Multiscale Investigation into the CO2 Corrosion Inhibition Mechanism of Imidazoline Inhibitors

YANG Zhonghua, WANG Changquan, SHI Lihong, XU Shijing, LIU Qinhua

Surface Technology ›› 2025, Vol. 54 ›› Issue (22) : 99-109.

PDF(4761 KB)
PDF(4761 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (22) : 99-109. DOI: 10.16490/j.cnki.issn.1001-3660.2025.22.009
Corrosion and Protection

Multiscale Investigation into the CO2 Corrosion Inhibition Mechanism of Imidazoline Inhibitors

  • YANG Zhonghua, WANG Changquan*, SHI Lihong, XU Shijing, LIU Qinhua
Author information +
History +

Abstract

The work aims to deliver a thorough multi-scale elucidation of the corrosion inhibition mechanisms of two structurally distinct imidazoline-based inhibitors, carboxylic acid-functionalized oleic imidazoline (OIM) and oil-based hydroxyethyl imidazoline (HIM), in CO2-saturated acidic media. Moving beyond conventional single-scale analyses, the density functional theory (DFT) calculations, molecular dynamics (MD) simulations, and high-temperature/high-pressure electrochemical measurements are integrated to systematically investigate the effect of molecular modifications on adsorption characteristics, film morphology, and corrosion protection efficacy under simulated field conditions (60 ℃, 1 MPa CO2). The original contribution revealed in the work is the detailed quantum chemical characterization: the results indicate that, compared to HIM, OIM exhibits significantly enhanced electronic properties favorable for surface interaction. DFT calculations reveal that OIM possesses a highest occupied molecular orbital (HOMO) energy level (-4.035 eV vs. -4.459 eV) and a significantly reduced HOMO-LUMO gap (1.229 eV vs. 4.313 eV), suggesting superior electron-donating ability which facilitates stronger chemisorption on Fe(001) surfaces. Fukui function analysis quantitatively identifies active reactive sites: the carboxylic acid moiety in OIM shows markedly increased nucleophilicity (C26 site enhanced by 68%) and electrophilicity (N3 site increased by 48%) relative to HIM's hydroxyethyl group, underpinning an elevated potential for forming stronger covalent and coordinate bonds with iron atoms. Subsequent MD simulations provide insight into adsorption thermodynamics and kinetics behavior: the results demonstrate that OIM's adsorption energy (-86.465 kcal/mol) surpasses that of HIM by 53.6%, reflecting the formation of a more stable and denser inhibitor film layer. Concurrently, OIM significantly reduces the diffusion coefficient of surrounding corrosive ions, highlighting its superior ability to obstruct corrosive species penetration. Spatial adsorption configurations extracted from simulations indicate that OIM adopts a near-parallel adsorption geometry with enhanced surface coverage and film compactness, whereas HIM exhibits a less ordered, looser adsorption pattern, attributed to the relatively weaker hydrophobic interaction of its hydroxyethyl group. Experimental validation conducted through potentiodynamic polarization at elevated temperature and pressure confirms these theoretical findings: at a concentration of 200 mg/L, OIM achieves corrosion inhibition efficiency exceeding 94%, marginally outperforming HIM. Both inhibitors exhibit mixed-type inhibition behavior predominated by adsorption-controlled processes. Corrosion current density measurements reveal a pronounced decrease under OIM treatment, consistent with the formation of a more coherent and protective adsorption film. Morphological analyses of the metal surface further corroborate OIM's ability to form a smoother and more uniform inhibitor layer, aligning with computational model predictions. By establishing interrelations between molecular electronic structures, adsorption energetics, and macroscopic corrosion behavior, this research provides a robust and predictive multidisciplinary research framework for understanding inhibitor performance under operationally relevant conditions and highlights the critical role of carboxylic acid functionalization, offering a strategic molecular design principle to enhance adsorption stability, electron transfer efficiency, and diffusion barrier properties, thereby facilitating improved CO2 corrosion mitigation in oilfield applications. This research pioneers a comprehensive, multi-scale approach that rigorously quantifies how specific functional group modifications modulate the corrosion inhibition mechanisms of imidazoline-based inhibitors. The insights yielded furnish valuable guidelines for the rational design of advanced corrosion inhibitors optimized for sustainable, low-environmental-impact oil and gas corrosion protection.

Key words

CO2 corrosion / imidazoline / quantum chemical calculation / molecular dynamics simulation / electrochemistry

Cite this article

Download Citations
YANG Zhonghua, WANG Changquan, SHI Lihong, XU Shijing, LIU Qinhua. Multiscale Investigation into the CO2 Corrosion Inhibition Mechanism of Imidazoline Inhibitors[J]. Surface Technology. 2025, 54(22): 99-109 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.009

References

[1] 刘克峰, 董卫刚, 胡雪生, 等. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897.
LIU K F, DONG W G, HU X S, et al.Policies and Measures to Promote the Development of CCUS[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4879-4897.
[2] 吴冲冲, 张斯然, 辛靖, 等. 石油和石油化工行业二氧化碳捕集、利用与封存技术研究进展[J]. 石油学报(石油加工), 2025, 41(5): 1211-1223.
WU C C, ZHANG S R, XIN J, et al.Research Progress on Carbon Dioxide Capture, Utilization and Storage Technology in the Petroleum and Petrochemical Industry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2025, 41(5): 1211-1223.
[3] 李振博, 韩忠智, 林冰, 等. 超临界CO2输送管道腐蚀行为和机理的研究进展[J]. 表面技术, 2024, 53(24): 19-30.
LI Z B, HAN Z Z, LIN B, et al.Research Progress on Corrosion Behavior and Mechanism of Supercritical CO2 Transport Pipeline[J]. Surface Technology, 2024, 53(24): 19-30.
[4] 曾德智, 陈雪珂, 罗建成, 等. 石油与天然气工业CCUS系统安全风险评估研究现状及展望[J]. 西北大学学报(自然科学版), 2025, 55(5): 944-955.
ZENG D Z, CHEN X K, LUO J C, et al.Research Status and Prospect of CCUS System Security Risk Assessment in Petroleum and Natural Gas Industry[J]. Journal of Northwest University (Natural Science Edition), 2025, 55(5): 944-955.
[5] 林凯, 杨放, 谢文江, 等. “双碳”目标下CO2输送管道与腐蚀防治技术研究现状及展望[J]. 西安石油大学学报(自然科学版), 2024, 39(5): 116-126.
LIN K, YANG F, XIE W J, et al.Current Status and Prospects of Research on CO2 Transmission Pipelines and Their Corrosion Prevention Technologies under the “Dual Carbon” Target[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2024, 39(5): 116-126.
[6] 刘畅, 陈旭, 杨江. CO2腐蚀及其缓蚀剂应用研究进展[J]. 化工进展, 2021, 40(11): 6305-6314.
LIU C, CHEN X, YANG J.Corrosion Inhibitors and Its Application in CO2 Corrosion[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6305-6314.
[7] FINŠGAR M, JACKSON J. Application of Corrosion Inhibitors for Steels in Acidic Media for the Oil and Gas Industry: A Review[J]. Corrosion Science, 2014, 86: 17-41.
[8] HO M Y, GEDDES J, HUGHES T L, et al.Effect of Copper Content of AISI 1018 Mild Carbon Steel on Inhibition Efficiency of Imidazoline-Based Corrosion Inhibitor in CO2-Saturated Brine[J]. Corrosion Science, 2023, 224: 111478.
[9] WANG G, LI W T, WANG X, et al.Experimental and Theoretical Investigations of Three Mannich-Base Imidazoline Quaternary Ammonium Salts as Efficient Inhibitors for Q235 Steel in Sulfuric Acid[J]. Applied Surface Science, 2023, 638: 157946.
[10] 欧阳嘉露, 王茜茜, 韩霞, 等. 油水交替环境中咪唑啉对CO2腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
OUYANG J L, WANG X X, HAN X, et al.Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 707-715.
[11] 邹斌, 梁伟, 盖平原, 等. 富含双键咪唑啉在饱和CO2盐水中缓蚀行为研究[J]. 石油与天然气化工, 2024, 53(2): 78-86.
ZOU B, LIANG W, GAI P Y, et al.Corrosion Inhibition Behavior of Rich in Double Bonds Imidazolines in Saturated CO2 Brine[J]. Chemical Engineering of Oil and Gas, 2024, 53(2): 78-86.
[12] OKAFOR P C, LIU X, ZHENG Y G.Corrosion Inhibition of Mild Steel by Ethylamino Imidazoline Derivative in CO2-Saturated Solution[J]. Corrosion Science, 2009, 51(4): 761-768.
[13] PENG S Y, JIANG Z N, LI Y R, et al.A New Exceptional Imidazoline Derivative Corrosion Inhibitor for Carbon Steel in Supercritical CO2 Environment[J]. Corrosion Science, 2025, 245: 112663.
[14] 倪小龙, 李欢, 李云飞, 等. 不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用[J]. 表面技术, 2023, 52(8): 278-289.
NI X L, LI H, LI Y F, et al.Corrosion Protection of Imidazoline Corrosion Inhibitors with Different Carbon Chain Length in CO2 Driving Oil Environment[J]. Surface Technology, 2023, 52(8): 278-289.
[15] GECE G.The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies[J]. Corrosion Science, 2008, 50(11): 2981-2992.
[16] OBOT I B, MACDONALD D D, GASEM Z M. Density Functional Theory (DFT) as a Powerful Tool for Designing New Organic Corrosion Inhibitors. Part 1: An Overview[J]. Corrosion Science, 2015, 99: 1-30.
[17] 张晨, 赵景茂. CO2饱和盐水溶液中咪唑啉季铵盐与3种阴离子表面活性剂之间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(6): 496-504.
ZHANG C, ZHAO J M.Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Anionic Surfactants in CO2-Saturated Brine Solution[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(6): 496-504.
[18] 张晨峰, 扈俊颖, 钟显康, 等. 双咪唑啉在CO2/O2环境中的缓蚀行为及其与巯基乙醇的复配性能[J]. 表面技术, 2020, 49(11): 66-74.
ZHANG C F, HU J Y, ZHONG X K, et al.Bis-Imidazoline Compound as a Corrosion Inhibitor in CO2/O2 Environment and Its Synergistic Effect with 2-Mercaptoethanol[J]. Surface Technology, 2020, 49(11): 66-74.
[19] 闫坤凤, 杨江, 赵晓龙, 等. 氨基酸型缓蚀剂对碳钢CO2腐蚀的缓蚀性能分析[J]. 表面技术, 2025, 54(12): 49-60.
YAN K F, YANG J, ZHAO X L, et al.Analysis of Inhibition Properties of Amino Acid Corrosion Inhibitor on CO2 Corrosion of Carbon Steel[J]. Surface Technology, 2025, 54(12): 49-60.
[20] 张昆, 孙悦, 王池嘉, 等. 碳捕集、利用与封存中CO2腐蚀与防护研究[J]. 表面技术, 2022, 51(9): 43-52.
ZHANG K, SUN Y, WANG C J, et al.Research on CO2 Corrosion and Protection in Carbon Capture, Utilization and Storage[J]. Surface Technology, 2022, 51(9): 43-52.
[21] HAFAZEH A, BALOOCH A, SHANBARAKI Z D, et al.Corrosion Inhibition of Steel in Sulphuric Acid Using Ferula Assa Foetida L. Extract as an Eco-Friendly Inhibitor: Experimental and Computational Study[J]. Results in Engineering, 2025, 25: 103736.
[22] WANG C, WEI L X, GAO Q H, et al.Corrosion Behavior of P110 Steel with Hydrophilic Amorphous SiO2 Layer under Different Temperatures by Water-Alternating-Supercritical CO2 Injection: Experimental and Molecular Dynamics Simulation[J]. Applied Surface Science, 2025, 700: 163235.
[23] SHI Y T, CHEN L L, HOU S Y, et al.Strengthened Adsorption Films of Double Antibiotic Medicines Skeletons-Based Dendrimers on Copper Surface: Molecular Dynamics Simulation and Intensified Anti Effects of Algae, Bacteria and Corrosion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130501.
[24] 李俐枝, 彭云超, 李丰渟, 等. 哌嗪类曼尼希碱壳聚糖缓蚀剂的制备及缓蚀性能研究[J]. 表面技术, 2022, 51(5): 139-147.
LI L Z, PENG Y C, LI F T, et al.Preparation and Corrosion Inhibition of Piperazine Mannich Base Chitosan Corrosion Inhibitors[J]. Surface Technology, 2022, 51(5): 139-147.
[25] 余菲菲, 吕涯, 范海波. 吗琳系缓蚀剂分子结构、缓蚀效果及分子动力学模拟[J]. 石油炼制与化工, 2022, 53(1): 29-35.
YU F F, LYU Y, FAN H B.Molecular Structure, corrosion Inhibition and Molecular Dynamics Simulation of Morpholine Corrosion Inhibitors[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 29-35.
[26] 曹楚南. 腐蚀电化学原理(第三版)[J]. 腐蚀科学与防护技术, 2008, 20(3): 165.
CAO C N.Principles of Corrosion Electrochemistry (3rd Edition)[J]. Corrosion Science and Protection Technology, 2008, 20(3): 165.
PDF(4761 KB)

Accesses

Citation

Detail

Sections
Recommended

/