易解理氮化镓晶体超声辅助光电化学机械抛光关键技术研究

蒋网, 王青如, 林圻泓, 沙卫军, 徐崇寅, 周海

表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 97-107.

PDF(6437 KB)
PDF(6437 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 97-107. DOI: 10.16490/j.cnki.issn.1001-3660.2025.18.010
精密与超精密加工

易解理氮化镓晶体超声辅助光电化学机械抛光关键技术研究

  • 蒋网1, 王青如1, 林圻泓2a, 沙卫军1, 徐崇寅1, 周海2b,*
作者信息 +

Key Technologies of Ultrasound Assisted Photoelectrochemical Mechanical Polishing of Easily Cleavable Gallium Nitride Crystals

  • JIANG Wang1, WANG Qingru1, LIN Qihong2a, SHA Weijun1, XU Chongyin1, ZHOU Hai2b,*
Author information +
文章历史 +

摘要

目的 探究第三代半导体材料易解理氮化镓晶体高效、低损伤抛光加工工艺。方法 提出使用超声辅助与光电化学机械相结合的抛光技术,对氮化镓晶体N面(即(000 1)面或-C方向)进行抛光加工。通过单因素试验研究抛光压力、抛光盘转速、超声振幅、光照强度以及外加电压等因素对氮化镓N面材料去除率(MRR)和表面粗糙度(Ra)的影响规律,通过正交试验探究最佳抛光加工工艺参数组合,通过XPS试验分析抛光前后氮化镓晶体N面化学元素构成,进一步探究氮化镓晶体超声辅助光电化学机械抛光材料去除机理。结果 试验结果表明,以上5个因素均对氮化镓MRR和Ra有显著影响。各因素对材料去除率的影响主次为抛光压力>外加电压>光照强度>抛光盘转速>超声振幅;各因素对表面粗糙度的影响主次为外加电压>光照强度>抛光压力>抛光盘转速>超声振幅。最佳工艺参数选取抛光压力为150 Pa,抛光盘转速为60 r/min,超声振幅为30 μm,光照强度为60%,外加电压为3 V。经最优参数加工后,氮化镓N面MRR为235.76 nm/h,Ra为1.298 nm。结论 采取超声辅助与光电化学机械相结合的抛光加工方法能够增强化学反应与机械去除的协同作用,实现氮化镓晶体材料的高效去除,获得超光滑无损伤加工晶面,满足后续实际应用的需求。

Abstract

Gallium nitride crystals, as a typical third-generation semiconductor material, have high hardness and melting point, excellent thermal and chemical stability, as well as high conductivity and good optoelectronic properties, and are widely used in fields such as optics and telecommunications. However, they also have high hardness, high brittleness, and easy cleavage properties, and the processing process is prone to surface and subsurface damage. To explore the efficient and low damage polishing process of easily cleavable gallium nitride crystals in third-generation semiconductor materials, further research is needed on their ultra precision polishing technology. A new composite field assisted polishing technology for easily cleavable gallium nitride crystals is proposed, which combines the advantages of ultrasonic vibration assisted polishing, photocatalysis assisted polishing, and electrochemical assisted polishing. This article proposes the use of a polishing technique combining ultrasound assistance and photoelectrochemical mechanical polishing to polish the N-surface of gallium nitride crystals. The influence of polishing pressure, polishing disc speed, ultrasonic amplitude, light intensity, and applied voltage on the removal rate and surface roughness of gallium nitride N-surface material during the polishing process is studied through single factor experiments. The optimal combination of polishing process parameters is explored through orthogonal experiments. By analyzing the chemical element composition of the N-surface of gallium nitride crystals before and after polishing through XPS experiments, the removal mechanism of gallium nitride crystal ultrasound assisted photoelectrochemical mechanical polishing materials is further explored. The results of the single factor experiment indicate that all five factors have a significant impact on the MRR and Ra of gallium nitride. The orthogonal experimental results show that the main and secondary factors affecting the removal rate of gallium nitride materials are: polishing pressure>applied voltage>light intensity>polishing disc speed>ultrasonic amplitude; The main and secondary factors affecting the surface roughness of gallium nitride are: applied voltage>light intensity>polishing pressure>polishing disc speed>ultrasonic amplitude. The optimal process parameters are selected as polishing pressure of 150 Pa, polishing disc speed of 60 r/min, ultrasonic amplitude of 30 μm, light intensity of 60%, and applied voltage of 3 V. After optimal parameter processing, the MRR of GaN N-surface is 235.76 nm/h and Ra is 1.298 nm. The removal mechanism of gallium nitride crystal ultrasound assisted photoelectrochemical mechanical polishing material is obtained through XPS experiments: under the irradiation of ultraviolet light, the polishing solution undergoes photocatalytic oxidation-reduction reaction, generating hydroxyl radicals, promoting the chemical reaction between the polishing solution and gallium nitride. Gallium oxide with soft texture is generated on the surface of gallium nitride. Under the action of external voltage, gallium oxide is generated on the surface of gallium nitride by anodic oxidation. On this basis, ultrasonic vibration is introduced to alleviate the uneven oxidation of the gallium nitride surface caused by the aggregation and settling of polishing solution during photocatalytic oxidation and electrolysis processes, enhance the synergistic effect of chemical reaction and mechanical removal during polishing process, and improve the surface quality of gallium nitride crystal and material removal. The polishing method combining ultrasound assisted and photoelectrochemical mechanical processing can enhance the synergistic effect of chemical reaction and mechanical removal, achieve efficient removal of gallium nitride crystal materials, obtain ultra smooth and non-destructive processing crystal surfaces, and meet the needs of subsequent practical applications.

关键词

易解理 / 氮化镓晶体 / 超声辅助 / 化学机械抛光 / 材料去除率 / 表面粗糙度

Key words

easily cleavable / gallium nitride / ultrasound assisted / chemical mechanical polishing / material removal rate / surface roughness

引用本文

导出引用
蒋网, 王青如, 林圻泓, 沙卫军, 徐崇寅, 周海. 易解理氮化镓晶体超声辅助光电化学机械抛光关键技术研究[J]. 表面技术. 2025, 54(18): 97-107 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.010
JIANG Wang, WANG Qingru, LIN Qihong, SHA Weijun, XU Chongyin, ZHOU Hai. Key Technologies of Ultrasound Assisted Photoelectrochemical Mechanical Polishing of Easily Cleavable Gallium Nitride Crystals[J]. Surface Technology. 2025, 54(18): 97-107 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.010
中图分类号: TG580   

参考文献

[1] 郭东明, 康仁科. 半导体基片超精密磨削技术的研究现状与发展趋势[J]. 机械工程学报, 2023, 59(19): 299-329.
GUO D M, KANG R K.Research Status and Development Trend of Ultra-Precision Grinding Technology for Semiconductor Substrates[J]. China Industrial Economics, 2023, 59(19): 299-329.
[2] SHI D, ZHOU W, ZHAO T C.Polishing of Diamond, SiC, GaN Based on the Oxidation Modification of Hydroxyl Radical: Status, Challenges and Strategies[J]. Materials Science in Semiconductor Processing, 2023, 166: 107737.
[3] LI Q B, WANG S Z, LIU L, et al.Efficient Access to Non-Damaging GaN (0001) by Inductively Coupled Plasma Etching and Chemical-Mechanical Polishing[J]. Applied Surface Science, 2025, 679: 161207.
[4] 姜元希, 刘南柳, 张法碧, 等. 氮化镓单晶衬底制备技术发展与展望[J]. 人工晶体学报, 2020, 49(11): 2038-2045.
JIANG Y X, LIU N L, ZHANG F B, et al.Development and Trends of GaN Single Crystal Substrate Fabrication Technology[J]. Journal of Synthetic Crystals, 2020, 49(11): 2038-2045.
[5] 任国强, 王建峰, 刘宗亮, 等. 氮化镓单晶生长研究进展[J]. 人工晶体学报, 2019, 48(9): 1588-1598.
REN G Q, WANG J F, LIU Z L, et al.Research Progress on GaN Single Crystal Growth[J]. Journal of Synthetic Crystals, 2019, 48(9): 1588-1598.
[6] 欧李苇. 氮化镓晶片光电化学机械抛光原理与方法[D]. 大连: 大连理工大学, 2021.
OU L W.Principle and Method of Photoelectric Chemical Mechanical Polishing of Gallium Nitride Wafer[D]. Dalian: Dalian University of Technology, 2021.
[7] 温海浪, 肖平, 陆静. 大尺寸单晶金刚石衬底抛光技术研究现状与展望[J]. 机械工程学报, 2021, 57(22): 157-171.
WEN H L, XIAO P, LU J.Research Status and Prospect on Polishing Technology of Large Size Single Crystal Diamond Substrate[J]. Journal of Mechanical Engineering, 2021, 57(22): 157-171.
[8] 胡扬轩, 邓朝晖, 万林林, 等. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 材料导报, 2018, 32(9): 1452-1458.
HU Y X, DENG Z H, WAN L L, et al.Research Progress of the Novel Ultra-Precision Polishing Techniques and Composite Polishing Techniques for Sapphire Material Processing[J]. Materials Review, 2018, 32(9): 1452-1458.
[9] 李华, 任坤, 殷振, 等. 超声振动辅助磨料流抛光技术研究综述[J]. 机械工程学报, 2021, 57(9): 233-253.
LI H, REN K, YIN Z, et al.Review of Ultrasonic Vibration-Assisted Abrasive Flow Polishing Technology[J]. Journal of Mechanical Engineering, 2021, 57(9): 233-253.
[10] 王志辉, 谷志朋, 杨涛. 超声振动辅助抛光材料去除机理研究[J]. 机械制造, 2023, 61(8): 69-72.
WANG Z H, GU Z P, YANG T.Study on Material Removal Mechanism of Ultrasonic Vibration-Assisted Polishing[J]. Machinery, 2023, 61(8): 69-72.
[11] 杨卫平, 徐家文, 吴勇波. 超声椭圆振动-化学机械复合抛光硅片实验研究[J]. 东南大学学报(自然科学版), 2008, 38(5): 912-917.
YANG W P, XU J W, WU Y B.Experimental Investigation of Silicon Wafer Hybrid Polishing by UEV-CMP[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(5): 912-917.
[12] 程远瑶. 蓝宝石超声化学机械抛光工艺及材料去除机理研究[D]. 南昌: 南昌大学, 2021.
CHENG Y Y.Study on Ultrasonic Chemical Mechanical Polishing Process and Material Removal Mechanism of Sapphire[D]. Nanchang: Nanchang University, 2021.
[13] 刘仁鑫, 杨卫平, 吴勇波. 硅片边缘超声振动辅助化学机械抛光实验[J]. 农业机械学报, 2010, 41(2): 221-226.
LIU R X, YANG W P, WU Y B.Experiment on Silicon Wafer Edge Hybrid Polishing of Ultrasonic Vibration and Chemical Mechanical[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(2): 221-226.
[14] 唐美玲. 光催化辅助拋光碳化硅材料去除机理研究[D]. 沈阳: 沈阳工业大学, 2020.
TANG M L.Study on Removal Mechanism of Silicon Carbide by Photocatalytic Assisted Polishing[D]. Shenyang: Shenyang University of Technology, 2020.
[15] 于保军, 郭桌一, 卢发祥, 等. 紫外光催化振动复合抛光[J]. 红外与激光工程, 2022, 51(11): 353-359.
YU B J, GUO Z Y, LU F X, et al.Ultraviolet Photocatalytic-Vibrated Composite Polishing[J]. Infrared and Laser Engineering, 2022, 51(11): 353-359.
[16] 杨友明, 周海, 胡士响, 等. 紫外光催化辅助Ga面GaN化学机械抛光试验研究[J]. 表面技术, 2024, 53(6): 157-167.
YANG Y M, ZHOU H, HU S X, et al.Ultraviolet Photocatalysis Assisted Chemical Mechanical Polishing of GaN Surface[J]. Surface Technology, 2024, 53(6): 157-167.
[17] 何艳. 光催化辅助抛光碳化硅晶片工艺及机理研究[D]. 沈阳: 沈阳工业大学, 2019.
HE Y.Study on Technology and Mechanism of Photocatalytic Assisted Polishing Silicon Carbide Wafer[D]. Shenyang: Shenyang University of Technology, 2019.
[18] 王万堂, 张保国, 周佳凯, 等. 长余辉发光粒子与光催化剂在SiC晶圆化学机械抛光中的协同作用[J]. 表面技术, 2022, 51(9): 251-259.
WANG W T, ZHANG B G, ZHOU J K, et al.Synergistic Effect of Long-Afterglow Phosphor Particles and Photocatalyst in Chemical Mechanical Polishing of SiC Wafers[J]. Surface Technology, 2022, 51(9): 251-259.
[19] 郑世坤. 电化学芬顿反应辅助氮化镓化学机械抛光[D]. 无锡: 江南大学, 2023.
ZHENG S K.Electrochemical Fenton Reaction Assisted Chemical Mechanical polishing of Gallium Nitride[D]. Wuxi: Jiangnan University, 2023.
[20] 周锐. 单晶GaN电化学辅助化学机械抛光实验研究[D]. 广州: 广东工业大学, 2022.
ZHOU R.Experimental Study on Electrochemical- assisted Chemical Mechanical Polishing of Single Crystal GaN[D]. Guangzhou: Guangdong University of Technology, 2022.
[21] 卓志佳. 单晶GaN电芬顿化学机械抛光加工机理研究[D]. 广州: 广东工业大学, 2022.
ZHUO Z J.Study on Mechanism of Electro-Fenton Chemical Mechanical Polishing of Single Crystal GaN[D]. Guangzhou: Guangdong University of Technology, 2022.
[22] 邓家云. 单晶SiC电芬顿化学机械抛光机理研究[D]. 广州: 广东工业大学, 2022.
DENG J Y.Study on Mechanism of Electro-Fenton Chemical Mechanical Polishing of Single Crystal SiC[D]. Guangzhou: Guangdong University of Technology, 2022.
[23] 牛艳江. 电辅助光诱导胶体射流加工超光滑表面机理及实验研究[D]. 兰州: 兰州理工大学, 2023.
NIU Y J.Mechanism and Experimental Study on Ultra- smooth Surface Machining by Electro-assisted Light- induced Colloidal Jet[D]. Lanzhou: Lanzhou University of Technology, 2023.
[24] 吴勇波, 郭子睿. 多场辅助精密机械加工技术现状与展望[J]. 电加工与模具, 2022(5): 1-16.
WU Y B, GUO Z R.The Development of Multi-Field Assisted Mechanical Machining Technologies[J]. Electromachining & Mould, 2022(5): 1-16.
[25] 许剑锋, 黄凯, 郑正鼎, 等. 难加工材料场辅助超精密加工研究[J]. 中国科学: 技术科学, 2022, 52(6): 829-853.
XU J F, HUANG K, ZHENG Z D, et al.Review of Field-Assisted Ultraprecision Machining Difficult-to-Machine Materials[J]. Scientia Sinica (Technologica), 2022, 52(6): 829-853.
[26] 宋健. 单晶氮化镓的磨削特性研究及其分子动力学仿真[D]. 盐城: 盐城工学院, 2023.
SONG J.Study on Grinding Characteristics of Single Crystal Gallium Nitride and Its Molecular Dynamics Simulation[D]. Yancheng: Yancheng University of Technology, 2023.
[27] 卢发祥. 难加工材料光催化辊式振动复合抛光关键技术研究[D]. 长春: 长春工业大学, 2022.
LU F X.Study on Key Technology of Photocatalytic Roller Vibration Compound Polishing for Difficult-to- machine Materials[D]. Changchun: Changchun University of Technology, 2022.
[28] 孙跃文. 光电场对GaN晶片光电化学机械抛光影响的工艺试验研究[D]. 大连: 大连理工大学, 2022.
SUN Y W.Experimental Study on the Effect of Photoelectric Field on Photoelectric Chemical Mechanical Polishing of GaN Wafer[D]. Dalian: Dalian University of Technology, 2022.
[29] 钮市伟. GaN电化学机械抛光及材料去除机理研究[D]. 苏州: 苏州大学, 2020.
NIU S W.Study on Electrochemical Mechanical Polishing and Material Removal Mechanism of GaN[D]. Suzhou: Soochow University, 2020.

基金

国家自然科学基金面上项目(51675457)

PDF(6437 KB)

Accesses

Citation

Detail

段落导航
相关文章

/