碱性土壤环境中高强管线钢钝化及点蚀行为

许志昱, 胡骞, 胡月, 黄峰, 刘静

表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 54-64.

PDF(8134 KB)
PDF(8134 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 54-64. DOI: 10.16490/j.cnki.issn.1001-3660.2025.18.006
腐蚀与防护

碱性土壤环境中高强管线钢钝化及点蚀行为

  • 许志昱1, 胡骞1,*, 胡月1, 黄峰1, 刘静1,2
作者信息 +

Passivation and Pitting Behavior of High-strength Pipeline Steel in an Alkaline Soil Environment

  • XU Zhiyu1, HU Qian1,*, HU Yue1, HUANG Feng1, LIU Jing1,2
Author information +
文章历史 +

摘要

目的 阐明Mg处理、Ca处理及Mg-Ca复合处理对高强管线钢在模拟碱性土壤溶液中钝化及点蚀行为的影响。方法 利用动电位扫描、恒电位极化、Mott-Schottky曲线等电化学方法,结合XPS、EDS、点蚀形貌观察等微观分析手段研究了高强管线钢表面钝化膜特性及点蚀行为。结果 Mg处理、Ca处理及Mg-Ca复合处理对高强管线钢的平均晶粒尺寸分别为5.59、9.26和3.81 μm,铁素体相占比分别为74.0%、73.5%、62.3%,夹杂物密度分别为0.098、0.014和0.048个/μm2。在0.01 mol/L NaCl+0.2 mol/L NaHCO3溶液中,3种管线钢表面均生成n型半导体钝化膜,Ca处理试样表面钝化膜具有较正的平带电位(-0.417 V)、较低的施主密度(4.979×1021 cm-3)、最高的钝化膜电阻(27.31 kΩ·cm2)、最高的点蚀电位(-0.082 V)和最低的点蚀密度(734.2 μm-2)。结论 在钝化膜生长阶段,Ca处理试样因其贝氏体组织中均匀分布的空位,加速了钝化膜的生成速率,使其在较短时间内达到稳态电流密度,并形成致密且缺陷较少的钝化膜,表现出较低的施主密度和优异的稳定性。Ca处理试样钝化膜呈现n型半导体特性,具有较正的平带电位、较低的施主密度和较高的钝化膜电阻与电荷转移电阻,表明其钝化膜在较高电位下能保持电荷平衡,耐蚀性最佳。此外,Ca处理试样钝化膜较厚,且夹杂物密度最低,减少了点蚀萌生的可能性,使其具有最高的点蚀电位和最低的点蚀密度,表现出最强的耐点蚀性能。

Abstract

The third-generation oxide metallurgy technology improves the strength, toughness, hydrogen resistance and other properties of high-strength pipeline steel by regulating the microstructure and modifying inclusions, but it also has a significant impact on the formation of passive films, semiconductor properties and pitting corrosion behavior in alkaline soil environments. In this study, the characteristics of passive films and pitting behaviors of X70 grade pipeline steels treated with Mg, Ca, and Mg-Ca in a simulated alkaline soil solution were investigated by electrochemical methods (e.g., potentiodynamic scanning, potentiostatic polarization, and Mott-Schottky curves) combined with microscopic analysis techniques (e.g., XPS, EDS, and pitting morphology observation). The microstructure types, inclusion composition and size in high-strength pipeline steels treated with Mg, Ca and Mg-Ca were characterized, and their correlations with pitting corrosion resistance were discussed, so as to clarify the effects of different treatment methods on the characteristics of passive films and pitting behaviors of high-strength pipeline steels in simulated alkaline soil solutions.
The average grain sizes of the samples treated with Mg, Ca, and Mg-Ca were 5.59, 9.26, and 3.81 μm, respectively. The proportions of the ferrite phase were 74.0%, 73.5%, and 62.3%, and the inclusion densities were 0.098, 0.014, and 0.048 particles μm-2. In a solution of 0.01 mol/L NaCl+0.2 mol/L NaHCO3, n-type semiconductor passive films formed on the surfaces of the Mg-treated, Ca-treated, and Mg-Ca-treated samples. The flat-band potentials (Efb) were -0.519, -0.417, and -0.491 V, respectively, the donor densities were 6.126×1021, 4.979×1021, and 5.889×1021 cm-3, the film resistances (Rf) were 8.14, 27.31, and 14.88 kΩ·cm2. The passivation current of the Mg-Ca-treated sample was the lowest at 0.040 μA/cm2, but its pitting potential was the lowest at -0.128 V, and the hysteresis loop area was the largest, reaching 544 μA·V/cm2. In contrast, the Ca-treated sample had the highest Eb and Ep, with the smallest hysteresis loop area, which were -0.082 V, -0.259 V, and 215 μA·V/cm2, respectively.
Based on nucleation-growth and point defect models, during the nucleation stage of the passive film, ferrite, due to its simple crystal structure and high reactivity, shows a higher nucleation rate, leading to higher initial polarization current density and pseudocapacitance values in Mg-treated samples. In the growth stage of the passive film, the Ca-treated sample, due to uniformly distributed vacancies in its bainitic structure, accelerates the formation rate of the passive film, allowing it to reach a steady-state current density in a shorter time and form a dense passive film with fewer defects, exhibiting lower donor density and excellent stability. The passive films on the surfaces of Mg-treated, Ca-treated, and Mg-Ca-treated samples all exhibit n-type semiconductor characteristics. The passive film on the Ca-treated sample has a more positive flat-band potential, lower donor density, and higher film resistance and charge transfer resistance, indicating that the passive film can maintain charge balance at higher potentials and demonstrates the best corrosion resistance. Additionally, the passive film on the Ca-treated sample is thicker, and its inclusion density is the lowest, reducing the likelihood of pitting initiation, resulting in the highest pitting potential and lowest pitting density, and exhibiting the strongest pitting resistance.

关键词

管线钢 / 钝化膜 / 半导体特性 / 点蚀行为 / 氧化物冶金

Key words

pipeline steel / passive film / semiconductor properties / pitting corrosion behavior / oxide metallurgy

引用本文

导出引用
许志昱, 胡骞, 胡月, 黄峰, 刘静. 碱性土壤环境中高强管线钢钝化及点蚀行为[J]. 表面技术. 2025, 54(18): 54-64 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.006
XU Zhiyu, HU Qian, HU Yue, HUANG Feng, LIU Jing. Passivation and Pitting Behavior of High-strength Pipeline Steel in an Alkaline Soil Environment[J]. Surface Technology. 2025, 54(18): 54-64 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.006
中图分类号: TG172   

参考文献

[1] LI X G, ZHANG D W, LIU Z Y, et al.Materials Science: Share Corrosion Data[J]. Nature, 2015, 527(7579): 441-442.
[2] ZENG Y M, LUO J L.Electronic Band Structure of Passive Film on X70 Pipeline Steel[J]. Electrochimica Acta, 2003, 48(23): 3551-3562.
[3] 张秋利, 姬振江, 唐长斌. Na2CO3-NaHCO3体系中Cl-对X70管线钢点蚀的电化学噪声研究[J]. 热加工工艺, 2013, 42(14): 67-70.
ZHANG Q L, JI Z J, TANG C B.Electrochemical Noise Evaluation on Pitting of X70 Pipeline Steel in Na2CO3- NaHCO3 System Containing Cl-[J]. Hot Working Technology, 2013, 42(14): 67-70.
[4] 樊学华, 于勇, 张子如, 等. 316L奥氏体不锈钢在不同电位下的点蚀和再钝化行为研究[J]. 表面技术, 2020, 49(7): 287-293.
FAN X H, YU Y, ZHANG Z R, et al.Pitting and Repassivation Behavior of 316L Austenitic Stainless Steel under Different Potentials[J]. Surface Technology, 2020, 49(7): 287-293.
[5] 周建龙, 李晓刚, 杜翠薇, 等. X80管线钢在NaHCO3溶液中的阳极电化学行为[J]. 金属学报, 2010, 46(2): 251-256.
ZHOU J L, LI X G, DU C W, et al.Anodic Electrochemical Behavior of X80 Pipeline Steel in NaHCO3 Solution[J]. Acta Metallurgica Sinica, 2010, 46(2): 251-256.
[6] 宋庆伟, 刘云, 陈秀玲, 等. pH值对X80管线钢土壤腐蚀行为的影响[J]. 全面腐蚀控制, 2008, 22(4): 63-66.
SONG Q W, LIU Y, CHEN X L, et al.Effect of pH Value on the Soil Corrosion Behaviors of X80 Pipeline Steel[J]. Total Corrosion Control, 2008, 22(4): 63-66.
[7] 胡钢, 许淳淳, 池琳, 等. HCO3-/CO32-浓度对X70管线钢钝化行为的影响[J]. 北京化工大学学报(自然科学版), 2004, 31(3): 43-47.
HU G, XU C C, CHI L, et al.Influence of Concentration of HCO3-/CO32- on Passivation Behavior of X70 Pipeline Steel[J]. Journal of Beijing University of Chemical Technology, 2004, 31(3): 43-47.
[8] 袁玮, 黄峰, 胡骞, 等. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
YUAN W, HUANG F, HU Q, et al.Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(4): 277-282.
[9] 李鸿瑾, 王歧山, 廖子涵, 等. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
LI H J, WANG Q S, LIAO Z H, et al.Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl—Containing High pH Solution[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1): 60-66.
[10] 张弟, 张云霞, 梁平, 等. 高强管线钢钝化表面点蚀机理研究[J]. 材料保护, 2016, 49(1): 66-68.
ZHANG D, ZHANG Y X, LIANG P, et al.Pitting Mechanism of High Strength Pipeline Steel Passive Film[J]. Materials Protection, 2016, 49(1): 66-68.
[11] 李太全, 包燕平, 刘建华, 等. 镁对X120管线钢夹杂物的作用[J]. 钢铁, 2008, 43(11): 45-48.
LI T Q, BAO Y P, LIU J H, et al.Effect of Magnesium on Morphology of Non-Metallic Inclusions in X120-Pipeline Steel[J]. Iron & Steel, 2008, 43(11): 45-48.
[12] 杨伶俐, 包燕平, 刘建华. 钙处理对钢中非金属夹杂物变性效果分析[J]. 炼钢, 2009, 25(4): 35-37.
YANG L L, BAO Y P, LIU J H.Investigations in Non-Metallic Inclusions Modification Effects of Calcium Treatment in Steel[J]. Steelmaking, 2009, 25(4): 35-37.
[13] 朱晓东, 赵亚飞, 李嘉雄, 等. 钢中夹杂物形成机理与调控技术研究进展[J]. 现代交通与冶金材料, 2023, 3(4): 38-46.
ZHU X D, ZHAO Y F, LI J X, et al.Research Progress on the Formation Mechanism and Regulation Technology of Inclusions in Steel[J]. Modern Transportation and Metallurgical Materials, 2023, 3(4): 38-46.
[14] REN X D, LU Y, WEI Q, et al.The Influence of Ca2+ on the Growth Mechanism of Corrosion Product Film on N80 Steel in CO2 Corrosion Environments[J]. Corrosion Science, 2023, 218: 111168.
[15] JIANG Z H, CHEN T Q, CHE Z C, et al.Effect of Ca-Mg Microalloying on Corrosion Behavior and Corrosion Resistance of Low Alloy Steel in the Marine Atmospheric Environment[J]. Corrosion Science, 2024, 234: 112134.
[16] LIANG W, GENG R M, ZHI J G, et al.Oxide Metallurgy Technology in High Strength Steel: A Review[J]. Materials, 2022, 15(4): 1350.
[17] WEN Q Y, HUANG F, XIAO H, et al.Improving Hydrogen Induced Cracking Resistance of High Strength Acid-Resistant Submarine Pipeline Steels via Trace-Mg Treatment[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14808-14821.
[18] XIAO H, HUANG F, PENG Z X, et al.Sequential Kinetic Analysis of the Influences of Non-Metallic Inclusions on Hydrogen Diffusion and Trapping in High-Strength Pipeline Steel with Al-Ti Deoxidisation and Mg Treatment[J]. Corrosion Science, 2022, 195: 110006.
[19] 吕乃欣, 刘开平, 尹成先, 等. HCO3-对超级13Cr马氏体不锈钢钝化行为及点蚀行为的影响[J]. 表面技术, 2019, 48(5): 36-42.
LYU N X, LIU K P, YIN C X, et al.Effect of HCO3- on Passivation and Pitting Behavior of Super 13Cr Martensitic Stainless Steel[J]. Surface Technology, 2019, 48(5): 36-42.
[20] YE K H, LI K S, LU Y R, et al.An Overview of Advanced Methods for the Characterization of Oxygen Vacancies in Materials[J]. TrAC Trends in Analytical Chemistry, 2019, 116: 102-108.
[21] DIAWARA B, BEH Y A, MARCUS P.Nucleation and Growth of Oxide Layers on Stainless Steels (FeCr) Using a Virtual Oxide Layer Model[J]. The Journal of Physical Chemistry C, 2010, 114(45): 19299-19307.
[22] 刘鹤霞, 张高林, 赵景茂, 等. 四种钢材在含CO2盐水溶液中的腐蚀行为[J]. 腐蚀与防护, 2007, 28(4): 202-204.
LIU H X, ZHANG G L, ZHAO J M, et al.Corrosion Behaviors of Four Steels in CO2-Saturated Brine[J]. Corrosion & Protection, 2007, 28(4): 202-204.
[23] 毛飞雄, 周羽婷, 姚文清, 等. 基于PDM的304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
MAO F X, ZHOU Y T, YAO W Q, et al.Growth Kinetics of Steady-State Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(4): 911-921.
[24] 冯志明, 杨王玥. 冷轧退火对共析珠光体钢组织球化超细化的影响[J]. 北京科技大学学报, 2007, 29(7): 689-693.
FENG Z M, YANG W Y.Spheroidized and Ultra-Fine Structure Formed by Cold-Rolling and Annealing of Eutectoid Pearlite Steel[J]. Journal of University of Science and Technology Beijing, 2007, 29(7): 689-693.
[25] RAMEZANZADEH B, NIROUMANDRAD S, AHMADI A, et al.Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating through Wet Transfer of Amino Functionalized Graphene Oxide[J]. Corrosion Science, 2016, 103: 283-304.
[26] GADALA I M, ALFANTAZI A.A Study of X100 Pipeline Steel Passivation in Mildly Alkaline Bicarbonate Solutions Using Electrochemical Impedance Spectroscopy under Potentiodynamic Conditions and Mott- Schottky[J]. Applied Surface Science, 2015, 357: 356-368.

基金

湖北省重大科技攻关项目(2023BAA003)

PDF(8134 KB)

Accesses

Citation

Detail

段落导航
相关文章

/