激光熔覆碳化物增强钛基硬质合金涂层的性能研究进展

陈赞聪, 陈文刚, 张继豪, 张翼鹏, 谢瀚翀, 冯金明, 杨志金, 尹玫月, Dongyang LI

表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 1-15.

PDF(11957 KB)
PDF(11957 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (18) : 1-15. DOI: 10.16490/j.cnki.issn.1001-3660.2025.18.001
研究综述

激光熔覆碳化物增强钛基硬质合金涂层的性能研究进展

  • 陈赞聪1,2, 陈文刚1,2,*, 张继豪1,2, 张翼鹏1,2, 谢瀚翀1,2, 冯金明1,2, 杨志金1,2, 尹玫月1,2, Dongyang LI2,3
作者信息 +

Research Progress on Laser Cladding of Carbide Reinforced Titanium Based Cemented Carbide Coatings

  • CHEN Zancong1,2, CHEN Wengang1,2,*, ZHANG Jihao1,2, ZHANG Yipeng1,2, XIE Hanchong1,2, FENG Jinming1,2, YANG Zhijin1,2, YIN Meiyue1,2, Dongyang Li2,3
Author information +
文章历史 +

摘要

钛合金因其良好的密度、耐腐蚀性和生物活性被广泛应用于航空航天、医疗器械等领域。然而,由于硬度不足、耐磨性差、高温易氧化和生物相容性较差等因素,严重制约其在摩擦工况下的使用寿命。针对这一系列问题,国内外学者利用高硬度、高耐磨性、高温抗氧化性的陶瓷材料,以及激光熔覆层(是一种高效、狭窄的热影响区、高结合强度和致密的工艺),进行了一系列的研究工作。系统深入探讨了在激光熔覆技术中,如何精确选择碳化物增强相以及掌握激光熔覆过程中的关键参数(如激光功率、扫描速度、光斑直径、比能量和送粉量等因素)对所制备涂层的耐磨性能的影响,其次详细探讨了激光熔覆碳化物增强钛基硬质合金涂层在耐磨性、耐腐蚀性、高温抗氧化性及力学性能等方面的使用性能研究,最后,结合原位合成、梯度复合设计等创新方法,重点阐述其涂层在航空航天、生物医学、海洋工程、冶金等工业领域中的应用。并在现有的研究成果上对其未来发展进行了展望和总结。

Abstract

Titanium alloys have been widely used in aerospace, medical equipment and other fields due to their good density, corrosion resistance and biological activity. However, their service life under friction condition is seriously restricted due to insufficient hardness, poor wear resistance, high temperature oxidation and poor biocompatibility. In order to solve these problems, a series of researches have been carried out in ceramic materials with high hardness, high wear resistance, high temperature oxidation resistance and laser cladding layers. In this paper, the effects of laser energy, scanning speed, spot diameter, specific energy and powder content on the wear resistance of the coatings are discussed. Through systematic experiments and data analysis, the ways by which these key factors interact to improve the durability of coatings are revealed. The research results provide valuable information for optimizing the laser processing technology and help to design more wear-resistant coating products. Then, the application of laser cladding technology in the preparation of SiC -strengthened titanium based solid solution carbon coatings is analyzed. In this paper, the excellent abrasive resistance is analyzed in detail, including abrasive wear and surface fatigue crack resistance tests. These experiments enable better understand how the laser cladding process affects the performance of coatings and the potential value of this technology in improving the durability of industrial equipment. At the same time, the corrosion resistance of the coatings is studied in depth, especially in wet environments. In addition, the focus is also put on the oxidation resistance of the coatings at high temperature and the mechanical strength and toughness under high stress. The evaluation of these properties provides an important basis for the practical application of the new coating materials, and the corrosion resistance of the coatings is discussed. The corrosion resistance of the coatings to various chemicals is evaluated in detail, especially in wet environments. In addition, special attention is paid to the oxidation resistance of the coatings at high temperature, as well as their mechanical strength and toughness under high stress. The comprehensive evaluation of these key characteristics provides a solid theoretical basis for the commercial application of this new coating material. Finally, a novel coating system based on in-situ synthesis and gradient composite design strategy is investigated. These advanced methods can not only improve the performance of coatings, but also show excellent application potential in many key industrial fields. In the field of aerospace in particular, these coatings can significantly improve the durability and safety of aircraft structures; In the field of biomedicine, they can provide a higher level of biocompatibility and antimicrobial resistance for medical devices; In marine engineering, they can be used to protect deep-sea equipment from seawater corrosion; And in the metallurgical industry, they can enhance the corrosion resistance and mechanical properties of metallic materials. Through the elaboration of these applications, it is expected to provide an innovative and efficient solution to the growing technical challenges and market demands of the relevant industries. In this review, this work not only reviews and analyzes the progress of the research, but also looks forward to its development trend and prospects, so as to provide guidance and inspiration for future research.

关键词

激光熔覆 / TiC / 硬质合金涂层 / 碳化物 / 研究进展

Key words

laser cladding / TiC / cemented carbide coatings / carbides / research progress

引用本文

导出引用
陈赞聪, 陈文刚, 张继豪, 张翼鹏, 谢瀚翀, 冯金明, 杨志金, 尹玫月, Dongyang LI. 激光熔覆碳化物增强钛基硬质合金涂层的性能研究进展[J]. 表面技术. 2025, 54(18): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.001
CHEN Zancong, CHEN Wengang, ZHANG Jihao, ZHANG Yipeng, XIE Hanchong, FENG Jinming, YANG Zhijin, YIN Meiyue, Dongyang Li. Research Progress on Laser Cladding of Carbide Reinforced Titanium Based Cemented Carbide Coatings[J]. Surface Technology. 2025, 54(18): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.18.001
中图分类号: TG174.4   

参考文献

[1] 王培, 叶源盛. 钛合金表面激光熔覆h-BN固体润滑涂层[J]. 表面技术, 2015, 44(8): 44-48.
WANG P, YE Y S.Solid Self-Lubricating Coatings on TC4 Titanium Alloy by Laser Cladding with H-BN[J]. Surface Technology, 2015, 44(8): 44-48.
[2] 张安峰, 张金智, 张晓星, 等. 激光增材制造高性能钛合金的组织调控与各向异性研究进展[J]. 精密成形工程, 2019, 11(4): 1-8.
ZHANG A F, ZHANG J Z, ZHANG X X, et al.Research Progress in Tissue Regulation and Anisotropy of High- Performance Titanium Alloy by Laser Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1-8.
[3] GANESH B K C, SHA W, RAMANAIAH N, et al. Effect of Shotpeening on Sliding Wear and Tensile Behavior of Titanium Implant Alloys[J]. Materials & Design (1980- 2015), 2014, 56: 480-486.
[4] BRUNI S, MARTINESI M, STIO M, et al.Effects of Surface Treatment of Ti-6Al-4V Titanium Alloy on Biocompatibility in Cultured Human Umbilical Vein Endothelial Cells[J]. Acta Biomaterialia, 2005, 1(2): 223-234.
[5] GUO C, ZHOU J S, ZHAO J R, et al.Improvement of the Oxidation and Wear Resistance of Pure Ti by Laser- Cladding Ti3Al Coating at Elevated Temperature[J]. Tribology Letters, 2011, 42(2): 151-159.
[6] COSTA M Y P, VENDITTI M L R, CIOFFI M O H, et al. Fatigue Behavior of PVD Coated Ti-6Al-4V Alloy[J]. International Journal of Fatigue, 2011, 33(6): 759-765.
[7] ZHU Y H, WANG W, JIA X Y, et al.Deposition of TiC Film on Titanium for Abrasion Resistant Implant Material by Ion-Enhanced Triode Plasma CVD[J]. Applied Surface Science, 2012, 262: 156-158.
[8] KÖSE R, URTEKIN L, CEYLAN A, et al. Three Types of Ceramic Coating Applicability in Automotive Industry for Wear Resistance Purpose[J]. Industrial Lubrication and Tribology, 2005, 57(4): 140-144.
[9] SUN J, TONG W P, ZUO L, et al.Low-Temperature Plasma Nitriding of Titanium Layer on Ti/Al Clad Sheet[J]. Materials & Design, 2013, 47: 408-415.
[10] LIN Y C, CHEN H M, CHEN Y C.The Effect of Different Methods to Add Nitrogen to Titanium Alloys on the Properties of Titanium Nitride Clad Layers[J]. Materials & Design (1980-2015), 2014, 54: 222-229.
[11] NTOMPROUGKIDIS V, MARTIN J, NOMINÉ A, et al.Sequential Run of the PEO Process with Various Pulsed Bipolar Current Waveforms[J]. Surface and Coatings Technology, 2019, 374: 713-724.
[12] PANJAN P, DRNOVŠEK A, GSELMAN P, et al. Review of Growth Defects in Thin Films Prepared by PVD Techniques[J]. Coatings, 2020, 10(5): 447.
[13] 王冉, 王玉玲, 姜芙林, 等. 激光熔覆制备陶瓷涂层研究现状[J]. 青岛理工大学学报, 2020, 41(6): 81-87.
WANG R, WANG Y L, JIANG F L, et al.Research Status of Ceramic Coatings Prepared by Laser Cladding[J]. Journal of Qingdao University of Technology, 2020, 41(6): 81-87.
[14] LARIBI M, VANNES A B, TREHEUX D.Study of Mechanical Behavior of Molybdenum Coating Using Sliding Wear and Impact Tests[J]. Wear, 2007, 262(11/12): 1330-1336.
[15] 姚建华. 激光表面改性技术及其应用[M]. 北京: 国防工业出版社, 2012.
YAO J H.Laser Surface Modification Technology and Application[M]. Beijing: National Defense Industry Press, 2012.
[16] ZHU L D, XUE P S, LAN Q, et al.Recent Research and Development Status of Laser Cladding: A Review[J]. Optics & Laser Technology, 2021, 138: 106915.
[17] 高淑英, 杨洗陈. 用于激光熔敷的同轴送粉喷嘴的设计[J]. 天津工业大学学报, 2003, 22(5): 42-45.
GAO S Y, YANG X C.Design of Nozzle for Laser Coaxial Feed Powder[J]. Journal of Tianjin Institute of Textile Science and Technology, 2003, 22(5): 42-45.
[18] YANG S, LIU W J, ZHONG M L, et al.TiC Reinforced Composite Coating Produced by Powder Feeding Laser Cladding[J]. Materials Letters, 2004, 58(24): 2958-2962.
[19] 关振中. 激光加工工艺手册[M]. 北京: 中国计量出版社, 1998: 275-296.
GUAN Z Z.Handbook of Laser Processing Technology[M]. China Metrology Publishing House, 1998: 275-296.
[20] DE OLIVEIRA U, OCELÍK V, DE HOSSON J T M. Analysis of Coaxial Laser Cladding Processing Conditions[J]. Surface and Coatings Technology, 2005, 197(2/3): 127-136.
[21] MARIANI F E, RIBEIRO K S B, LOMBARDI A N, et al. Effect of Laser Polishing Post-Processing Technique on the Roughness and Wear Resistance of Inconel 625 Deposited by Laser Cladding on AISI 304LStainless Steel[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6713-6721.
[22] 张斌, 陈岁元, 梁京等短应力线轧机激光再制造现状及发展趋势[J]. 材料工程, 2019, 47(11): 43-52.
ZHANG B, CHEN S Y, LIANG J, et al.Status and Development Trend of Laser Remanufacturing of Short Stress Line Mills[J]. Materials Engineering, 2019, 47(11): 43-52.
[23] SHI C, LEI J B, ZHOU S F, et al.Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-Based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents[J]. Journal of Alloys and Compounds, 2018, 744: 146-155.
[24] WENG F, YU H J, LIU J L, et al.Microstructure and Wear Property of the Ti5Si3/TiC Reinforced Co-Based Coatings Fabricated by Laser Cladding on Ti-6Al-4V[J]. Optics & Laser Technology, 2017, 92: 156-162.
[25] 杨光, 何帅, 钦兰云, 等. WC颗粒增强钛基复合涂层的组织和高温磨损性能研究[J]. 应用激光, 2013, 33(4): 365-369.
YANG G, HE S, QIN L Y, et al.Microstructure and Wear Resistance of WC Particles Reinforced Titanium Matrix Composite Coating[J]. Applied Laser, 2013, 33(4): 365-369.
[26] 孙琳. 钛合金表面激光熔覆SiC增强TiNi基复合涂层组织与性能的研究[D]. 大连: 大连理工大学, 2018.
SUN L.Study on Microstructure and Properties of TiNi-based Composite Coating Reinforced by SiC by Laser Cladding on Titanium Alloy Surface[D]. Dalian: Dalian University of Technology, 2018.
[27] 王昕阳, 黄燕滨, 刘谦, 等. 激光熔覆工艺参数对高熵合金涂层性能的影响及其优化[J]. 电镀与涂饰, 2021, 40(6): 414-420.
WANG X Y, HUANG Y B, LIU Q, et al.Effects of Process Parameters on Properties of High-Entropy Alloy Coating by Laser Cladding and Their Optimization[J]. Electroplating & Finishing, 2021, 40(6): 414-420.
[28] 沈浩, 蔡杰, 吕鹏, 等. 激光工艺参数对NiCoCrAlYSi熔覆层微观组织及性能的影响[J]. 兵工学报, 2021, 42(7): 1524-1534.
SHEN H, CAI J, LYU P, et al.Effect of Laser Process Parameters on Microstructures and Properties of NiCoCrAlYSi Laser Cladding Coating[J]. Acta Armamentarii, 2021, 42(7): 1524-1534.
[29] 崔爱永, 胡芳友, 张忠文, 等. 钛合金表面激光熔覆修复技术[J]. 中国表面工程, 2011, 24(2): 61-64.
CUI A Y, HU F Y, ZHANG Z W, et al.Titanium Alloy Laser Cladding Repair Technique[J]. China Surface Engineering, 2011, 24(2): 61-64.
[30] LI Y X, SU K Q, BAI P K, et al.Microstructure and Property Characterization of Ti/TiBCN Reinforced Ti Based Composite Coatings Fabricated by Laser Cladding with Different Scanning Speed[J]. Materials Characterization, 2020, 159: 110023.
[31] QU C C, LI J, BAI L L, et al.Effects of the Thickness of the Pre-Placed Layer on Microstructural Evolution and Mechanical Properties of the Laser-Clad Coatings[J]. Journal of Alloys and Compounds, 2015, 644: 450-463.
[32] CHEN T, WU W N, LI W P, et al.Laser Cladding of Nanoparticle TiC Ceramic Powder: Effects of Process Parameters on the Quality Characteristics of the Coatings and Its Prediction Model[J]. Optics & Laser Technology, 2019, 116: 345-355.
[33] SAMPEDRO J, PÉREZ I, CARCEL B, et al. Laser Cladding of TiC for Better Titanium Components[J]. Physics Procedia, 2011, 12: 313-322.
[34] DIAO Y H, ZHANG K M.Microstructure and Corrosion Resistance of TC2 Ti Alloy by Laser Cladding with Ti/TiC/TiB2 Powders[J]. Applied Surface Science, 2015, 352: 163-168.
[35] WU W L, LIU Y, YANG D Z, et al.Microstructure of TiC Dendrites Reinforced Titanium Matrix Composite Layer by Laser Cladding[J]. Journal of Materials Science Letters, 2003, 22(16): 1169-1171.
[36] KE J, LIU X B, WANG M, et al.Investigation of Wear Behaviors from Room Temperature to 500 ℃ of In-Situ Synthesized Ceramics Reinforced Composite Coating on TA2 Alloy by Laser Cladding[J]. Journal of Materials Research and Technology, 2020, 9(3): 6397-6408.
[37] 相占凤. 添加固体润滑剂hBN的钛合金激光熔覆高温耐磨复合涂层研究[D]. 苏州: 苏州大学, 2015.
XIANG Z F.Study on High Temperature Wear-resistant Composite Coating of Titanium Alloy by Laser Cladding with Solid Lubricant hBN[D]. Suzhou: Soochow University, 2015.
[38] AL-SAYED ALI S R, HUSSEIN A H A, NOFAL A, et al. A Contribution to Laser Cladding of Ti-6Al-4V Titanium Alloy[J]. Metallurgical Research & Technology, 116(6): 634.
[39] STRATAKIS E, BONSE J, HEITZ J, et al.Laser Engineering of Biomimetic Surfaces[J]. Materials Science and Engineering: R: Reports, 2020, 141: 100562.
[40] WU M Y, ZHAN X H, Bu H C, et al.Microstructure and Mechanical Properties of Al-Si-Mg Alloys Produced by Selective Laser Melting[J]. Metals and Materials International, 2020, 27: 2319.
[41] OBADELE B A, ANDREWS A, OLUBAMBI P A, et al.Tribocorrosion Behaviour of Laser Cladded Biomedical Grade Titanium Alloy[J]. Materials and Corrosion, 2015, 66(10): 1133-1139.
[42] ZHU Y Q, SHEN S K, YANG X F, et al.Study on the Friction and Wear Performance of Laser Cladding WC-TiC/Ni60 Coating on the Working Face of Shield Bobbing Cutter[J]. Optical Materials, 2024, 148: 114875.
[43] 崔爱永, 胡芳友, 回丽, 等. 钛基梯度功能涂层组织和腐蚀行为研究[J]. 中国表面工程, 2011, 24(5): 18-21.
CUI A Y, HU F Y, HUI L, et al.Microstructure and Corrosion Behavior of Ti-Matrix Functional Gradient Layer[J]. China Surface Engineering, 2011, 24(5): 18-21.
[44] ADESINA O S, OBADELE B A, FAROTADE G A, et al.Effect of TiC Content on Microstructural Evolution and Wear Behaviors of Laser Clad TiC/Fe-Al Coatings[J]. Journal of Alloys and Compounds, 2020, 827: 154 245.
[45] LI S N, XIONG H P, LI N, et al.Mechanical Properties and Formation Mechanism of Ti/SiC System Gradient Materials Fabricated by In-Situ Reaction Laser Cladding[J]. Ceramics International, 2017, 43(1): 961-967.
[46] 石磊, 李兰兰, 张立君, 等. 钛合金表面激光熔覆生物陶瓷梯度涂层的组织性能分析[J]. 兵器材料科学与工程, 2016, 39(1): 64-69.
SHI L, LI L L, ZHANG L J, et al.Microstructures and Properties of Bioceramic Gradient Coatings on Surface of Titanium Alloy by Laser Cladding[J]. Ordnance Material Science and Engineering, 2016, 39(1): 64-69.
[47] AGHILI S E, SHAMANIAN M, AMINI NAJAFABADI R, et al.Microstructure and Oxidation Behavior of NiCr- Chromium Carbides Coating Prepared by Powder-Fed Laser Cladding on Titanium Aluminide Substrate[J]. Ceramics International, 2020, 46(2): 1668-1679.
[48] 余鹏程, 刘秀波, 陆小龙, 等. Ti6Al4V合金激光熔覆复合涂层的摩擦学和高温抗氧化性能研究[J]. 中国激光, 2015, 42(10): 89-96.
YU P C, LIU X B, LU X L, et al.Study on Tribology and High-Temperature Oxidation Resistance of Laser Cladding Composite Coatings on Ti6Al4V Alloy[J]. Chinese Journal of Lasers, 2015, 42(10): 89-96.
[49] 刘元富, 赵海云, 张凌云, 等. 激光熔敷Ti5Si3/NiTi金属间化合物复合材料涂层组织与高温抗氧化性能研究[J]. 应用激光, 2002, 22(3): 269-271.
LIU Y F, ZHAO H Y, ZHANG L Y, et al.Microstructure and Oxidation Resistance of a Laser Clad Ti5Si3/NiTi Intel-Metallic Composite Coating[J]. Applied Laser, 2002, 22(3): 269-271.
[50] 林英华, 陈志勇, 李月华, 等. TC4钛合金表面激光容覆原位制备TTB陶瓷余层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41(10): 2694-2698.
LIN Y H, CHEN Z Y, LI Y H, et al.Microstructural Characteristics and Hardness Properties of TTB Ceramic Residual Layers Prepared in Situ by Laser Capacitive Cladding on TC4 Titanium Alloy Surfaces[J]. Infrared and Laser Engineering, 2012, 41(10): 2694-2698.
[51] WENG F, YU H J, CHEN C Z, et al.Microstructures and Properties of TiN Reinforced Co-Based Composite Coatings Modified with Y2O3 by Laser Cladding on Ti-6Al-4V Alloy[J]. Journal of Alloys and Compounds, 2015, 650: 178-184.
[52] LIU F C, MAO Y Q, LIN X, et al.Microstructure and High Temperature Oxidation Resistance of Ti-Ni Gradient Coating on TA2 Titanium Alloy Fabricated by Laser Cladding[J]. Optics & Laser Technology, 2016, 83: 140-147.
[53] 陈子勇, 刘莹莹, 靳艳芳, 等. 航空发动机用耐650 ℃高温钛合金研究现状与进展[J]. 航空制造技术, 2019, 62(19): 22-30.
CHEN Z Y, LIU Y Y, JIN Y F, et al.Research on 650 ℃ High Temperature Titanium Alloy Technology for Aero-Engine[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 22-30.
[54] DURDU S, DENIZ Ö F, KUTBAY I, et al. Characterization and Formation of Hydroxyapatite on Ti6Al4V Coated by Plasma Electrolytic Oxidation[J]. Journal of Alloys and Compounds, 2013, 5 51: 422.
[55] JURCZYK K, NIESPODZIANA K, JURCZYK M U, et al.Synthesis and Characterization of Titanium-45S5 Bioglass Nanocomposites[J]. Materials & Design, 2011, 32(5): 2554-2560.
[56] YANG Y L, SERPERSU K, HE W, et al.Osteoblast Interaction with Laser Cladded HA and SiO2-HA Coatings on Ti-6Al-4V[J]. Materials Science and Engineering: C, 2011, 31(8): 1643-1652.
[57] XUE X D, LU L B, HE D L, et al.Antibacterial Properties and Cytocompatibility of Ti-20Zr-10Nb-4Ta Alloy Surface with Ag Microparticles by Laser Treatment[J]. Surface and Coatings Technology, 2021, 425: 127716.
[58] LI H C, WANG D G, CHEN C Z, et al.Effect of Applied Voltage on Phase Composition and Corrosion Resistance of Phosphate Coatings on Magnesium Alloy Via Electrochemical Deposition Method[J]. Colloids and Surfaces B: Biointerfaces, 2015, 127: 15.
[59] LIU X Y, DING C X, CHU P K.Mechanism of Apatite Formation on Wollastonite Coatings in Simulated Body Fluids[J]. Biomaterials, 2004, 25(10):1755.
[60] XIONG Y Z, GAO R N, ZHANG H, et al.Design and Fabrication of a Novel Porous Titanium Dental Implant with Micro/Nano Surface[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(3): 1097-1102.
[61] WOOD R J K. Erosion-Corrosion Interactions and Their Effect on Marine and Offshore Materials[J]. Wear, 2006, 261(9): 1012-1023.
[62] LANDOLT D, Electronic and Magnetic Aspects of Corrosion[J]. Applied Physics Letters, 2001: 3137.
[63] 陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用钛工业进展[J]. 工程科技, 2012, 168: 12.
CHEN J, WANG T X, ZHOU W, et al.Domestic and Foreign Titanium Alloys for Shipbuilding and Their Applications Advances in Titanium Industry[J]. Engineerinng Technology 2012, 168.12.
[64] 吴欣麦, 张恒, 徐学军, 等. 钛合金在石油天然曲深开发中的应用[J]. 石油化工应用, 2019, 38(10): 10-14.
WU X M, ZHANG H, XU X J, et al.Application of Chin Alloys in The Deep Development of Petroleum Natural Quartz[J]. Petrochemical Applications, 2019, 38(10): 10-14.
[65] 陈君, 阎逢元, 王建章. 海水环境下TC4钛合金腐蚀磨损性能的研究[J]. 摩擦学学报, 2012, 32(1): 1-6.
CHEN J, YAN F Y, WANG J Z.Corrosion Wear Properties of TC4 Titanium Alloy in Artificial Seawater[J]. Tribology, 2012, 32(1): 1-6.
[66] JUN C, QING Z.Effect of Electrochemical State on Corrosion-Wear Behaviors of TC4 Alloy in Artificial Seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1011-1018.
[67] 陈君, 李全安, 张清, 等. 海水腐蚀对几种金属材料耐磨性能的影响[J]. 材料热处理学报, 2014, 35(12): 166-171.
CHEN J, LI Q A, ZHANG Q, et al.Effect of Corrosion on Wear Resistance of Several Metals in Seawater[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 166-171.
[68] CHEN J, YAN F Y.Tribocorrosion Behaviors of Ti- 6Al-4V and Monel K500 Alloys Sliding Against 316 Stainless Steel in Artificial Seawater[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1356-1365.
[69] BARIK R C, WHARTON J A, WOOD R J K, et al. Electro-Mechanical Interactions during Erosion-Corrosion[J]. Wear, 2009, 267(11): 1900-1908.
[70] 郑超, 魏世丞, 梁义, 等. 钛台金在3.5%NaCl溶液中的微动腐蚀特性[J]. 稀有金属, 2018, 42(10): 1018-1023.
ZHENG C, WEI S C, LIANG Y, et al.Microdynamic Corrosion Characteristics of Titanium Table Gold in 3.5% NaCl Solution[J]. Rare Metals, 2018, 42(10): 1018-1023.
[71] 胡乾午, 杨泰平, 李志远, 等. 镁基金属复合材料表面激光熔覆铜合金研究[J]. 应用激光, 2001, 21(4): 247-250.
HU Q W, YANG T P, LI Z Y, et al.Studyon Laser Cladding of Copper Alloy on Mg-Based Metal Matrix Composite[J]. Applied Laser, 2001, 21(4): 247-250.
[72] 张松, 张春华, 康煜平, 等. 钛合金表面激光熔覆原位生成TiC增强复合涂层[J]. 中国有色金属学报, 2001, 11(6): 1026-1030.
ZHANG S, ZHANG C H, KANG Y P, et al.Mechanism of In-Situ Formation of TiC Particle Reinforced Ti-Based Composite Coating Induced by Laser Melting[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(6): 1026-1030.
[73] VREELING J A, OCELÍK V, DE HOSSON J T M. Ti-6Al-4V Strengthened by Laser Melt Injection of WCp Particles[J]. Acta Materialia, 2002, 50(19): 4913-4924.
[74] AYERS J D, TUCKER T R.Particulate-TiC-Hardened Steel Surfaces by Laser Melt Injection[J]. Thin Solid Films, 1980, 73(1): 201-207.
[75] DAS A K, SHARIFF S M, CHOUDHURY A R.Effect of Rare Earth Oxide (Y2O3) Addition on Alloyed Layer Synthesized on Ti-6Al-4V Substrate with Ti+SiC+h-BN Mixed Precursor by Laser Surface Engineering[J]. Tribology International, 2016, 95: 35-43.

基金

国家自然科学基金地区科学基金项目(52465023);云南省农业联合专项重点项目(202301BD070001-001);云南省农业联合专项面上项目(202101BD070001-051);四川省科技计划重点研发项目(2023YFN0081)

PDF(11957 KB)

Accesses

Citation

Detail

段落导航
相关文章

/