for use on surfaces of long-haul high-temperature radomes.

关键词

陶瓷天线罩 / 封闭涂层 / 循环耐温 / 疏水性 / 介电参数 / 性能演变

Key words

ceramic radome / sealing coating / cyclic-thermal properties / hydrophobicity / dielectric parameter / properties evolution

引用本文

导出引用
易敏华, 王贤明, 张术伟, 刘文轩, 宁亮, 王志勇, 吴连锋. 宽温域多循环状态下陶瓷用封闭涂层性能演变规律研究[J]. 表面技术. 2025, 54(18): 174-183 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.017
YI Minhua, WANG Xianming, ZHANG Shuwei, LIU Wenxuan, NING Liang, WANG Zhiyong, WU Lianfeng. Properties Evolution of Sealing Coatings for Ceramic Material in Wide Temperature Ranges and Multiple thermal Cycles[J]. Surface Technology. 2025, 54(18): 174-183 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.017
中图分类号: TB34   

参考文献

[1] PENG W Y, YANG T, FENG Z W, et al.Analysis of Morphing Modes of Hypersonic Morphing Aircraft and Multiobjective Trajectory Optimization[J]. IEEE Access, 2019, 72244-2255.
[2] 潘锐, 赵群力. 国外高超声速飞机发展分析[J]. 航空科学技术, 2023, 34(11): 2-7.
PAN R, ZHAO Q L.Analysis on the Development of Hypersonic Aircraft Abroad[J]. Aeronautical Science & Technology, 2023, 34(11): 2-7.
[3] ISMAIL S, SANTHOSH R, JAIN P C, et al.Comparative Study for the Criticality of Structural and Thermal Loads for Ceramic Radome[J]. Journal of Aerospace Sciences & Technologies, 2017, 69(1A): 90-95.
[4] HOHN O, ESSER B, KLEVANSKI J, et al.Experimental Investigations for the Thermal Qualification of High Speed Missile Radomes[J]. European Conference for Aeronautics and Space Sciences (EUCASS), 2019, 318.
[5] 杨凯威, 张杨, 梁欢, 等. 高超声速飞行器热流密度/分层温度/碳化层研究[J]. 中国空间科学技术, 2018, 38(3): 33-39.
YANG K W, ZHANG Y, LIANG H, et al.Study on Heat Flux Density/Stratified Temperature/Carbonization Layer of Hypersonic Vehicle[J]. Chinese Space Science and Technology, 2018, 38(3): 33-39.
[6] SAEEDI HEYDARI M, GHEZAVATI J, ABBASGHOLIPOUR M, et al.Various Types of Ceramics Used in Radome: A Review[J]. Scientia Iranica, 2017, 24(3): 1136-1147.
[7] HUANG M, PENG Z H, ZHANG W, et al.Fabrication and Characterization of Si3N4 Whisker-Reinforced SiO2 Ceramic for Radome Materials[J]. International Journal of Applied Ceramic Technology, 2022, 19(5): 2916-2924.
[8] KANDI K K, PUNUGUPATI G, PAGIDI M, et al.A Novel Gelcast SiO2-Si3N4-BN Ceramic Composites for Radome Applications[J]. Silicon, 2022, 14(13): 8179-8192.
[9] REN Y H, ZHANG B, SHAO J D, et al.Sintering Behavior and Morphology Control of Porous Al2O3-SiO2 Ceramics for Radome Applications[J]. International Journal of Applied Ceramic Technology, 2022, 19(5): 2489-2499.
[10] REN Y H, ZHANG B, YE J, et al.Preparation of Porous Y2SiO5 Ceramics with High Porosity and Extremely Low Thermal Conductivity for Radome Applications[J]. Ceramics International, 2023, 49(2): 2394-2400.
[11] CAO F, DING Y, CHEN L, et al.Fabrication and Characterization of Boron Nitride Bulk Foam from Borazine[J]. Materials & Design (1980-2015), 2014, 54: 610-615.
[12] OSMAN M A, PLOETZE M, SUTER U W.Surface Treatment of Clay Minerals—Thermal Stability, Basal- Plane Spacing and Surface Coverage[J]. Journal of Materials Chemistry, 2003, 13(9): 2359-2366.
[13] 包宁, 林彬. 天线罩表面涂层的研究[J]. 弹箭与制导学报, 2004, 24(S9): 553-554.
BAO N, LIN B.Investigation on Surface Coating of Radome[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(S9): 553-554.
[14] LEI Y L, WANG Q R, HUO J C.Fabrication of Durable Superhydrophobic Coatings with Hierarchical Structure on Inorganic Radome Materials[J]. Ceramics International, 2014, 40(7): 10907-10914.
[15] 崔唐茵, 刘瑞祥, 崔文亮, 等. 石英陶瓷天线罩表面封孔防潮涂层的研究[J]. 陶瓷, 2010(8): 32-34.
CUI T Y, LIU R X, CUI W L, et al.Study on Moisture- Proof Coating for Sealing Hole on the Surface of Shi Ying Ceramic Radome[J]. Ceramics, 2010(8): 32-34.
[16] 魏美玲, 赵小玻, 程之强, 等. 陶瓷天线罩防潮保护涂层的研究[J]. 硅酸盐通报, 2006, 25(5): 56-59.
WEI M L, ZHAO X B, CHENG Z Q, et al.Study on Moisture-Proof Coating of Ceramic Radome[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(5): 56-59.
[17] 倪必红, 肖志红. 复合陶瓷天线罩表面防潮性能的研究[J]. 航天制造技术, 2006(1): 13-16.
NI B H, XIAO Z H.Study on Moisture-Proof Performance of Composite Ceramic Radome Surface[J]. Aerospace Manufacturing Technology, 2006(1): 13-16.
[18] 李俊生, 张长瑞, 王思青, 等. SiO2/(Si3N4+BN)透波材料表面涂层的防潮性能和透波性能研究[J]. 涂料工业, 2007, 37(1): 5-7.
LI J S, ZHANG C R, WANG S Q, et al.Study on Moisture-Proof and Wave-Transimissivity Properties of the Coatings on SiO2/(Si3N4+BN) Radome Materials[J]. Paint & Coatings Industry, 2007, 37(1): 5-7.
[19] 李子芊, 宋静怡, 李子森, 等. 复合石英陶瓷雷达天线罩用防水防潮涂层的制备与性能研究[J]. 涂料工业, 2023, 53(8): 1-7.
LI Z Q, SONG J Y, LI Z S, et al.Preparation and Properties of Waterproof and Moisture-Proof Coating for Composite Quartz Ceramic Radome[J]. Paint & Coatings Industry, 2023, 53(8): 1-7.
[20] LI B, ZHANG C R, HU H F, et al.Preparation of Silicon Carbide Coatings from Liquid Carbosilanes by Chemical Vapor Deposition[J]. Journal of Materials Engineering and Performance, 2007, 16(6): 775-778.
[21] 王盼, 夏龙, 温广武. 聚硼硅氧烷涂层及其涂覆工艺对SiO2f/SiO2复合材料防潮性能以及力学性能的影响[J]. 涂料工业, 2017, 47(10): 18-22.
WANG P, XIA L, WEN G W.Effect of Polyborosiloxane Coating and Preparation Method on Moisture Resistance and Mechanical Properties of SiO2f/SiO2[J]. Paint & Coatings Industry, 2017, 47(10): 18-22.
[22] SORARU G D, BABONNEAU F, GERVAIS C, et al.Hybrid RSiO1.5/B2O3 Gels from Modified Silicon Alkoxides and Boric Acid[J]. Journal of Sol-Gel Science and Technology, 2000, 18(1): 11-19.
[23] 程传兵, 王重海, 王洪升, 等. 陶瓷天线罩无机涂层的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1161-1164.
CHENG C B, WANG C H, WANG H S, et al.Research Progress of Ceramic Radome Inorganic Coating[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1161-1164.
[24] 李家亮, 牛金叶. 多孔石英基体上CVD法沉积氮化硅涂层的工艺、结构与性能研究[J]. 硅酸盐通报, 2011, 30(5): 1197-1202.
LI J L, NIU J Y. Synthetic Techniques, Structures and Properties of Silicon Nitride Coatings Prepared by CVD on Porous Silicon Oxide Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(5): 1197-1202.
[25] LIU Z D, TONG Z W, YUE S, et al.Novel Design of a Si3N4/BaO-Al2O3-SiO2 Coating with a Heterogeneous- Layer Structure on Porous Si3N4 Ceramic[J]. Ceramics International, 2021, 47(1): 1456-1461.
[26] CHRISSAFIS K.Kinetics of Thermal Degradation of Polymers[J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(1): 273-283.
[27] 崔孟忠, 王文华. 有机硅-无机硅高转化率耐高温消融材料的热性质[J]. 科学通报, 2007, 52(14): 1625-1629.
CUI M Z, WANG W H.Thermal Properties of Silicone-Inorganic Silicon High Conversion and High Temperature Resistant Ablation Materials[J]. Chinese Science Bulletin, 2007, 52(14): 1625-1629.

基金

航空科学基金(202200180T2001)

PDF(2930 KB)

Accesses

Citation

Detail

段落导航
相关文章

/