Current Development Status of Atomic-level Polishing Technologies for Typical Optical Hard-brittle Materials

TIAN Yinghao, ZHANG Zhenyu, PENG Kai, YU Zhibin

Surface Technology ›› 2025, Vol. 54 ›› Issue (23) : 1-33.

PDF(47086 KB)
PDF(47086 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (23) : 1-33. DOI: 10.16490/j.cnki.issn.1001-3660.2025.23.001
Special Topic—Atomic-level manufacturing

Current Development Status of Atomic-level Polishing Technologies for Typical Optical Hard-brittle Materials

  • TIAN Yinghao1, ZHANG Zhenyu, PENG Kai2, YU Zhibin1
Author information +
History +

Abstract

With the ongoing advancements in high-end manufacturing, including high-power lasers, precision optical systems, integrated circuits, and advanced semiconductor devices, the demand for ultra-smooth surfaces in optical components has reached unprecedented levels. In precision optics, the pursuit of atomically smooth surfaces with roughness below 0.2 nm has become a critical benchmark for system performance enhancement. However, typical optical hard-brittle materials face substantial challenges in achieving such surface quality due to their high hardness, low plasticity, and limited fracture toughness. These materials, which include crystalline materials like single-crystal silicon and sapphire, and amorphous materials such as fused silica, vary significantly in structure and removal response, necessitating differentiated approaches for atomic-level polishing.
This review systematically summarizes recent research on atomic-level polishing technologies for optical hard-brittle materials. The progress is categorized according to material type and the distinct mechanisms and responses observed in crystalline and amorphous systems are discussed. Key atomic-level polishing techniques covered include Chemical Mechanical Polishing (CMP), Ion Beam Polishing (IBP), Magnetorheological Finishing (MRF), and Plasma-Induced Atom-Migration Manufacturing (PAMM). Among these, CMP remains the most widely applied technique due to its synergistic mechanism of chemical reaction and mechanical removal, which offers a balance between low surface roughness and minimal subsurface damage.
For single-crystal silicon, studies have focused on abrasive design, CMP slurry composition, process parameter optimization, contamination control, and micro-removal mechanism modeling. For sapphire, known for its pronounced crystallographic anisotropy, different polishing strategies have been developed based on crystal orientations, especially for the C-, R-, and M-planes. Studies have demonstrated the effectiveness of using complexing agents, pH modifiers, ultrasonic assistance, and plasma enhancement to improve surface quality. In addition, sustainable CMP strategies involving biodegradable additives and low-toxicity formulations have shown promise in reducing environmental impact. Fused silica, as a typical amorphous hard-brittle material, exhibits uniformity in structure but high sensitivity to crack propagation. Research in this area has addressed issues through slurry system refinement, core-shell abrasive design, green polishing formulations, and the integration of energy-assisted approaches. The combination of CMP with IBP or PAMM has proven effective in reducing surface roughness while maintaining low material damage. Beyond roughness metrics, the review emphasizes subsurface damage (SSD) as a key indicator of polishing quality. Mechanistic studies reveal that techniques like CMP and PAMM can inhibit crack growth and reduce defect accumulation during processing, enabling the formation of atomically smooth and structurally intact surfaces.
Overall, atomic-level polishing of optical hard-brittle materials is evolving toward synergistic multi-process integration and energy-assisted techniques. CMP retains a dominant role due to its adaptability and mature process control, particularly in difficult-to-machine materials like sapphire. Nonetheless, it is constrained by low material removal rates and the use of aggressive chemicals. Future research directions prioritize the development of green, high-performance polishing systems with biodegradable and low-toxicity components, as well as the integration of auxiliary energy fields such as ultrasound, photocatalysis, and micro/nanobubbles to enhance interfacial reaction kinetics and stability. Meanwhile, the growing complexity introduced by multi-field systems necessitates the establishment of unified removal models and dynamic control strategies. Integration of CMP with other high-precision techniques like PAMM and IBF presents a promising path toward multi-scale, low-damage polishing routes. These combined approaches are expected to support the realization of intelligent, highly integrated atomic-scale manufacturing frameworks that meet the stringent demands of next-generation optical and electronic applications.

Key words

atomic-level polishing / optical hard-brittle materials / sapphire / fused silica / chemical mechanical polishing

Cite this article

Download Citations
TIAN Yinghao, ZHANG Zhenyu, PENG Kai, YU Zhibin. Current Development Status of Atomic-level Polishing Technologies for Typical Optical Hard-brittle Materials[J]. Surface Technology. 2025, 54(23): 1-33 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.23.001

References

[1] LUO Z, ZHANG Z Y, ZHAO F, et al.Advanced Polishing Methods for Atomic-Scale Surfaces: A Review[J]. Materials Today Sustainability, 2024, 27: 100841.
[2] GENG Z C, HUANG N, CASTELLI M, et al.Polishing Approaches at Atomic and Close-to-Atomic Scale[J]. Micromachines, 2023, 14(2): 343.
[3] KRIISKA A.Excavations of the Stone Age site at VihasooⅢ, arheol[J]. Välitööd Eest, 1996, 7: 19-28.
[4] HENSHILWOOD C S, D’ERRICO F, MAREAN C W, et al. An Early Bone Tool Industry from the Middle Stone Age at Blombos Cave, South Africa: Implications for the Origins of Modern Human Behaviour, Symbolism and Language[J]. Journal of Human Evolution, 2001, 41(6): 631-678.
[5] CHEN X Y, ZHANG Z Y, ZHAO F, et al.Review on Chemical Mechanical Polishing for Atomic Surfaces Using Advanced Rare Earth Abrasives[J]. Journal of Physics D Applied Physics, 2025, 58(2): 023004.
[6] ZHAO F, ZHANG Z Y, YANG J J, et al.Advanced Nonlinear Rheology Magnetorheological Finishing: A Review[J]. Chinese Journal of Aeronautics, 2024, 37(4): 54-92.
[7] NARODNY L H, TARASEVICH M.Paraboloid Figured by Ion Bombardment[J]. Applied Optics, 1967, 6(11): 2010.
[8] 李华, 任坤, 殷振, 等. 超声振动辅助磨料流抛光技术研究综述[J]. 机械工程学报, 2021, 57(9): 233-253.
LI H, REN K, YIN Z, et al.Review of Ultrasonic Vibration-Assisted Abrasive Flow Polishing Technology J]. Journal of Mechanical Engineering, 2021, 57(9): 233-253.
[9] WANG J S, FANG F Z, AN H J, et al.Laser Machining Fundamentals: Micro, Nano, Atomic and Close-to-Atomic Scales[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 012005.
[10] KIM H M, KIM D G, KIM Y S, et al.Atomic Layer Deposition for Nanoscale Oxide Semiconductor Thin Film Transistors: Review and Outlook[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 012006.
[11] LIU X, SU Y, CHEN R.Atomic-Scale Engineering of Advanced Catalytic and Energy Materials via Atomic Layer Deposition for Eco-Friendly Vehicles[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 022005.
[12] PAN H Y, ZHOU L H, ZHENG W, et al.Atomic Layer Deposition to Heterostructures for Application in Gas Sensors[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 022008.
[13] DU W W, TU J, QIU M J, et al.Temperature-Mediated Structural Evolution of Vapor-Phase Deposited Cyclosiloxane Polymer Thin Films for Enhanced Mechanical Properties and Thermal Conductivity[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 025101.
[14] LI J X, CHAI G D, WANG X W.Atomic Layer Deposition of Thin Films: From a Chemistry Perspective J]. International Journal of Extreme Manufacturing, 2023, 5(3): 032003.
[15] WANG X W, CHEN R, SUN S H.Material Manufacturing from Atomic Layer[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 043001.
[16] CHEN R, CAO K, WEN Y W, et al.Atomic Layer Deposition in Advanced Display Technologies: From Photoluminescence to Encapsulation[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 022003.
[17] HE X X, GUO P, AN X Y, et al.Preparation of Single Atom Catalysts for High Sensitive Gas Sensing[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 032007.
[18] WANG X L, LUO X Y, DU W W, et al.Remote Plasma Enhanced Cyclic Etching of a Cyclosiloxane Polymer Thin Film[J]. International Journal of Extreme Manuacturing, 2024, 6(5): 055101.
[19] 熊正权, 窦筠雯, 陈颖, 等. 面向超薄硅晶圆精密磨削工艺的内部残余应力分析[J]. 表面技术, 2025, 54(2): 161-172.
XIONG Z Q, DOU J W, CHEN Y, et al.Analysis of Internal Residual Stress for Precision Grinding Process of Ultra-Thin Silicon Wafers[J]. Surface Technology, 2025, 54(2): 161-172.
[20] 鲍晓艳, 邓硕, 吕海飞, 等. 金刚石压砧内单晶硅高压折射率的椭偏测量[J]. 光子学报, 2023, 52(11): 178-188.
BAO X Y, DENG S, LYU H F, et al.Ellipsometric Measurement of the Refractive Index of Monocrystalline Silicon in a Diamond Anvil Cell[J]. Acta Photonica Sinica, 2023, 52(11): 178-188.
[21] PAL R K, KUMAR M, KARAR V.Experimental Investigation and Modeling of Friction Coefficient and Material Removal during Optical Glass Polishing[J]. Arabian Journal for Science and Engineering, 2023, 48(3): 3255-3268.
[22] FILATOV Y D.Polishing of Precision Surfaces of Optoelectronic Device Elements Made of Glass, Sitall, and Optical and Semiconductor Crystals: A Review[J]. Journal of Superhard Materials, 2020, 42(1): 30-48.
[23] FILATOV O Y, SIDORKO V I, KOVALEV S V, et al.Material Removal Rate in Polishing Anisotropic Monocrystalline Materials for Optoelectronics[J]. Journal of Superhard Materials, 2016, 38: 123-131.
[24] JIANG X W, CHEN D B, QUAN Y C, et al.The Densification Characteristics of Polished Fused Silica Glass and Its Scattering Characteristics[J]. Photonics, 2023, 10(4): 447.
[25] MENDEZ E, NOWAK K M, BAKER H J, et al.Localized CO2 Laser Damage Repair of Fused Silica Optics[J]. Applied Optics, 2006, 45(21): 5358-5367.
[26] ZHANG J P, CAO Z C, ZHANG Y, et al.Investigation on Surface Evolution and Subsurface Damage in Abrasive Lapping of Hard and Brittle Materials Using a Novel Fixed Lapping Tool[J]. Journal of Manufacturing Processes, 2022, 75: 729-738.
[27] 马振中. 单晶硅各向异性超精密切削仿真与实验研究[D]. 太原: 太原理工大学, 2019: 1-10.
MA Z Z.Simulation and Experimental Study on Anisotropic Ultra-Precision Cutting of Monocrystalline Silicon[D]. Taiyuan: Taiyuan University of Technology, 2019: 1-10.
[28] 曹霖霖, 郭路广, 袁巨龙, 等. 晶体取向对蓝宝石晶片抛光加工的影响研究[J]. 表面技术, 2021, 50(11): 339-345.
CAO L L, GUO L G, YUAN J L, et al.Study on the Effect of Crystal Orientation on Polishing of Sapphire Wafer[J]. Surface Technology, 2021, 50(11): 339-345.
[29] LI Z Y, DENG Z H, HU Y X.Effects of Polishing Parameters on Surface Quality in Sapphire Double-Sided CMP[J]. Ceramics International, 2020, 46(9): 13356-13364.
[30] MI X, BENITO M, PUTZ S, et al.A Coherent Spin-hoton Interface in Silicon[J]. Nature, 2018, 555(7698): 599-603.
[31] FISHER G, SEACRIST M R, STANDLEY R W.Silicon Crystal Growth and Wafer Technologies[J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1454-1474.
[32] PEI Z J, FISHER G R, LIU J.Grinding of Silicon Wafers: A Review from Historical Perspectives[J]. International Journal of Machine Tools and Manufacture, 2008, 48(12/13): 1297-1307.
[33] SINGH R K, BAJAJ R.Advances in Chemical-echanical Planarization[J]. MRS Bulletin, 2002, 27(10): 743-751.
[34] GOEL S, LUO X C, AGRAWAL A, et al.Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 131-164.
[35] CHENG J, GONG Y D.Experimental Study of Surface Generation and Force Modeling in Micro-Grinding of Single Crystal Silicon Considering Crystallographic Effects[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 1-15.
[36] ZHANG Z Y, HUO F W, WU Y Q, et al.Grinding of Silicon Wafers Using an Ultrafine Diamond Wheel of a Hybrid Bond Material[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 18-24.
[37] ZHOU P, XU S C, WANG Z G, et al.A Load Identification Method for the Grinding Damage Induced Stress (GDIS) Distribution in Silicon Wafers[J]. International Journal of Machine Tools and Manufacture, 2016, 107: 1-7.
[38] ZHANG Y X, KANG R K, GUO D M, et al.Microstructure Studies of the Grinding Damage in Monocrystalline Silicon Wafers[J]. Rare Metals, 2007, 26(1): 13-18.
[39] FORSBERG M.Effect of Process Parameters on Material Removal Rate in Chemical Mechanical Polishing of Si(100)[J]. Microelectronic Engineering, 2005, 77(3/4): 319-326.
[40] XU J, LUO J B, WANG L L, et al.The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing[J]. Tribology International, 2007, 40(2): 285-289.
[41] 孙加营, 方杨飞, 张一波, 等. CuO修饰CeO2纳米复合磨料的制备及抛光性能[J]. 材料导报, 2023, 37(3): 114-118.
SUN J Y, FANG Y F, ZHANG Y B, et al.Preparation and Polishing Properties of CuO-Modified CeO2 Nanocomposite Abrasives[J]. Materials Reports, 2023, 37(3): 114-118.
[42] GONG H, PAN G, GU Z, et al.Effect of Modified Silica Abrasive Particles on Nanosized Particle Deposition in Final Polishing of Silicon Wafers[J]. Tribology Transactions, 2014, 57(2): 366-372.
[43] 许雪峰, 马冰迅, 黄亦申, 等. 利用复合磨粒抛光液的硅片化学机械抛光[J]. 光学精密工程, 2009, 17(7): 1587-1593.
XU X F, MA B X, HUANG Y S, et al.Chemical Mechanical Polishing for Silicon Wafer by Composite Abrasive Slurry[J]. Optics and Precision Engineering, 2009, 17(7): 1587-1593.
[44] 陈杨, 隆仁伟, 陈志刚, 等. 不同壳厚聚苯乙烯/氧化铈复合磨料的合成及其抛光特性[J]. 机械工程学报, 2011, 47(14): 70-75.
CHEN Y, LONG R W, CHEN Z G, et al.Synthesis and Polishing Behavior of Polystyrene/Ceria Composite Abrasives with Different Shell Thickness[J]. Journal of Mechanical Engineering, 2011, 47(14): 70-75.
[45] CHEN Z, CHEN Y, LONG R.Preparation and Its Oxide Chemical Mechanical Polishing Performance of Ceria-oated Silica and Ceria-Coated Polystyrene Nanoparticle J]. Journal of the Chinese Ceramic Society, 37(11): 1880-885.
[46] 李艳花, 傅毛生, 危亮华, 等. 直接沉淀法制备纳米氧化铈及其抛光硅晶片的性能与影响因素[J]. 中国稀土学报, 2010, 28(3): 316-321.
LI Y H, FU M S, WEI L H, et al.Preparation of Ceria Nanoparticles Using Direct Precipitate Method and Factors Influencing on Polishing Performance for Silicon Wafer[J]. Journal of the Chinese Rare Earth Society, 2010, 28(3): 316-321.
[47] LI J, LIU Y H, DAI Y J, et al.Achievement of a Near-Perfect Smooth Silicon Surface[J]. Science China Technological Sciences, 2013, 56(11): 2847-2853.
[48] PIETSCH G J, CHABAL Y J, HIGASHI G S.Infrared-Absorption Spectroscopy of Si(100) and Si(111) Surfaces after Chemomechanical Polishing[J]. Journal of Applied Physics, 1995, 78(3): 1650-1658.
[49] CHEN G P, LUO G H, PAN G S, et al.Influence of Colloidal Silica Dispersion on the Decrease of Roughness in Silicon Chemical Mechanical Polishing[J]. Micro & Nano Letters, 2016, 11(7): 382-385.
[50] ARIMA K, KUBOTA A, MIMURA H, et al.Highly Resolved Scanning Tunneling Microscopy Study of Si(0 0 1) Surfaces Flattened in Aqueous Environment[J]. Surface Science, 2006, 600(15): 185-188.
[51] ABBADIE A, CRESCENTE F, SÉMÉRIA M N. Advanced Wet Cleanings Post-CMP[J]. Journal of the Electrochemical Society, 2004, 151(1): G57.
[52] CUI X X, ZHANG Z Y, YU S Q, et al.Unprecedented Atomic Surface of Silicon Induced by Environmentally Friendly Chemical Mechanical Polishing[J]. Nanoscale, 2023, 15(21): 9304-9314.
[53] SI L N, GUO D, LUO J B, et al.Abrasive Rolling Effects on Material Removal and Surface Finish in Chemical Mechanical Polishing Analyzed by Molecular Dynamics Simulation[J]. Journal of Applied Physics, 2011, 109(8): 084335.
[54] CHEN L, WEN J L, ZHANG P, et al.Nanomanufacturing of Silicon Surface with a Single Atomic Layer Precision via Mechanochemical Reactions[J]. Nature Communiations, 2018, 9(1): 1542.
[55] GUO J L, MATSUZAWA Y, YAMAGUCHI G, et al.Atomic-Level Smoothing of Glass and Silicon Surfaces by Water Polishing with an Acrylic Polymer Plate[J]. Applied Physics Letters, 2022, 120(9): 094105.
[56] 彭文强. 基于材料弹性域去除的超光滑表面加工关键技术研究[D]. 长沙: 国防科学技术大学, 2014: 98-99.
PENG W Q.Research on Key Technologies of Ultra-Smooth Surface Machining Based on Flexfield Removal of Materials[D]. Changsha: National University of Defense Technology, 2014: 98-99.
[57] 李庆宇. 基于流体动力润滑效应的双转弹性发射加工技术研究[D]. 长沙: 国防科学技术大学, 2015: 51-52.
LI Q Y.Research on Double-Rotation Elastic Emission Machining Technology Based on Hydrodynamic Lubrication Effect[D]. Changsha: National University of Defense Technology, 2015: 51-52.
[58] SCHINDLER A, HAENSEL T, NICKEL A, et al.Finishing Procedure for High-Performance Synchrotron Optics[C]// Optical Manufacturing and Testing V. San Diego: SPIE, 2004: 64-72.
[59] FROST F, FECHNER R, ZIBERI B, et al.Large Area Smoothing of Optical Surfaces by Low-Energy Ion Beams[J]. Thin Solid Films, 2004, 459(1/2): 100-105.
[60] PEVERINI L, KOZHEVNIKOV I V, ROMMEVEAUX A, et al.Ion Beam Profiling of Aspherical X-Ray Mirrors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2/3): 115-118.
[61] HEUER A H, JIA C L, LAGERLÖF K D. The Core Structure of Basal Dislocations in Deformed Sapphire (Alpha-Al2O3)[J]. Science, 2010, 330(6008): 1227-1231.
[62] YOSHIMOTO M, YOSHIDA K, MARUTA H, et al.Epitaxial Diamond Growth on Sapphire in an Oxidizing Environment[J]. Nature, 1999, 399: 340-342.
[63] XU Y C, LU J, XU X P, et al.Study on High Efficient Sapphire Wafer Processing by Coupling SG-Mechanical Polishing and GLA-CMP[J]. International Journal of Machine Tools and Manufacture, 2018, 130: 12-19.
[64] JUNG I Y, SONG S, CHOI M, et al.Evolution of Mechanically Formed Bow Due to Surface Waviness and Residual Stress Difference on Sapphire (0001) Substrate[J]. Journal of Materials Processing Technology, 2019, 269: 102-108.
[65] LIU T T, LEI H.Nd3+-Doped Colloidal SiO2 Composite Abrasives: Synthesis and the Effects on Chemical Mechanical Polishing (CMP) Performances of Sapphire Wafers[J]. Applied Surface Science, 2017, 413: 16-26.
[66] XU Y C, LU J, XU X P.Study on Planarization Machining of Sapphire Wafer with Soft-Hard Mixed Abrasive through Mechanical Chemical Polishing[J]. Applied Surface Science, 2016, 389: 713-720.
[67] ZHOU Y, PAN G, SHI X, et al.Effects of Ultra-Smooth Surface Atomic Step Morphology on Chemical Mechanical Polishing (CMP) Performances of Sapphire and SiC Wafers[J]. Tribology International, 2015, 87:145-150.
[68] BASTAWROS A F, CHANDRA A, POOSARLA P A.Atmospheric Pressure Plasma Enabled Polishing of Single Crystal Sapphire[J]. CIRP Annals, 2015, 64(1): 515-518.
[69] UHLMANN E, LIST M, PATRASCHKOV M, et al.A New Process Design for Manufacturing Sapphire Wafers[J]. Precision Engineering, 2018, 53: 146-150.
[70] DENG H, ZHANG Y J, LIANG J W, et al.Surface Reconstruction of Sapphire at the Atomic Scale via Chemical-Physical Tuning of Atmospheric Plasma[J]. CIRP Annals, 2023, 72(1): 489-492.
[71] ZHU H L, TESSAROTO L A, SABIA R, et al.Chemical Mechanical Polishing (CMP) Anisotropy in Sapphire[J]. Applied Surface Science, 2004, 236(1/2/3/4): 120-130.
[72] HU X K, SONG Z T, PAN Z C, et al.Planarization Machining of Sapphire Wafers with Boron Carbide and Colloidal Silica as Abrasives[J]. Applied Surface Science, 2009, 255(19): 8230-8234.
[73] ZHOU Y, PAN G S, GONG H, et al.Characterization of Sapphire Chemical Mechanical Polishing Performances Using Silica with Different Sizes and Their Removal Mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 153-159.
[74] ZHANG Z F, LIU W L, SONG Z T, et al.Two-Step Chemical Mechanical Polishing of Sapphire Substrate[J]. Journal of the Electrochemical Society, 2010, 157(6): H688.
[75] SHI X L, PAN G S, ZHOU Y, et al.A Study of Chemical Products Formed on Sapphire (0001) during Chemical-Mechanical Polishing[J]. Surface and Coatings Technology, 2015, 270: 206-220.
[76] NIU X H, LIU Y L, TAN B M, et al.Method of Surface Treatment on Sapphire Substrate[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s732-s734.
[77] ZHOU Y, PAN G S, SHI X L, et al.AFM and XPS Studies on Material Removal Mechanism of Sapphire Wafer during Chemical Mechanical Polishing (CMP)[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9921-9928.
[78] 熊伟, 白林山, 储向峰, 等. 络合剂对蓝宝石晶片化学机械抛光的影响[J]. 机械科学与技术, 2014, 33(7): 1027-1030.
XIONG W, BAI L S, CHU X F, et al.Effect of Chelating Agent on Chemical Mechanical Polishing Quality of Sapphire[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(7): 1027-1030.
[79] ZHANG Z F, ZHANG W J, ZHANG S D, et al.Study on Chemical Mechanical Polishing Performances of Sapphire Wafer (0001) Using Silica-Based Slurry[J]. ECS Journal of Solid State Science and Technology, 2017, 6(10): P723-P727.
[80] XU L, ZOU C L, SHI X L, et al.Fe-Nx/C Assisted Chemical-Mechanical Polishing for Improving the Removal Rate of Sapphire[J]. Applied Surface Science, 2015, 343: 115-120.
[81] SHI X L, XU L, ZHOU Y, et al.An in Situ Study of Chemical-Mechanical Polishing Behaviours on Sapphire (0001) via Simulating the Chemical Product-Removal Process by AFM-Tapping Mode in both Liquid and Air Environments[J]. Nanoscale, 2018, 10(42): 19692-19700.
[82] XIE W X, ZHANG Z Y, LIAO L X, et al.Green Chemical Mechanical Polishing of Sapphire Wafers Using a Novel Slurry[J]. Nanoscale, 2020, 12(44): 22518-22526.
[83] ZHANG Z Y, LIU J, HU W, et al.Chemical Mechanical Polishing for Sapphire Wafers Using a Developed Slurry[J]. Journal of Manufacturing Processes, 2021, 62: 762-771.
[84] MORIWAKI T, SHAMOTO E.Ultraprecision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration[J]. CIRP Annals, 1991, 40(1): 559-562.
[85] MORIWAKI T, SHAMOTO E, INOUE K.Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration[J]. CIRP Annals, 1992, 41(1): 141-144.
[86] KLOCKE F, RÜBENACH O. Ultrasonic Assisted Diamond Turning of Glass and Steel[J]. Industrial Diamond Review, 2000, 60(3): 227.
[87] CHEN G, REN C Z, ZOU Y H, et al.Mechanism for Material Removal in Ultrasonic Vibration Helical Milling of Ti6Al4V Alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 1-13.
[88] AGARWAL S.On the Mechanism and Mechanics of Material Removal in Ultrasonic Machining[J]. International Journal of Machine Tools and Manufacture, 2015, 96: 1-14.
[89] WANG H, PEI Z J, CONG W L.A Feeding-Directional Cutting Force Model for End Surface Grinding of CFRP Composites Using Rotary Ultrasonic Machining with Elliptical Ultrasonic Vibration[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103540.
[90] XU W H, LU X C, PAN G S, et al.Ultrasonic Flexural Vibration Assisted Chemical Mechanical Polishing for Sapphire Substrate[J]. Applied Surface Science, 2010, 256(12): 3936-3940.
[91] XU W H, LU X C, PAN G S, et al.Effects of the Ultrasonic Flexural Vibration on the Interaction between the Abrasive Particles; Pad and Sapphire Substrate during Chemical Mechanical Polishing (CMP)[J]. Applied Surface Science, 2011, 257(7): 2905-2911.
[92] XU W H, CHENG Y Y, ZHONG M.Effects of Process Parameters on Chemical-Mechanical Interactions during Sapphire Polishing[J]. Microelectronic Engineering, 2019, 216: 111029.
[93] ZHOU M F, ZHONG M, XU W H.Effects of Ultrasonic Amplitude on Sapphire Ultrasonic Vibration Assisted Chemical Mechanical Polishing by Experimental and CFD Method[J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7086-7103.
[94] DENG H G, ZHONG M, XU W H.Effects of Different Dispersants on Chemical Reaction and Material Removal in Ultrasonic Assisted Chemical Mechanical Polishing of Sapphire[J]. ECS Journal of Solid State Science and Technology, 2022, 11(3): 033007.
[95] ZHOU M F, ZHONG M, XU W H.Novel Model of Material Removal Rate on Ultrasonic-Assisted Chemical Mechanical Polishing for Sapphire[J]. Friction, 2023, 11(11): 2073-2090.
[96] DENG H G, ZHONG M, XU W H.Effects and Mechanisms of Different Types of Surfactants on Sapphire Ultrasonic Polishing[J]. Tribology International, 2023, 187: 108734.
[97] QU M H, NIU X H, HOU Z Y, et al.Effect of Hydroxy Carboxylates as Complexing Agent on Improving Chemical Mechanical Polishing Performance of M-Plane Sapphire and Action Mechanism Analysis[J]. Ceramics International, 2023, 49(6): 9622-9631.
[98] ZHAO X, NIU X H, YIN D, et al.Research on R-Plane Sapphire Substrate CMP Removal Rate Based on a New-Type Alkaline Slurry[J]. ECS Journal of Solid State Science and Technology, 2018, 7(3): 135-141.
[99] ZOU Y D, NIU X H, ZHAN N, et al.Chemical-Mechanical Synergies Effects of Multi-Purpose pH Regulators on C-, A-, and R-Plane Sapphire Polishing[J]. Tribology International, 2024, 195: 109603.
[100] FILATOV Y D, SIDORKO V I, KOVALEV S V, et al.Effect of the Processed Material Structure on the Polishing Quality of Optical Surfaces[J]. Journal of Superhard Materials, 2021, 43(6): 435-443.
[101] CHKHALO N I, CHURIN S A, PESTOV A E, et al.Roughness Measurement and Ion-Beam Polishing of Super-Smooth Optical Surfaces of Fused Quartz and Optical Ceramics[J]. Optics Express, 2014, 22(17): 20094-20106.
[102] YANG H, CHENG H B, FENG Y P.Improvement of High-Power Laser Performance for Super-Smooth Optical Surfaces Using Electrorheological Finishing Technology[J]. Applied Optics, 2017, 56(35): 9822-9829.
[103] BOND C, BROWN D, FREISE A, et al.Interferometer Techniques for Gravitational-Wave Detection[J]. Living Reviews in Relativity, 2017, 19(1): 3.
[104] MU Q, GAO X, YAN Y, et al.Evolution of Ring Structures and Method for Inhibition in Polishing of Fused Silica[J]. Applied Surface Science, 2024, 645: 158830.
[105] TAN Z Q, JIANG X W, MAO Y H, et al.Ultra-Smooth Surface with 0.4 Å Roughness on Fused Silica[J]. Ceramics International, 2023, 49(5): 7245-7251.
[106] ZOU D, THIRKETTLE R J, GEBAUER A, et al.Gyroscopic Performance and Some Seismic Measurements Made with a 10 Meter Perimeter Ring Laser Gyro Housed in the Ernest Rutherford Building[J]. Applied Optics, 2021, 60(6): 1737-1743.
[107] XU M J, DAI Y F, ZHOU L, et al.Evolution Mechanism of Surface Roughness during Ion Beam Sputtering of Fused Silica[J]. Applied Optics, 2018, 57(20): 5566-5573.
[108] ZHOU Y, LUO H M, CHEN G P, et al.Study on Pitch Performance Deterioration in Chemical Mechanical Polishing of Fused Silica[J]. ECS Journal of Solid State Science and Technology, 2021, 10(8): 084005.
[109] DUAN B, ZHOU J W, LIU Y L, et al.Surface Roughness of Optical Quartz Substrate by Chemical Mechanical Polishing[J]. Journal of Semiconductors, 2014, 35(11): 116001.
[110] CHEN G P, LUO H M, ZHOU Y, et al.Particles Manipulation to Improve Removal Efficiency of Fused Silica in Chemical Mechanical Polishing[J]. Silicon, 2023, 15(16): 6997-7004.
[111] SHI X L, CHEN G P, XU L, et al.Achieving Ultralow Surface Roughness and High Material Removal Rate in Fused Silica via a Novel Acid SiO2 Slurry and Its Chemical-Mechanical Polishing Mechanism[J]. Applied Surface Science, 2020, 500: 144041.
[112] WAKAMATSU K, KUROKAWA S, TOYAMA T, et al.CMP Characteristics of Quartz Glass Substrate by Aggregated Colloidal Ceria Slurry[J]. Precision Engineering, 2019, 60: 458-464.
[113] AMIR M, SHARMA R, MISHRA V, et al.Functionalization of SPION Nanoparticle with Malic Acid for the Development of Superfinish Optical Surface[J]. Optics & Laser Technology, 2023, 161: 109191.
[114] CHEN Y, LI Z N, MIAO N M.Polymethylmethacrylate (PMMA)/CeO2 Hybrid Particles for Enhanced Chemical Mechanical Polishing Performance[J]. Tribology International, 2015, 82: 211-217.
[115] CHEN Y, WANG M H, CAI W J, et al.Structural Regulation and Polishing Performance of Dendritic Mesoporous Silica (D-mSiO2) Supported with Samarium-Doped Cerium Oxide Composites[J]. Advanced Powder Technology, 2022, 33(6): 103595.
[116] WANG W Y, CHEN Y, CHEN A L, et al.Composite Particles with Dendritic Mesoporous-Silica Cores and Nano-Sized CeO2 Shells and Their Application to Abrasives in Chemical Mechanical Polishing[J]. Materials Chemistry and Physics, 2020, 240: 122279.
[117] CHEN Y, ZUO C Z, CHEN A L.Core/Shell Structured sSiO2/mSiO2 Composite Particles: The Effect of the Core Size on Oxide Chemical Mechanical Polishing[J]. Advanced Powder Technology, 2018, 29(1): 18-26.
[118] CHEN A L, QIN J W, LI Z F, et al.Engineering Functionalized PS/mSiO2 Composite Particles with Controlled Meso-Shell Thickness for Chemical Mechanical Planarization Applications[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(1): 284-288.
[119] CHEN A L, CHEN Y, DING J N.Polystyrene-Core Silica-Shell Composite Abrasives: The Influence of Core Size on Oxide Chemical Mechanical Planarization[J]. Journal of Electronic Materials, 2015, 44(7): 2522-2528.
[120] SUN H G, ZHANG Z Y, ZENG Z N, et al.Atomic Level Surface on Aspheric Quartz Crucible with Large Sizes Induced by Developed Green Chemical Mechanical Polishing with Composite Rare Earth Oxides[J]. Surfaces and Interfaces, 2024, 52: 104924.
[121] CUI X X, ZHANG Z Y, SHI C J, et al.Atomic Surface Induced by Novel Green Chemical Mechanical Polishing for Aspheric Thin-Walled Crucibles with Large Diameters[J]. Journal of Manufacturing Processes, 2024, 117: 59-70.
[122] LIU J, ZHANG Z Y, SHI C J, et al.Novel Green Chemical Mechanical Polishing of Fused Silica through Designing Synergistic CeO2/h-BN Abrasives with Lubricity[J]. Applied Surface Science, 2023, 637: 157978.
[123] XU G H, ZHANG Z Y, MENG F N, et al.Atomic-Scale Surface of Fused Silica Induced by Chemical Mechanical Polishing with Controlled Size Spherical Ceria Abrasives[J]. Journal of Manufacturing Processes, 2023, 85: 783-792.
[124] LIU L, ZHANG Z, SHI C, et al.Atomic Surface of Fused Silica and Polishing Mechanism Interpreted by Molecular Dynamics and Density Functional Theory[J]. Materials Today Sustainability, 2023, 23: 100457.
[125] LIU L, ZHANG Z Y, SHI C J, et al.Angstrom Surface with High Material Removal Rate for Quartz Glass Induced by Silk Dissolved Novel Green Chemical Mechanical Polishing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 682: 132957.
[126] SHI C J, FAN Y H, ZHANG Z Y, et al.Development of Core-Shell SiO2@A-TiO2 Abrasives and Novel Photocatalytic Chemical Machinal Polishing for Atomic Surface of Fused Silica[J]. Applied Surface Science, 2024, 652: 159293.
[127] SHI C J, ZHANG Z Y, CHEN L L, et al.Atomic Surface on Fused Silica Induced by Novel Green Photochemical Mechanical Polishing[J]. Surfaces and Interfaces, 2024, 54: 105253.
[128] XU L, PARK K, LEI H, et al.Chemically-Induced Active Micro-Nano Bubbles Assisting Chemical Mechanical Polishing: Modeling and Experiments[J]. Friction, 2023, 11(9): 1624-1640.
[129] XU L, LIU P Z, LEI H, et al.Auxiliary Mechanism of In-Situ Micro-Nano Bubbles in Oxide Chemical Mechanical Polishing[J]. Precision Engineering, 2022, 74: 20-35.
[130] LIAO W L, NIE X Q, LIU Z Z, et al.Researches on Formation Mechanism of Ultra-Smooth Surface during Ion Beam Sputtering of Fused Silica[J]. Optik, 2019, 179: 957-964.
[131] KORDONSKY W I, PROKHOROV I V, GORODKIN G, et al.Magnetorheological Finishing[J]. Optics and Photonics News, 1993, 4(12): 16-17.
[132] SHOREY A B, JACOBS S D, KORDONSKI W I, et al.Experiments and Observations Regarding the Mechanisms of Glass Removal in Magnetorheological Finishing[J]. Applied Optics, 2001, 40(1): 20-33.
[133] BOCZKOWSKA A, AWIETJAN S F, PIETRZKO S, et al.Mechanical Properties of Magnetorheological Elastomers under Shear Deformation[J]. Composites Part B: Engineering, 2012, 43(2): 636-640.
[134] ALAM M N, KUMAR V, JO C R, et al.Mechanical and Magneto-Mechanical Properties of Styrene-Butadiene-Rubber-Based Magnetorheological Elastomers Conferred by Novel Filler-Polymer Interactions[J]. Composites Science and Technology, 2022, 229: 109669.
[135] YARALI E, ALI FARAJZADEH M, NOROOZI R, et al.Magnetorheological Elastomer Composites: Modeling and Dynamic Finite Element Analysis[J]. Composite Structures, 2020, 254: 112881.
[136] PARK B J, FANG F F, CHOI H J.Magnetorheology: Materials and Application[J]. Soft Matter, 2010, 6(21): 5246-5253.
[137] CHOI S B, WERELEY N M, LI W H, et al.Applications of Controllable Smart Fluids to Mechanical Systems[J]. Advances in Mechanical Engineering, 2014, 6: 254864.
[138] Ubaidillah, SUTRISNO J, PURWANTO A, et al.Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications[J]. Advanced Engineering Materials, 2015, 17(5): 563-597.
[139] SHI F, SHU Y, DAI Y F, et al.Magnetorheological Elastic Super-Smooth Finishing for High-Efficiency Manufacturing of Ultraviolet Laser Resistant Optics[J]. Optical Engineering, 2013, 52: 075104.
[140] GUPTA M K, DINAKAR D, CHHABRA I M, et al.Experimental Investigation and Machine Parameter Optimization for Nano Finishing of Fused Silica Using Magnetorheological Finishing Process[J]. Optik, 2021, 226: 165908.
[141] MALONEY C, LORMEAU J P, DUMAS P. Improving Low, Mid and High-Spatial Frequency Errors on Advanced Aspherical and Freeform Optics with MRF[C]// Third European Seminar on Precision Optics Manufacturing. Teisnach: SPIE, 2016: 100090R.
[142] SINGH A K, JHA S, PANDEY P M.Nanofinishing of Fused Silica Glass Using Ball-End Magnetorheological Finishing Tool[J]. Materials and Manufacturing Processes, 2012, 27(10): 1139-1144.
[143] DAI W, LI J J, ZHENG Z Z, et al.Surface Finishing by Atmospheric Pressure Micro Plasma Beam Irradiation[J]. Materials and Manufacturing Processes, 2016, 31(9): 1216-1222.
[144] DENG T T, XIE F, LI J J, et al.Effect of Overlapped Adjacent Tracks on Surface Morphology in Plasma Beam Polishing of Austenitic Stainless Steel[J]. Applied Surface Science, 2020, 512: 145739.
[145] LIANG S X, ZHANG L F, DENG H.Theoretical and Experimental Study on Plasma-Induced Atom-Migration Manufacturing (PAMM) of Glass[J]. Applied Surface Science, 2022, 599: 153976.
[146] WU B, LIANG S X, ZHANG J Q, et al.Ion Beam Smoothing of Fused Silica at Atomic-Scale Assisted by Damage Recovery Using Inductively Coupled Plasma[J]. Precision Engineering, 2024, 90: 71-80.
[147] LI R L, LI Y G, DENG H.Plasma-Induced Atom Migration Manufacturing of Fused Silica[J]. Precision Engineering, 2022, 76: 305-313.
[148] LIAO W L, DAI Y F, XIE X H, et al.Morphology Evolution of Fused Silica Surface during Ion Beam Figuring of High-Slope Optical Components[J]. Applied Optics, 2013, 52(16): 3719-3725.
[149] VALBUSA U, BORAGNO C, BUATIER DE MONGEOT F. Nanostructuring Surfaces by Ion Sputtering[J]. Journal of Physics: Condensed Matter, 2002, 14(35): 8153-8175.
[150] KELLER A, FACSKO S, MÖLLER W. The Morphology of Amorphous SiO2 Surfaces during Low Energy Ion Sputtering[J]. Journal of Physics: Condensed Matter, 2009, 21(49): 495305.
[151] FROST F, FECHNER R, ZIBERI B, et al.Large Area Smoothing of Surfaces by Ion Bombardment: Fundamentals and Applications[J]. Journal of Physics Condensed Matter, 2009, 21(22): 224026.
[152] AXEL S, THOMAS H, DIETER F, et al.Ion Beam and Plasma Jet Etching for Optical Component Fabrication[C]// Lithographic and Micromachining Techniques for Optical Component Fabrication. San Diego: Proceedings of The Society of Photo-Optical Instrumentation Engineers (SPIE), 2001, 4440(21): 217-227.
[153] LIAO W L, DAI Y F, XIE X H, et al.Influence of Local Densification on Microscopic Morphology Evolution during Ion-Beam Sputtering of Fused-Silica Surfaces[J]. Applied Optics, 2014, 53(11): 2487-2493.
[154] PENG W Q, GUAN C L, LI S Y.Surface Evaluation and Evolution during Hydrodynamic Effect Polishing for Quartz Glass[J]. Applied Optics, 2014, 53(29): 6913-6919.
[155] PENG W Q, GUAN C L, LI S Y.Ultrasmooth Surface Polishing Based on the Hydrodynamic Effect[J]. Applied Optics, 2013, 52(25): 6411-6416.
[156] HIRATA T, TAKEI Y, MIMURA H.Machining Property in Smoothing of Steeply Curved Surfaces by Elastic Emission Machining[J]. Procedia CIRP, 2014, 13: 198-202.
[157] MA Z L, PENG L R, WANG J L.Ultra-Smooth Polishing of High-Precision Optical Surface[J]. Optik, 2013, 124(24): 6586-6589.
[158] LAKHDARI F, BELKHIR N, BOUZID D, et al.Relationship between Subsurface Damage Depth and Breaking Strength for Brittle Materials[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 1421-1431.
[159] LI M, KARPUSCHEWSKI B, OHMORI H, et al.Adaptive Shearing-Gradient Thickening Polishing (AS-GTP) and Subsurface Damage Inhibition[J]. International Journal of Machine Tools and Manufacture, 2021, 160: 103651.
[160] GAO X, FENG G Y, ZHAI L L, et al.Effect of Subsurface Impurities of Fused Silica on Laser-Induced Damage Probability[J]. Optical Engineering, 2014, 53(2): 026101.
[161] LI P H, GUO X G, YUAN S, et al.Effects of Grinding Speeds on the Subsurface Damage of Single Crystal Silicon Based on Molecular Dynamics Simulations[J]. Applied Surface Science, 2021, 554: 149668.
[162] TANIGUCHI N. Current Status In, and Future Trends of Ultraprecision Machining and Ultrafine Materials Processing[J]. CIRP Annals, 1983, 32(2): 573-582.
[163] GLATZEL H, ASHWORTH D, BREMER M, et al. Projection Optics for Extreme Ultraviolet Lithography (EUVL) Micro-Field Exposure Tools (METs) with a Numerical Aperture of 0.5[C]//Extreme Ultraviolet (EUV) Lithography IV. San Jose: SPIE, 2013: 867917.
[164] HOU X, LI J Y, LI Y Z, et al. Intermolecular and Surface Forces in Atomic-Scale Manufacturing[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022002.
[165] FANG Z D, ZHANG Y, LI R L, et al. An Efficient Approach for Atomic-Scale Polishing of Single-Crystal Silicon via Plasma-Based Atom-Selective Etching[J]. International Journal of Machine Tools and Manufacture, 2020, 159: 103649.

Funding

Advanced Manufacturing Research Project (50923021502)
PDF(47086 KB)

Accesses

Citation

Detail

Sections
Recommended

/