Research Progress of Thermal Control Coatings on Magnesium-based Alloys by Micro-arc Oxidation

QI Ningwei, ZHANG Min

Surface Technology ›› 2025, Vol. 54 ›› Issue (20) : 70-85.

PDF(15488 KB)
PDF(15488 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (20) : 70-85. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.005
Research Review

Research Progress of Thermal Control Coatings on Magnesium-based Alloys by Micro-arc Oxidation

  • QI Ningwei, ZHANG Min*
Author information +
History +

Abstract

Magnesium-based alloys have been widely applied in multiple fields such as aerospace and medical devices, primarily due to their inherent characteristics such as light weight, high specific strength, excellent damping capacity, and superior machinability. In aerospace engineering, thermal control coatings serve as a commonly utilized passive thermal control technology in the thermal design of spacecraft. The selection of appropriate thermal control coatings enables certain components of the spacecraft to be maintained within the desired temperature range, which plays a crucial and irreplaceable role in ensuring the normal in-orbit operation of the spacecraft. Micro-arc oxidation (MAO) technology, also known as a plasma electrolytic oxidation technology, is capable of in-situ growing a ceramic film with strong bonding strength on the surface of magnesium alloys. While providing effective and reliable protection for magnesium-based alloys, this technology can also precisely regulate the thermal control performance of the coatings by adjusting experimental parameters, thereby keeping their temperature within a stable and suitable range. However, at present, magnesium-based alloy thermal control coatings still face several prominent and urgent issues, such as low thermal control efficiency, poor resistance to space radiation, inadequate corrosion resistance, and insufficient thermal shock resistance. Additionally, the environmental friendliness and energy efficiency of the electrolyte compositions used in the process require further enhancement and optimization. Focusing on improving the comprehensive performance of magnesium-based alloy thermal control coatings, this paper briefly introduces their thermal control mechanisms and provides a systematic review on the influence of thermal control performance from two key aspects: experimental parameters and chromatic properties. As a critical experimental parameter, reaction time exerts a significant impact on the thermal control performance of the oxide coating by altering surface structural characteristics such as the thickness, roughness, and the number of pores of the oxide coating. During the oxidation process, electrical parameters including duty cycle, power frequency, and current density significantly modify the surface morphology and microstructure of the coating by changing the energy supply conditions, thereby further regulating important properties such as absorptivity, emissivity, and resistance to ultraviolet radiation. Generally, as the number of protrusions and pores on the coating surface increases, the radiation area expands accordingly, leading to a consequent increase in radiant energy and thus a distinct rising trend in emissivity. Simultaneously, as the surface porous structures increase, the ability of the surface to trap sunlight is enhanced, resulting in a subsequent and noticeable increase in absorptivity. In addition, the composition and proportion of the electrolyte also influence the coating properties to a certain extent. In particular, the addition of different coloring salts into the electrolyte can effectively alter the chromatic values of the oxide coating. The incorporation of nano or micro particles can modify the surface structure of the coating, which in turn affects various properties such as absorptivity, emissivity, corrosion resistance, and thermal shock resistance. Typically, the closer the coating's color is to black, the higher its absorptivity tends to be. Research on the influence of these parameters on various properties of micro-arc oxidation coatings holds significant guiding significance for the development of micro-arc oxidation thermal control coatings with better comprehensive performance and wider application ranges in practical engineering.

Key words

Mg-based alloy / micro-arc oxidation / thermal control / absorptivity / emissivity

Cite this article

Download Citations
QI Ningwei, ZHANG Min. Research Progress of Thermal Control Coatings on Magnesium-based Alloys by Micro-arc Oxidation[J]. Surface Technology. 2025, 54(20): 70-85 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.005

References

[1] 慕伟意, 李争显, 杜继红, 等. 镁合金的应用及其表面处理研究进展[J]. 表面技术, 2011, 40(2): 86-91.
MU W Y, LI Z X, DU J H, et al.Application and Surface Treatment Research Progress of Magnesium Alloys[J]. Surface Technology, 2011, 40(2): 86-91.
[2] 乐启炽, 崔建忠, 李红斌, 等. Mg-Li合金研究最新进展及其应用[J]. 材料导报, 2003, 17(12): 1-4.
LE Q C, CUI J Z, LI H B, et al.Current Research Developments in Mg-Li Alloy and Its Applications[J]. Materials Review, 2003, 17(12): 1-4.
[3] 侯彬. 航天器热控涂层研究进展[J]. 现代雷达, 2021, 43(1): 86-90.
HOU B.Research Progress on Thermal Control Coatings for Spacecraft[J]. Modern Radar, 2021, 43(1): 86-90.
[4] 李响, 姚忠平, 李雪健, 等. 微弧氧化技术在热控涂层中的应用[J]. 表面技术, 2019, 48(7): 24-36.
LI X, YAO Z P, LI X J, et al.Application of Micro-Arc Oxidation Technology in Thermal Control Coating[J]. Surface Technology, 2019, 48(7): 24-36.
[5] SHARMA A K, SRIDHARA N.Degradation of Thermal Control Materials under a Simulated Radiative Space Environment[J]. Advances in Space Research, 2012, 50(10): 1411-1424.
[6] 李小晶, 文帅, 符博洋, 等. 负电压对2A50铝合金微弧氧化陶瓷层微观结构和耐磨性能的影响[J]. 表面技术, 2019, 48(7): 135-141.
LI X J, WEN S, FU B Y, et al.Effect of Negative Voltage on Microstructure and Wear Resistance of MAO Ceramic Coatings on 2A50 Aluminum Alloy[J]. Surface Technology, 2019, 48(7): 135-141.
[7] 赵东升, 刘洲超, 魏刚, 等. 微弧氧化技术的研究进展与展望[J]. 热加工工艺, 2017, 46(22): 41-43.
ZHAO D S, LIU Z C, WEI G, et al.Research Development and Prospect of Micro-Arc Oxidation Technique[J]. Hot Working Technology, 2017, 46(22): 41-43.
[8] 邢爽, 张敏, 杨佳, 等. 硫酸铜浓度及反应时间对LA103Z镁锂合金PEO膜层热控性能的影响[J]. 表面技术, 2023, 52(1): 285-297.
XING S, ZHANG M, YANG J, et al.Effect of CuSO4 Concentration and Reaction Time on the Thermal Control Performance of PEO Coatings on LA103Z Mg-Li Alloy[J]. Surface Technology, 2023, 52(1): 285-297.
[9] 姚忠平, 李响, 孙秋, 等. 一种高吸收率高发射率涂层的制备方法: CN109943874B[P].2021-03-09.
YAO Z P, LI X, SUN Q, et al. A Preparation Method for a High Absorption and High Emission Coating: CN109943874B[P].2021-03-09.
[10] 孙顺杰. 彩色热反射隔热涂料的制备及性能研究[D]. 北京: 北京工业大学, 2013: 1-6.
SUN S J.Study on Preparation and Properties of Color Thermal Reflection Thermal Insulation Coatings[D]. Beijing: Beijing UNIVERSITY of Technology, 2013: 1-6.
[11] KATUMBA G, OLUMEKOR L, FORBES A, et al.Optical, Thermal and Structural Characteristics of Carbon Nanoparticles Embedded in ZnO and NiO as Selective Solar Absorbers[J]. Solar Energy Materials and Solar Cells, 2008, 92(10): 1285-1292.
[12] 张敏, 梁卉, 张志丹, 等. W-AlN高温太阳光谱选择吸收涂层的结构优化与实验验证[J]. 中国科学: 技术科学, 2016, 46(1): 46-53.
ZHANG M, LIANG H, ZHANG Z D, et al.Structural Optimization and Experimental Verification of W-AlN High Temperature Solar Spectrum Selective Absorbing Coatings[J]. Scientia Sinica (Technologica), 2016, 46(1): 46-53.
[13] GHOSH R, THOTA H K, RANI R U.Silicate Spray- Coated Nickel-Plated Titanium Alloy for Space Applications: Corrosion Resistance and Thermo-Optical Properties[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 1378-1386.
[14] 过九镕. 通信卫星的热控制技术[J]. 中国空间科学技术, 1990, 10(1): 45-51.
GUO J R.Thermal Control Technology of Communications Satellites[J]. Chinese Space Science and Technology, 1990, 10(1): 45-51.
[15] WANG Y H, LIU Z G, OUYANG J H, et al.Dependence of the Infrared Emissivity on SiC Content and Microstructure of Microarc Oxidation Ceramic Coatings Formed in Na2SiO3 Electrolyte[J]. Applied Surface Science, 2018, 431: 17-23.
[16] PILLAI A M, RAJENDRA A, SHARMA A K, et al.Development of a Solar Reflector Coating on AA6061 Alloy by Plasma Electrolytic Oxidation[J]. Journal of Applied Electrochemistry, 2019, 49(12): 1239-1254.
[17] 夏琦兴. 镁锂合金微弧氧化涂层制备及热控性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 20-24.
XIA Q X.Preparation and Thermal Control Properties of Micro-arc Oxidation Coating on Mg-Li Alloy[D]. Harbin: Harbin Institute of Technology, 2015: 20-24.
[18] HUAAEIN R O, NIE X, NORTHWOOD D O.The Application of Plasma Electrolytic Oxidation (PEO) to the Production of Corrosion Resistant Coatings on Magnesium Alloys: a Review[J]. Corrosion & Materials, 2013, 38(1): 55-65.
[19] YAO Z P, XIA Q X, JU P F, et al.Investigation of Absorptance and Emissivity of Thermal Control Coatings on Mg-Li Alloys and OES Analysis during PEO Process[J]. Scientific Reports, 2016, 6: 29563.
[20] 郭雪锋, 彭光怀, 张小联, 等. 脉冲频率及占空比对稀土镁合金微弧氧化膜的影响[J]. 赣南师范学院学报, 2009, 30(6): 58-60.
GUO X F, PENG G H, ZHANG X L, et al.Effects of Pulse Frequency and Duty Cycle on Micro-Arc Oxidation Film of RE-Mg Alloy[J]. Journal of Gannan Normal University, 2009, 30(6): 58-60.
[21] 辛铁柱. 铝合金表面微弧氧化陶瓷膜生成及机理的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 60-82.
XIN T Z.Study on Formation and Mechanism of Micro- arc Oxidation Ceramic Film on Aluminum Alloy Surface[D]. Harbin: Harbin Institute of Technology, 2006: 60-82.
[22] 张菊梅, 张阳, 王凯, 等. 占空比对LA103Z镁锂合金微弧氧化膜的生长特性及微观形貌的影响[J]. 热加工工艺, 2020, 49(14): 87-91.
ZHANG J M, ZHANG Y, WANG K, et al.Effects of Duty Cycle on Growth Characteristics and Micromorphology of LA103Z Magnesium-Lithium Alloy Microarc Oxidation Film[J]. Hot Working Technology, 2020, 49(14): 87-91.
[23] 李响. 镁及镁锂合金微弧氧化涂层的制备及热控性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 20-29.
LI X.Preparation and Thermal Control Properties of Micro-arc Oxidation Coating on Magnesium and Magnesium-lithium Alloy[D]. Harbin: Harbin Institute of Technology, 2020: 20-29.
[24] 刘军华, 谢荣, 刘桂香. 频率对钛合金表面微弧氧化陶瓷层的影响[J]. 热加工工艺, 2014, 43(8): 175-176.
LIU J H, XIE R, LIU G X.Effect of Frequency on Micro-Arc Oxidation Ceramic Coating on Surface of Ti Alloy[J]. Hot Working Technology, 2014, 43(8): 175-176.
[25] ZOU B, LÜ G H, ZHANG G L, et al.Effect of Current Frequency on Properties of Coating Formed by Microarc Oxidation on AZ91D Magnesium Alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1500-1505.
[26] 李颂, 刘耀辉, 庞磊. 电源频率对铸铝合金微弧氧化陶瓷层的影响[J]. 材料科学与工艺, 2008, 16(2): 287-289.
LI S, LIU Y H, PANG L.Influences of Mains Frequency on Micro-Arc Oxidation Ceramic Layer Cast Aluminum Alloy[J]. Materials Science and Technology, 2008, 16(2): 287-289.
[27] 刘晨宇, 徐用军, 姜兆华, 等. 高发射率涂层研究的进展[J]. 节能技术, 2013, 31(4): 307-309.
LIU C Y, XU Y J, JIANG Z H, et al.Research Progress of High Emissivity Coatings[J]. Energy Conservation Technology, 2013, 31(4): 307-309.
[28] 李颂, 杨越明, 王铎, 等. 电流密度对镁合金微弧氧化膜性能的影响[J]. 中国科技论文, 2012, 7(2): 151-153.
LI S, YANG Y M, WANG D, et al.Effect of Current Density on the Properties of Microarc Oxidation Coatings on Mg Alloys[J]. China Sciencepaper, 2012, 7(2): 151-153.
[29] 曹国平, 宋若希, 卢俊鹏, 等. 电流密度对7075铝合金微弧氧化膜层组织与性能的影响[J]. 热加工工艺, 2021, 50(8): 77-80.
CAO G P, SONG R X, LU J P, et al.Effects of Current Density on Microstructure and Properties of Micro-Arc Oxidation Coatings on 7075 Al Alloy[J]. Hot Working Technology, 2021, 50(8): 77-80.
[30] WU X, SU P, JIANG Z, et al.Influences of Current Density on Tribological Characteristics of Ceramic Coatings on ZK60 Mg Alloy by Plasma Electrolytic Oxidation[J]. ACS Appl Mater Interfaces, 2010, 2(3): 808-812.
[31] 张以忱, 徐辉, 董连俊. 微弧氧化过程中电流密度对膜层性能的影响[C]//第八届全国真空冶金与表面工程学术会议论文摘要集. 沈阳, 2007: 63.
ZHANG Y C, XU H, DONG L J.The Effect of Current Density on Membrane Performance in Micro-Arc Oxidation[C]//Proceedings of the 8th National Symposium on Vacuum Metallurgy and Surface Engineering. Shenyang, 2007: 63.
[32] YAO Z P, JU P F, XIA Q X, et al.Preparation of Thermal Control Coatings on Mg-Li Alloys by Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology, 2016, 307: 1236-1240.
[33] 李航, 卢松涛, 秦伟, 等. 电流密度对MgO-ZnO陶瓷薄膜结构和热控性能的影响[J]. 无机材料学报, 2017, 32(12): 1292-1298.
LI H, LU S T, QIN W, et al.Current Density on Microstructure and Thermal Control Performances of MgO-ZnO Ceramic Coatings[J]. Journal of Inorganic Materials, 2017, 32(12): 1292-1298.
[34] ZHAO J X, ZHANG X C, WU R Z, et al.Research Progress on Micro-Arc Oxidation of Mg-Li Alloys: A Review[J]. Surfaces and Interfaces, 2025, 69: 106796.
[35] 王树棋, 王亚明, 邹永纯, 等. 微弧氧化涂层微纳米孔调控及功能化应用研究进展[J]. 表面技术, 2021, 50(6): 1-22.
WANG S Q, WANG Y M, ZOU Y C, et al.Generation, Tailoring and Functional Applications of Micro-Nano Pores in Microarc Oxidation Coating: A Critical Review[J]. Surface Technology, 2021, 50(6): 1-22.
[36] LI Z J, YUAN Y, JING X Y.Comparison of Plasma Electrolytic Oxidation Coatings on Mg-Li Alloy Formed in Molybdate/Silicate and Aluminate/Silicate Composite Electrolytes[J]. Materials and Corrosion, 2014, 65(5): 493-501.
[37] LIU X F, LIU G, XIE J X.Preliminary Study on Preparation of Black Ceramic Coating Formed on Magnesium Alloy by Micro-Arc Oxidation in Carbon Black Pigment- Contained Electrolyte[J]. Procedia Engineering, 2012, 36: 261-269.
[38] 李超楠. 铜盐体系镁合金MAO黑色膜层制备及热控性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 13-81.
LI C N.Preparation and Thermal Control Properties of MAO Black Film on Magnesium Alloy in Copper Salt System[D]. Harbin: Harbin Institute of Technology, 2015: 13-81.
[39] LI J M, CAI H, JIANG B L.Growth Mechanism of Black Ceramic Layers Formed by Microarc Oxidation[J]. Surface and Coatings Technology, 2007, 201(21): 8702-8708.
[40] HWANG I J, HWANG D Y, KIM Y M, et al.Formation of Uniform Passive Oxide Layers on High Si Content Al Alloy by Plasma Electrolytic Oxidation[J]. Journal of Alloys and Compounds, 2010, 504: S527-S530.
[41] YEROKHIN A L, NIE X, LEYLAND A, et al.Plasma Electrolysis for Surface Engineering[J]. Surface and Coatings Technology, 1999, 122(2/3): 73-93.
[42] WANG X Y, JU P F, LU X P, et al.Influence of Cr2O3 Particles on Corrosion, Mechanical and Thermal Control Properties of Green PEO Coatings on Mg Alloy[J]. Ceramics International, 2022, 48(3): 3615-3627.
[43] CHEN L, JIN X Y, XUE W B, et al.Fabrication and Characterization of Micro-Arc Oxidation Films on Β-Titanium Alloy in Silicate and Silicate/Glycerin Electrolyte[J]. Coatings, 2024, 14(11): 1408.
[44] WANG X Y, LU X P, JU P F, et al.Influence of ZnO on Thermal Control Property and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on Mg Alloy[J]. Surface and Coatings Technology, 2021, 409: 126905.
[45] CHEN G L, WANG Y M, ZOU Y C, et al.Hexagonal Boron Nitride and Alumina Dual-Layer Coating for Space Solar Thermal Shielding[J]. Chemical Engineering Journal, 2021, 421: 127802.
[46] XU H S, YAGUCHI H, SHIOIRI S.Testing CIELAB- Based Color-Difference Formulae Using Large Color Differences[J]. Optical Review, 2001, 8(6): 487-494.
[47] 阎峰云, 范松岩, 张文群, 等. 镁合金微弧氧化绿色陶瓷膜的制备[J]. 材料保护, 2008, 41(7): 4-6.
YAN F Y, FAN S Y, ZHANG W Q, et al.Preparation of Green Micro-Arc Oxidation Ceramic Coating on Magnesium Alloy[J]. Materials Protection, 2008, 41(7): 4-6.
[48] WANG X Y, LU X P, JU P F, et al.Thermal Control Property and Corrosion Resistance of PEO Coatings on AZ91 Mg Alloy[J]. Surface and Coatings Technology, 2020, 393: 125709.
[49] 朱祖芳. 建筑铝型材的表面处理技术现况及发展趋势[J]. 电镀与涂饰, 2005, 24(4): 14-17.
ZHU Z F.Technique Status and Development Trends of Surface Treatment on Aluminum Alloys for Architectural Applications[J]. Electroplating & Finishing, 2005, 24(4): 14-17.
[50] 高引慧, 李文芳, 杜军, 等. 镁合金微弧氧化黄色陶瓷膜的制备和结构研究[J]. 材料科学与工程学报, 2005, 23(4): 542-545.
GAO Y H, LI W F, DU J, et al.Preparation and Micro- Structures of Yellow Ceramic Coating by Micro-Arc Oxidation[J]. Journal of Materials Science and Engineering, 2005, 23(4): 542-545.
[51] 郝建民, 田新宇, 陈宏, 等. 镁合金微弧氧化黑色膜的制备工艺和结构[J]. 材料热处理学报, 2011, 32(7): 164-168.
HAO J M, TIAN X Y, CHEN H, et al.Preparation Process and Microstructure of Black Coatings on Magnesium Alloy by Micro-Arc Oxidation[J]. Transactions of Materials and Heat Treatment, 2011, 32(7): 164-168.
[52] MOLAEI M, BABAEI K, FATTAH-ALHOSSEINI A.Improving the Wear Resistance of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Mg and Its Alloys under the Addition of Nano- and Micro-Sized Additives into the Electrolytes: A Review[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1164-1186.
[53] 王卫锋. 镁合金深色微弧氧化陶瓷膜制备及耐蚀性研究[D]. 西安: 西安理工大学, 2006: 26-27.
WANG W F.Preparation and Corrosion Resistance of Dark Micro-arc Oxidation Ceramic Membrane on Magnesium Alloy[D]. Xi'an: Xi’an University of Technology, 2006: 26-27.
[54] 黄然然, 徐晋勇, 高成, 等. 微弧氧化彩色陶瓷膜的显色着色机理研究进展[J]. 热加工工艺, 2017, 46(12): 38-43.
HUANG R R, XU J Y, GAO C, et al.Research Status of Color Shading Mechanism of Micro-Arc Oxidation Color Ceramic Membrane Layer[J]. Hot Working Technology, 2017, 46(12): 38-43.
[55] 胡冰. 微弧氧化法钛合金表面有色膜层制备及热稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 55-65.
HU B.Preparation and Thermal Stability of Colored Film on Titanium Alloy Surface by Micro-arc Oxidation[D]. Harbin: Harbin Institute of Technology, 2014: 55-65.
[56] WANG L Q, ZHOU J S, LIANG J, et al.Thermal Control Coatings on Magnesium Alloys Prepared by Plasma Electrolytic Oxidation[J]. Applied Surface Science, 2013, 280: 151-155.
[57] 曹克宁, 白晶莹, 王景润, 等. 钒盐对AZ40M镁合金微弧氧化膜层热控性能的影响[J]. 功能材料, 2014, 45(5): 5144-5147.
CAO K N, BAI J Y, WANG J R, et al.Effect of Vanadate on the Thermal and Optical Properties of the Ceramic Coating Grown on AZ40M Mg Alloy[J]. Journal of Functional Materials, 2014, 45(5): 5144-5147.
[58] LI H, LU S T, QIN W, et al.In-Situ Grown MgO-ZnO Ceramic Coating with High Thermal Emittance on Mg Alloy by Plasma Electrolytic Oxidation[J]. Acta Astronautica, 2017, 136: 230-235.
[59] 李超楠, 夏琦兴, 王莹, 等. 硫酸铜浓度对镁合金微弧氧化膜层热控性能的影响[J]. 材料保护, 2017, 50(10): 48-51.
LI C N, XIA Q X, WANG Y, et al.Influence of Copper Sulphate Concentration on Thermal Control Performance of Micro-Arc Oxidation Coatings on Magnesium Alloy[J]. Materials Protection, 2017, 50(10): 48-51.
[60] 吴振东, 李超楠, 夏琦兴, 等. 电解液体系对镁合金热控涂层结构和性能的影响[J]. 硅酸盐学报, 2015, 43(12): 1731-1736.
WU Z D, LI C N, XIA Q X, et al.Influence of Different Electrolyte Systems on Structure and Property of Thermal Control Coatings on Mg Alloy[J]. Journal of the Chinese Ceramic Society, 2015, 43(12): 1731-1736.
[61] LU S T, QIN W, WU X H, et al.Effect of Fe3+ Ions on the Thermal and Optical Properties of the Ceramic Coating Grown In-Situ on AZ31 Mg Alloy[J]. Materials Chemistry and Physics, 2012, 135(1): 58-62.
[62] TANG H, SUN Q, XIN T Z, et al.Influence of Co(CH3COO)2 Concentration on Thermal Emissivity of Coatings Formed on Titanium Alloy by Micro-Arc Oxidation[J]. Current Applied Physics, 2012, 12(1): 284-290.
[63] XIA Q X, LI X, YAO Z P, et al.Investigations on the Thermal Control Properties and Corrosion Resistance of MAO Coatings Prepared on Mg-5Y-7Gd-1Nd-0.5Zr Alloy[J]. Surface and Coatings Technology, 2021, 409: 126874.
[64] 杨丽. 镁合金微弧氧化深色膜的制备及性能检测[D]. 沈阳: 沈阳理工大学, 2011: 55-76.
YANG L.Preparation and Performance Test of Dark Film on Magnesium Alloy by Micro-arc Oxidation[D]. Shenyang: Shenyang Ligong University, 2011: 55-76.
[65] 杨丽, 胡荣, 邵忠财. 镁合金表面着色技术[J]. 电镀与精饰, 2010, 32(5): 33-37.
YANG L, HU R, SHAO Z C.Coloring Technology of Magnesium Alloys[J]. Plating and Finishing, 2010, 32(5): 33-37.
[66] 陈同环, 马颖, 马跃洲, 等. 镁合金微弧氧化着色膜的制备工艺及其性能[J]. 热加工工艺, 2008(18): 54-57.
CHEN T H, MA Y, MA Y Z, et al.Preparing Process and Properties of Micro-Arc Oxidation Colouring Coating on Magnesium Alloy[J]. Hot Working Technology, 2008, 37(18): 54-57.
[67] 冯立, 张立功, 李思振, 等. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
FENG L, ZHANG L G, LI S Z, et al.Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Black Film on Mg-alloys AZ40M[J]. Journal of Corrosion and Protection, 2017, 37(4): 360-365.
[68] 吴晓宏, 秦伟. 镁合金表面高太阳吸收率高发射率热控涂层的制备方法: CN101748469A[P].2010-06-23.
QIN W, WU X H. Method for Preparing Thermal Control Coating with High Sunlight Absorptivity and High Emittance on the Surface of Magnesium Alloy: CN101748469A[P].2010-06-23.
PDF(15488 KB)

Accesses

Citation

Detail

Sections
Recommended

/