Research Progress on Growth Technology and Thermal Conductivity Optimization of CVD Polycrystalline Diamond Films

WANG Ziang, ZHANG Xiaoyu, WANG Yingnan, HAN Saibin, PENG Yan, XU Mingsheng, XU Xiangang, HU Xiufei, GE Lei

Surface Technology ›› 2025, Vol. 54 ›› Issue (20) : 44-69.

PDF(29398 KB)
PDF(29398 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (20) : 44-69. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.004
Research Review

Research Progress on Growth Technology and Thermal Conductivity Optimization of CVD Polycrystalline Diamond Films

  • WANG Ziang, ZHANG Xiaoyu, WANG Yingnan, HAN Saibin, PENG Yan, XU Mingsheng, XU Xiangang, HU Xiufei*, GE Lei*
Author information +
History +

Abstract

The work aims to systematically review the research progress of chemical vapor deposition (CVD) technology in the field of large-size growth preparation, thermal conductivity mechanism exploration and process optimization of polycrystalline diamond films, with a particular focus on the breakthroughs in large-size preparation technology and the in-depth exploration of thermal performance regulation mechanisms. By conducting a comprehensive and systematic comparison of the process characteristics, film properties and application differences of mainstream technologies, including hot filament chemical vapor deposition (HFCVD), microwave plasma chemical vapor deposition (MPCVD), direct current hot cathode chemical vapor deposition (DC-HC CVD) and direct current arc plasma jet chemical vapor deposition (DC arc jet CVD), the unique advantages and inherent limitations of each technology in the preparation of large-size diamond films, as well as their distinct application scenarios in thermal management, are revealed. It is emphasized that to realize the industrial-scale preparation of large-size polycrystalline diamond films, it is imperative to synergistically advance innovations in reactor structure, optimize plasma excitation modes, and achieve coordinated regulation of multiple process parameters. Such integrated efforts are crucial to meet the increasingly stringent performance requirements of high-power electronic devices for diamond thermal management materials, ultimately enabling efficient and uniform deposition of large-size, high-quality diamond films. In the aspect of thermal conductivity optimization, the intricate effect mechanisms of grain size, film thickness, crystal orientation and residual stress on thermal conductivity, as well as the strategies to precisely control thermal conductivity through process regulation, are systematically analyzed. Specifically, by optimizing the matching relationship between grain size and film thickness, the scattering effect of grain boundary density on phonon transmission is significantly mitigated, thereby enhancing the overall heat transport efficiency. Among the various process parameters, the precise control of carbon source concentration, temperature and power pressure exerts a decisive impact on grain morphology and crystal quality. Moreover, promoting the preferential growth of specific crystal plane orientations can further strengthen the thermal conductivity advantage. Innovative approaches such as dynamic magnetic field assistance and group ratio regulation offer new pathways for achieving oriented growth of crystal planes. Additionally, the residual stress issue requires comprehensive alleviation through strategies like substrate selection, interface pretreatment and structural design, aiming to reduce the negative impact of lattice distortion on thermal performance. The research results reviewed in this work not only construct a systematic theoretical framework for the development of high-performance diamond thermal management materials, but also provide practical technical references for the heat dissipation design of high-power electronic devices. By deeply analyzing key scientific issues such as equipment optimization and the thermal conductivity regulation mechanism of diamond materials, a solid theoretical foundation is laid for material process optimization, equipment structure design and performance prediction, helping researchers more accurately grasp the direction and path of material development. These findings can directly present the research and development of heat dissipation systems for high-power electronic devices, aiding in solving the overheating problem of devices under high-power operation, and thus hold great significance for improving the stability of electronic equipment, prolonging their service life and promoting the technological upgrading of related industries.

Key words

polycrystalline diamond films / chemical vapor deposition / thermal conductivity / thermal management

Cite this article

Download Citations
WANG Ziang, ZHANG Xiaoyu, WANG Yingnan, HAN Saibin, PENG Yan, XU Mingsheng, XU Xiangang, HU Xiufei, GE Lei. Research Progress on Growth Technology and Thermal Conductivity Optimization of CVD Polycrystalline Diamond Films[J]. Surface Technology. 2025, 54(20): 44-69 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.004

References

[1] 代文, 林正得, 易剑. 金刚石热沉与半导体器件连接技术研究现状与发展趋势[J]. 集成技术, 2023, 12(5): 27-40.
DAI W, LIN Z D, YI J.Research Status and Development Trend of Connection Technology of Diamond Heat Sink and Semiconductor Device[J]. Journal of Integration Technology, 2023, 12(5): 27-40.
[2] POP E, VARSHNEY V, ROY A K.Thermal Properties of Graphene: Fundamentals and Applications[J]. MRS Bulletin, 2012, 37(12): 1273-1281.
[3] MASHALI F, LANGURI E, MIRSHEKARI G, et al.Nanodiamond Nanofluid Microstructural and Thermo- Electrical Characterization[J]. International Communications in Heat and Mass Transfer, 2019, 101: 82-88.
[4] ANGADI M A, WATANABE T, BODAPATI A, et al.Thermal Transport and Grain Boundary Conductance in Ultrananocrystalline Diamond Thin Films[J]. Journal of Applied Physics, 2006, 99(11): 114301.
[5] JACOBSON P, STOUPIN S.Thermal Expansion Coefficient of Diamond in a Wide Temperature Range[J]. Diamond and Related Materials, 2019, 97: 107469.
[6] MASSART M, UNION P, SCARSBROOK G A, et al.CVD-Grown Diamond: A New Material for High-Power CO2 Lasers[C]//27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995. Boulder, CO. SPIE, 1996.
[7] WANG Y N, HU X F, GE L, et al.Research Progress in Capping Diamond Growth on GaN HEMT: A Review[J]. Crystals, 2023, 13(3): 500.
[8] MINOURA Y, OHKI T, OKAMOTO N, et al.GaN MMICs on a Diamond Heat Spreader with Through- Substrate Vias Fabricated by Deep Dry Etching Process[J]. Applied Physics Express, 2022, 15(3): 036501.
[9] KASU M.Diamond Field-Effect Transistors as Microwave Power Amplifiers[J]. NTT Technical Review, 2010, 8(8): 12-16.
[10] TYHACH M, ALTMAN D, KAPER V, et al.GaN on Diamond: Pushing the Boundary of Conventional MMIC Design and Fabrication[C]//CS ManTech Conference, Miami, Florida, USA: Clausius Scientific Press, 2016.
[11] 廖龙忠, 武毅畅, 周国, 等. 热阻降低39.5%的4英寸金刚石基GaN HEMT工艺[J]. 微纳电子技术, 2023, 60(8): 1326-1331.
LIAO L Z, WU Y C, ZHOU G, et al.4-Inch Diamond- based GaN HEMT Technology with 39.5% Reduction in Thermal Resistance[J]. Micronanoelectronic Technology, 2023, 60(8): 1326-1331
[12] WANG C C, SUNG H Y, CHEN D Z, et al.Strong Ties and Weak Ties of the Knowledge Spillover Network in the Semiconductor Industry[J]. Technological Forecasting and Social Change, 2017, 118: 114-127.
[13] SHAO J Y, CAO B L, WU X L, et al.The 4-Inch Free- Standing Diamond Film Prepared by MPCVD at 10kW[J]. Functional Diamond, 2024, 4(1): 2356570.
[14] SIMÕES R, MARTINS B, SANTOS J, et al. HFCVD Diamond-Coated Mechanical Seals[J]. Coatings, 2018, 8(5): 172.
[15] CHEN K, TAO T, HU W X, et al.High-Speed Growth of High-Quality Polycrystalline Diamond Films by MPCVD[J]. Carbon Letters, 2023, 33(7): 2003-2010.
[16] LEE W S, BAIK Y J, CHAE K W.Diamond Thick Film Deposition in Wafer Scale Using Single-Cathode Direct Current Plasma Assisted Chemical Vapour Deposition[J]. Thin Solid Films, 2003, 435(1/2): 89-94.
[17] LI C M, ZHU R H, LIU J L, et al.Effect of Arc Characteristics on the Properties of Large Size Diamond Wafer Prepared by DC Arc Plasma Jet CVD[J]. Diamond and Related Materials, 2013, 39: 47-52.
[18] 李义锋, 姜龙, 安晓明, 等. 化学气相沉积大尺寸多晶金刚石膜及其应用研究进展[J]. 真空电子技术, 2022(5): 1-12.
LI Y F, JIANG L, AN X M, et al.A Review on Preparation and Application of Large Area Polycrystalline Diamond Films by Chemical Vapor Deposition[J]. Vacuum Electronics, 2022(5): 1-12.
[19] RAILKAR, KANG, WINDISCHMANN, et al. A Critical Review of Chemical Vapor-Deposited (CVD) Diamond for Electronic Applications[J]. Critical Reviews in Solid State and Materials Sciences, 2000, 25(3): 163-277.
[20] 权乐. CVD金刚石膜研究进展[J]. 真空科学与技术学报, 2024, 44(10): 841-852.
QUAN L.Research Progress of CVD Diamond Film[J]. Chinese Journal of Vacuum Science and Technology, 2024, 44(10): 841-852.
[21] WINDISCHMANN H.75-mm Diameter Diamond X-Ray Membrane[C]//Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies IX. San Jose, USA. SPIE, 1990.
[22] KOIDL P, WILD C, WOERNER E, et al.Diamond Windows for Infrared and Multispectral Applications[C]//Infrared Technology and Applications XXIV. San Diego, CA, USA. SPIE, 1998.
[23] UMEZAWA H, ARIMA T, FUJIHARA N, et al.RF Performance of High Transconductance and High-Channel- Mobility Surface-Channel Polycrystalline Diamond Metal- Insulator-Semiconductor Field-Effect Transistors[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 4B): 2611-2614.
[24] ANDO Y, YOKOTA Y, TACHIBANA T, et al.Large Area Deposition of 〈100〉-Textured Diamond Films by a 60-kW Microwave Plasma CVD Reactor[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 596-600.
[25] KING D, YARAN M K, SCHUELKE T, et al.Scaling the Microwave Plasma-Assisted Chemical Vapor Diamond Deposition Process to 150-200 mm Substrates[J]. Diamond and Related Materials, 2008, 17(4/5): 520-524.
[26] PAL K S, BYSAKH S, MALLIK A K, et al.Influence of Growth Conditions on Microstructure and Defects in Diamond Coatings Grown by Microwave Plasma Enhanced CVD[J]. Bulletin of Materials Science, 2015, 38(3): 717-724.
[27] RALCHENKO V G, PLESKOV Y V, POLYAKOV V I, et al.Comparative Measurements of Acceptor Concentration at the Growth and Nucleation Side of Microwave Plasma CVD Polycrystalline Diamond Films[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 531-537.
[28] SUKHADOLAU A V, IVAKIN E V, RALCHENKO V G, et al.Thermal Conductivity of CVD Diamond at Elevated Temperatures[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 589-593.
[29] 产思义, 屠菊萍, 黄珂, 等. 光学级多晶金刚石膜的快速生长[J]. 光学学报, 2023, 43(19): 304-312.
CHAN S Y, TU J P, HUANG K, et al.Rapid Growth of Optical Grade Polycrystalline Diamond Films[J]. Acta Optica Sinica, 2023, 43(19): 304-312.
[30] CHAE K W, BAIK Y J, PARK J K, et al.The 8-Inch Free-Standing CVD Diamond Wafer Fabricated by DC-PACVD[J]. Diamond and Related Materials, 2010, 19(10): 1168-1171.
[31] MÜLLER-SEBERT W, WILD C, KOIDL P, et al. Polycrystalline Diamone for Optical Thin Films[J]. Materials Science and Engineering: B, 1992, 11(1/2/3/4): 173-178.
[32] LI C M, REN F T, SHAO S W, et al.Current Status and Development Trend of Chemical Vapor Deposition (CVD) Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5), 759-780.
[33] GRAHN, K, ERANEN, S, KUIVALAINEN, P.Diamond Power Transistor Performance[J]. Diamond and Related Materials, 1994, 3(11-12): 1301-1307.
[34] GRAY K J, WINDISCHMANN H.Free-Standing CVD Diamond Wafers for Thermal Management by D.C. Arc Jet Technology[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 903-908.
[35] HUANG Y B, CHEN L X, SHAO S W, et al.The 7-In. Freestanding Diamond Thermal Conductive Film Fabricated by DC Arc Plasma Jet CVD with Multi-Stage Magnetic Fields[J]. Diamond and Related Materials, 2022, 122: 108812.
[36] WENG J, LIU F, WANG Z T, et al.Investigation on the Preparation of Large Area Diamond Films with 150-200 mm in Diameter Using 915 MHz MPCVD System[J]. Vacuum, 2023, 217: 112543.
[37] WENG J, LIU F, XIONG L W, et al.Deposition of Large Area Uniform Diamond Films by Microwave Plasma CVD[J]. Vacuum, 2018, 147: 134-142.
[38] ASHFOLD M N R, MAY P W, REGO C A, et al. Thin Film Diamond by Chemical Vapour Deposition Methods[J]. Chemical Society Reviews, 1994, 23(1): 21-30.
[39] GAMO H, SHIMADA K, NISHITANI-GAMO M, et al.Ultrafine Patterning of Nanocrystalline Diamond Films Grown by Microwave Plasma-Assisted Chemical Vapor Deposition[J]. Japanese Journal of Applied Physics, 2007, 46(9S): 6267.
[40] 唐伟忠, 于盛旺, 范朋伟, 等. 高品质金刚石膜微波等离子体CVD技术的发展现状[J]. 中国材料进展, 2012, 31(8): 33-39.
TANG W Z, YU S W, FAN P W, et al.Developments in Microwave Plasma Chemical Vapor Deposition Technology for Preparing High Quality Diamond Films[J]. Materials China, 2012, 31(8): 33-39.
[41] SILVA, F, BONNIN, X, SCHARPF, J, et al.Microwave Analysis of PACVD Diamond Deposition Reactor Based on Electromagnetic Modelling[J]. Diamond and Related Materials, 2010, 19(5-6): 397-403.
[42] TANG C J, FERNANDES A J S, JIANG X F, et al. Impact of High Microwave Power on Hydrogen Impurity Trapping in Nanocrystalline Diamond Films Grown with Simultaneous Nitrogen and Oxygen Addition into Methane/Hydrogen Plasma[J]. Journal of Crystal Growth, 2016, 434: 36-41.
[43] TACHIBANA T, ANDO Y, WATANABE A, et al.Diamond Films Grown by a 60-kW Microwave Plasma Chemical Vapor Deposition System[J]. Diamond and Related Materials, 2001, 10(9/10): 1569-1572.
[44] AN K, ZHANG S, SHAO S W, et al.Effects of the Electric Field at the Edge of a Substrate to Deposit a Ø100 mm Uniform Diamond Film in a 2.45 GHz MPCVD System[J]. Plasma Science and Technology, 2022, 24(4): 045502.
[45] MALLIK A K, BYSAKH S, SREEMANY M, et al.Property Mapping of Polycrystalline Diamond Coatings over Large Area[J]. Journal of Advanced Ceramics, 2014, 3(1): 56-70.
[46] LIANG Q, YAN C S, LAI J, et al.Large Area Single- Crystal Diamond Synthesis by 915 MHz Microwave Plasma-Assisted Chemical Vapor Deposition[J]. Crystal Growth & Design, 2014, 14(7): 3234-3238.
[47] WENG J, XIONG L W, WANG J H, et al.Effect of Gas Sources on the Deposition of Nano-Crystalline Diamond Films Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2010, 12(6): 761-764.
[48] ANDO Y, TACHIBANA T, KOBASHI K.Growth of Diamond Films by a 5-kW Microwave Plasma CVD Reactor[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 312-315.
[49] OCHIAI T, ARIHARA K, TERASHIMA C, et al.Electrochemical Reduction of Ozone Dissolved in Perchloric Acid Solutions at Boron-Doped Diamond Electrodes[J]. Chemistry Letters, 2006, 35(9): 1018-1019.
[50] TAYLOR A C, VAGASKA B, EDGINGTON R, et al.Biocompatibility of Nanostructured Boron Doped Diamond for the Attachment and Proliferation of Human Neural Stem Cells[J]. Journal of Neural Engineering, 2015, 12(6): 066016.
[51] FÜNER M, WILD C, KOIDL P. Novel Microwave Plasma Reactor for Diamond Synthesis[J]. Applied Physics Letters, 1998, 72(10): 1149-1151.
[52] ZUO S S, YARAN M K, GROTJOHN T A, et al.Investigation of Diamond Deposition Uniformity and Quality for Freestanding Film and Substrate Applications[J]. Diamond and Related Materials, 2008, 17(3): 300-305.
[53] LI Y F, AN X M, LIU X C, et al.A 915MHz/75kW Cylindrical Cavity Type Microwave Plasma Chemical Vapor Deposition Reactor with a Ladder-Shaped Circumferential Antenna Developed for Growing Large Area Diamond Films[J]. Diamond and Related Materials, 2017, 78: 67-72.
[54] LI Y F, SU J J, LIU Y Q, et al.Design of a New TM021 Mode Cavity Type MPCVD Reactor for Diamond Film Deposition[J]. Diamond and Related Materials, 2014, 44: 88-94.
[55] SONG G H, SUN C, HUANG R F, et al.Simulation of the Influence of the Filament Arrangement on the Gas Phase during Hot Filament Chemical Vapor Deposition of Diamond Films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000, 18(3): 860-863.
[56] WOLDEN C, MITRA S, GLEASON K K.Radiative Heat Transfer in Hot-Filament Chemical Vapor Deposition Diamond Reactors[J]. Journal of Applied Physics, 1992, 72(8): 3750-3758.
[57] ZHANG T, QIAN Y Z, WANG S, et al.Influence of the Heat Dissipation Mode of Long-Flute Cutting Tools on Temperature Distribution during HFCVD Diamond Films[J]. Crystals, 2019, 9(8): 394.
[58] 李明吉. 大尺寸高质量金刚石厚膜制备及氮掺杂对金刚石膜生长的影响研究[D]. 长春: 吉林大学, 2006.
LI M J.Preparation of Large-size and High-quality Diamond Thick Film and Study on the Effect of Nitrogen Doping on the Growth of Diamond Film[D]. Changchun: Jilin University, 2006.
[59] ZHANG C, LU M, LIU D D, et al.Simulation and Experimental Research Studies on Temperature Field for the Production of diamond-Coated Milling Tools by HFCVD Device with Separated Worktables[J]. Surface Review and Letters, 2024, 31(8): 2450060.
[60] KWOK F M, DU X Y, SUN Z W, et al.Fabrication of Diamond Film under Low Methane Concentration by Hot Filament Chemical Vapor Deposition with Magnetic Field Assistance[J]. Surface and Coatings Technology, 2024, 483: 130802.
[61] LIU X Z, WEN K, DUAN X H, et al.CVD Diamond Growth Enhanced by a Dynamic Magnetic Field[J]. Coatings, 2023, 13(2): 441.
[62] PANICKAR R, SOBHAN C B, CHAKRAVORTI S.Simulation Studies on Optimizing the Substrate Temperature Using a Novel Spiral Filament in Hot Filament Chemical Vapor Deposition of Diamond Thin Films[M]//Advanced Engineering Optimization through Intelligent Techniques. Singapore: Springer Nature Singapore, 2023: 533-545.
[63] PLOTNIKOV M Y, GORBACHEV Y E, EMELYANOV A A, et al.Gas-Jet HFCVD Synthesis of Diamonds from Mixtures of Hydrogen with Ethylene and Methane[J]. Diamond and Related Materials, 2022, 130: 109505.
[64] SUN S, XU F, SHI L L, et al.Lapping Performance of Diamond Cone Array Tool Prepared by Double Bias Assisted HFCVD[J]. Materials Today Communications, 2022, 31: 103564.
[65] OHTAKE N, YOSHIKAWA M.Nucleation Effects and Characteristics of Diamond Film Grown by Arc Discharge Plasma Jet Chemical Vapor Deposition[J]. Thin Solid Films, 1992, 212(1-2): 112-121.
[66] BAIK Y J, LEE J K, LEE W S, et al.Large Size Plasma Generation Using Multicathode Direct Current Geometry for Diamond Deposition[J]. Journal of Materials Research, 1998, 13(4): 944-946.
[67] LEE J K, EUN K Y, BAIK Y J, et al.The Large Area Deposition of Diamond by the Multi-Cathode Direct Current Plasma Assisted Chemical Vapor Deposition (DC PACVD) Method[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 463-466.
[68] MATSUMOTO S, MANABE Y, HIBINO Y.Diamond Deposition Using an XY Stage in a DC Plasma Jet Chemical Vapour Deposition[J]. Journal of Materials Science, 1992, 27: 5905-5910.
[69] 刘金龙, 安康, 陈良贤, 等. CVD金刚石自支撑膜的研究进展[J]. 表面技术, 2018, 47(4): 1-10.
LIU J L, AN K, CHEN L X, et al.Research Progress of Freestanding CVD Diamond Films[J]. Surface Technology, 2018, 47(4): 1-10.
[70] LIU P, SHAO S W, YANG Z L, et al.The Uniform and Robust 8-Inch CVD Diamond Plate Generated by Dual- Magnetic Field Controlled DC Jet CVD[J]. Diamond and Related Materials, 2024, 141: 110670.
[71] HARIGAI T, OHHRA H, TOMINAGA R, et al. Ultra- High-Rate Deposition of Diamond-Like Carbon Films Using Ar/C2H2 Plasma Jet CVD in Combination with Substrate-Stage Discharge[J]. Japanese Journal of Applied Physics, 2022, 61: SI1001.
[72] SERGEICHEV K F, LUKINA N A, ARUTYUNYAN N R.Atmospheric-Pressure Microwave Plasma Torch for CVD Technology of Diamond Synthesis[J]. Plasma Physics Reports, 2019, 45(6): 551-560.
[73] ZULKHARNAY R, MAY P W.Applications of Diamond Films: A Review[J]. Functional Diamond, 2024, 4(1): 2410160.
[74] SHAMSA M, GHOSH S, CALIZO I, et al.Thermal Conductivity of Nitrogenated Ultrananocrystalline Diamond Films on Silicon[J]. Journal of Applied Physics, 2008, 103(8): 083538.
[75] DISCHLER B, WILD C.Low-Pressure Synthetic Diamond: Manufacturing and Applications[M]. Berlin: Springer Science & Business Media, 2013.
[76] RODIN D, YEE S K.Simultaneous Measurement of In-Plane and Through-Plane Thermal Conductivity Using Beam-Offset Frequency Domain Thermoreflectance[J]. The Review of Scientific Instruments, 2017, 88(1): 014902.
[77] ZHAO D, QIAN X, GU X, ET al. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials[J]. Journal of Electronic Packaging, 2016, 138(4): 040802.
[78] CAHILL D G.Thermal-Conductivity Measurement by Time-Domain Thermoreflectance[J]. MRS Bulletin, 2018, 43(10): 782-788.
[79] GASKINS J T, KOTSONIS G, GIRI A, et al.Thermal Boundary Conductance across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model[J]. Nano Letters, 2018, 18(12): 7469-7477.
[80] CHENG Z, BOUGHER T, BAI T Y, et al.Probing Growth-Induced Anisotropic Thermal Transport in High- Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4808-4815.
[81] KANG K, KOH Y K, CHIRITESCU C, et al.Two-Tint Pump-Probe Measurements Using a Femtosecond Laser Oscillator and Sharp-Edged Optical Filters[J]. The Review of Scientific Instruments, 2008, 79(11): 114901.
[82] LIU J, ZHU J, TIAN M, et al.Simultaneous Measurement of Thermal Conductivity and Heat Capacity of Bulk and Thin Film Materials Using Frequency-Dependent Transient Thermoreflectance Method[J]. The Review of Scientific Instruments, 2013, 84(3): 034902.
[83] CHEN G.Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons[M]. Shanghai: Oxford University Press, 2005.
[84] CASIMIR H B G. Note on the Conduction of Heat in Crystals[J]. Physica, 1938, 5(6): 495-500.
[85] YAMAMOTO Y, IMAI T, TANABE K, et al.The Measurement of Thermal Properties of Diamond[J]. Diamond and Related Materials, 1997, 6(8): 1057-1061.
[86] ZHANG C Y, VISPUTE R D, FU K, et al.A Review of Thermal Properties of CVD Diamond Films[J]. Journal of Materials Science, 2023, 58(8): 3485-3507.
[87] ANAYA J, ROSSI S, ALOMARI M, et al.Control of the In-Plane Thermal Conductivity of Ultra-Thin Nanocrystalline Diamond Films through the Grain and Grain Boundary Properties[J]. Acta Materialia, 2016, 103: 141-152.
[88] SOOD A, CHO J, HOBART K D, et al.Anisotropic and Inhomogeneous Thermal Conduction in Suspended Thin-Film Polycrystalline Diamond[J]. Journal of Applied Physics, 2016, 119(17): 175103.
[89] VERHOEVEN H, FLÖTER A, REIß H, et al. Influence of the Microstructure on the Thermal Properties of Thin Polycrystalline Diamond Films[J]. Applied Physics Letters, 1997, 71(10): 1329-1331.
[90] NUGERA F A, DEVKOTA D, ANUPAM K C, et al.Effect of CH4 Concentration on the Early Growth Stage of Patterned Diamond Using High Seeding Density and Hot Filament Chemical Vapor Deposition[J]. Journal of Materials Science, 2024, 59(16): 6835-6848.
[91] WEI S S, XIE R Q, LI Y Y, et al.Deposition of Diamond Films by Microwave Plasma CVD on 4H-SiC Substrates[J]. Materials Research Express, 2023, 10(12): 126404.
[92] ZHAOHUI Y, JIANHUA W, WEIDONG M, et al.Study of Mechanical Polishing of CVD Diamond Thick Films[J]. Diamond Abrasives Engineering, 2007, 159(3): 32-35.
[93] SEDOV V, POPOVICH A, LINNIK S, et al.Combined HF+MW CVD Approach for the Growth of Polycrystalline Diamond Films with Reduced Bow[J]. Coatings, 2023, 13(2): 380.
[94] SONG X, LU M, WANG H, et al.Fracture Mechanics of Microcrystalline/Nanocrystalline Composited Multilayer Chemical Vapor Deposition Self-Standing Diamond Films[J]. Ceramics International, 2022, 48(15): 21868-21878.
[95] SEDOV V S, MARTYANOV A K, KHOMICH A A, et al.Deposition of Diamond Films on Si by Microwave Plasma CVD in Varied CH4-H2 Mixtures: Reverse Nanocrystalline-to-Microcrystalline Structure Transition at very High Methane Concentrations[J]. Diamond and Related Materials, 2020, 109: 108072.
[96] MARTYANOV A, TIAZHELOV I, SAVIN S, et al.Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane[J]. Coatings, 2023, 13(4): 751.
[97] MUKHERJEE D, OLIVEIRA F, TRIPPE S C, et al.Deposition of Diamond Films on Single Crystalline Silicon Carbide Substrates[J]. Diamond and Related Materials, 2020, 101: 107625.
[98] 李维汉, 乔煜, 疏达, 等. 面向散热应用的碳化硅表面热丝化学气相沉积金刚石膜生长速率[J]. 上海交通大学学报, 2023, 57(8): 1078-1085.
LI W H, QIAO Y, SHU D, et al.Growth Rates of HFCVD Diamond Films on Silicon Carbide Substrates for Heat Dissipation Applications[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1078-1085.
[99] SILVA F, ACHARD J, BRINZA O, et al.High Quality, Large Surface Area, Homoepitaxial MPACVD Diamond Growth[J]. Diamond and Related Materials, 2009, 18(5/6/7/8): 683-697.
[100] YANG G J, SUN P, ZHU T, et al.Fabrication, Microstructure and Optical Properties of 〈110〉 Textured CVD Polycrystalline Diamond Infrared Materials[J]. Diamond and Related Materials, 2024, 141: 110600.
[101] GOODSON K E, JU Y S.Heat Conduction in Novel Electronic Films[J]. Annual Review of Materials Science, 1999, 29: 261-293.
[102] VANDERSANDE J W. Low Temperature Thermal Conductivity of Two Natural Diamonds: Anisotropic Heat Conduction in the Boundary Scattering Regime[J]. Le Journal de Physique Colloques, 39(C6): C6-1017-C6-1018.
[103] WANG B, XU X C, HE Y R, et al.Synergistic Competition Mechanism of Phonon Scattering in Uniaxial (100) Strain Diamond: A First-Principles Study[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124598.
[104] WANG B, HE Y R, RODIONOV N, et al.First-Principles Predictions of Thermal Conductivity of Bulk Diamond under Isotropic and Uniaxial (100) Strains[J]. Materials Today Physics, 2023, 36: 101182.
[105] GU C Z, JIN Z S, LU X Y, et al.The Deposition of Diamond Film with High Thermal Conductivity[J]. Thin Solid Films, 1997, 311(1/2): 124-127.
[106] 苏青峰, 夏义本, 王林军, 等. (100)定向CVD金刚石薄膜的制备及其电学性能[J]. 半导体学报, 2005, 26(5): 947-951.
SU Q F, XIA Y B, WANG L J, et al.Growth and Electrical Properties of (100)-Oriented CVD Diamond Films[J]. Journal of Semiconductors, 2005, 26(5): 947-951.
[107] BUSMANN H G, HERTEL I V.Vapour Grown Polycrystalline Diamond Films: Microscopic, Mesoscopic and Atomic Surface Structures[J]. Carbon, 1998, 36(4): 391-406.
[108] CHEN L, FENG H P, LU F X.Texture Analysis of CVD Free-Standing Diamond Films[J]. Solid State Phenomena, 2005, 105: 421-426.
[109] LAI W C, WU Y S, CHANG H C, et al.Differing Morphologies of Textured Diamond Films with Electrical Properties Made with Microwave Plasma Chemical Vapor Deposition[J]. Applied Surface Science, 2010, 257(5): 1729-1735.
[110] WENG J, WANG J H, DAI S Y, et al.Preparation of Diamond Films with Controllable Surface Morphology, Orientation and Quality in an Overmoded Microwave Plasma CVD Chamber[J]. Applied Surface Science, 2013, 276: 529-534.
[111] QUARSHIE M M, MALYKHIN S, OBRAZTSOV A, et al.Nano- and Micro-Crystalline Diamond Film Structuring with Electron Beam Lithography Mask[J]. Nanotechnology, 2024, 35(15): 155301.
[112] LIN Z D, SUN B W.Special Issue: Diamond Thin Films. High-Resolution Electron Energy Loss Spectroscopy Studies of Growth Mechanism of Diamond Film[J]. Shinku, 1994, 37(7): 579-586.
[113] WANG Y J, LI J X, LONG H Y, et al.A Periodic Magnetic Field Assisted Chemical Vapor Deposition Technique to Fabricate Diamond Film with Preferred Orientation[J]. Surface and Coatings Technology, 2016, 292: 49-53.
[114] ZENG Q K, WANG L J, SHI L Y, et al.Optimizing Hydrogen Plasma Etching Process of Preferred (110)- Textured Diamond Film[J]. Surface and Coatings Technology, 2013, 228: S379-S381.
[115] SONG X, WANG H, WANG X C, et al.Coupling Effects of Methane Concentration and Nitrogen Addition Level on Morphologies and Properties of MPCVD Diamond Films on WC-Co Substrates[J]. Diamond and Related Materials, 2021, 117: 108487.
[116] KUO C T, LIN C R, LIEN H M.Origins of the Residual Stress in CVD Diamond Films[J]. Thin Solid Films, 1996, 290: 254-259.
[117] XIAO X, BIRRELL J, GERBI J E, et al.Low Temperature Growth of Ultrananocrystalline Diamond[J]. Journal of Applied Physics, 2004, 96(4): 2232-2239.
[118] WINDISCHMANN H, EPPS G F, CONG Y, et al.Intrinsic Stress in Diamond Films Prepared by Microwave Plasma CVD[J]. Journal of Applied Physics, 1991, 69(4): 2231-2237.
[119] WANG W L, POLO M C, SÁNCHEZ G, et al. Internal Stress and Strain in Heavily Boron-Doped Diamond Films Grown by Microwave Plasma and Hot Filament Chemical Vapor Deposition[J]. Journal of Applied Physics, 1996, 80(3): 1846-1850.
[120] ANTHONY T R.Stresses Generated by Impurities in Diamond[J]. Diamond and Related Materials, 1995, 4(12): 1346-1352.
[121] SHANG N G, LEE C S, LIN Z D, et al.Intrinsic Stress Evolution in Diamond Films Prepared in a CH4-H2-NH3 Hot Filament Chemical Vapor Deposition System[J]. Diamond and Related Materials, 2000, 9(7): 1388-1392.
[122] 李姚, 郑子轩, 蒲红斌. 金刚石衬底上GaN HEMT沟道温度建模: 各向异性且非均匀热导率的影响[J]. 人工晶体学报, 2022, 51(2): 222-228.
LI Y, ZHENG Z X, PU H B.Analysis of Channel Temperature in GaN on Diamond HEMT: Effect of Anisotropic and Inhomogeneous Thermal Conductivity[J]. Journal of Synthetic Crystals, 2022, 51(2): 222-228.
[123] LI H D, ZHANG T, LI L A, et al.Investigation on Crystalline Structure, Boron Distribution, and Residual Stresses in Freestanding Boron-Doped CVD Diamond Films[J]. Journal of Crystal Growth, 2010, 312(12/13): 1986-1991.
[124] DAS D, SINGH R N, CHATTOPADHYAY S, et al.Thermal Conductivity of Diamond Films Deposited at Low Surface Temperatures[J]. Journal of Materials Research, 2006, 21(9): 2379-2388.
[125] HAMZAH E, YONG T M, MAT YAJID M A. Surface Morphology and Bond Characterization of Nanocrystalline Diamonds Grown on Tungsten Carbide via Hot Filament Chemical Vapor Deposition[J]. Journal of Crystal Growth, 2013, 372: 109-115.
[126] AMARAL M, MOHASSEB F, OLIVEIRA F J, et al.Nanocrystalline Diamond Coating of Silicon Nitride Ceramics by Microwave Plasma-Assisted CVD[J]. Thin Solid Films, 2005, 482(1/2): 232-236.
[127] CUI J B, MA Y R, ZHANG J F, et al.Growth and Characterization of Diamond Film on Aluminum Nitride[J]. Materials Research Bulletin, 1996, 31(7): 781-785.
[128] MANDAL S, BLAND H A, CUENCA J A, et al.Superconducting Boron Doped Nanocrystalline Diamond on Boron Nitride Ceramics[J]. Nanoscale, 2019, 11(21): 10266-10272.
[129] BHUSARI D M, YANG J R, WANG T Y, et al.Novel Two Stage Method for Growth of Highly Transparent Nano-Crystalline Diamond Films[J]. Materials Letters, 1998, 36(5/6): 279-283.
[130] SPITSYN B V, BOUILOV L L, DERJAGUIN B V.Vapor Growth of Diamond on Diamond and Other Surfaces[J]. Journal of Crystal Growth, 1981, 52: 219-226.
[131] ARNAULT J C, SAADA S, RALCHENKO V.Chemical Vapor Deposition Single-Crystal Diamond: A Review[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2022, 16(1): 2100354.
[132] JIA C L, URBAN K, JIANG X.Heteroepitaxial Diamond Films on Silicon (001): Interface Structure and Crystallographic Relations between Film and Substrate[J]. Physical Review B, 1995, 52(7): 5164-5171.
[133] LIU W, TUCKER D A, YANG P C, et al.Nucleation of Oriented Diamond Particles on Cobalt Substrates[J]. Journal of Applied Physics, 1995, 78(2): 1291-1296.
[134] MAEDA H, MASUDA S, KUSAKABE K, et al.Heteroepitaxial Growth of Diamond on C-BN in a Microwave Plasma[J]. Diamond and Related Materials, 1994, 3(4/5/6): 398-402.
[135] WOLTER S D, MCCLURE M T, GLASS J T, et al.Bias-Enhanced Nucleation of Highly Oriented Diamond on Titanium Carbide (111) Substrates[J]. Applied Physics Letters, 1995, 66(21): 2810-2812.
[136] WRIGHT J K, WILLIAMSON R L, MAGGS K J.Finite Element Analysis of the Effectiveness of Interlayers in Reducing Thermal Residual Stresses in Diamond Films[J]. Materials Science and Engineering: A, 1994, 187(1): 87-96.
[137] FUJISAKI T, TACHIKI M, TANIYAMA N, et al.Fabrication of Heteroepitaxial Diamond Thin Films on Ir(001)/MgO(001) Substrates Using Antenna-Edge-Type Microwave Plasma-Assisted Chemical Vapor Deposition[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 478-481.
[138] SRIKANTH V V S S, STAEDLER T, JIANG X. Deposition of Stress-Free Diamond Films on Si by Diamond/β-SiC Nanocomposite Intermediate Layers[J]. Diamond and Related Materials, 2009, 18(10): 1326-1331.
[139] MITSUDA Y, KOJIMA Y, YOSHIDA T, et al.The Growth of Diamond in Microwave Plasma under Low Pressure[J]. Journal of Materials Science, 1987, 22(5): 1557-1562.
[140] TAN Z Q, LI Z Q, FAN G L, et al.Fabrication of Diamond/Aluminum Composites by Vacuum Hot Pressing: Process Optimization and Thermal Properties[J]. Composites Part B: Engineering, 2013, 47: 173-180.
[141] YUGO S, KIMURA T, MUTO T.Effects of Electric Field on the Growth of Diamond by Microwave Plasma CVD[J]. Vacuum, 1990, 41(4/5/6): 1364-1367.
[142] HU X F, PENG Y, WANG X W, et al.Nucleation Growth Mechanism of Diamond on 4H-SiC Substrate by Microwave Plasma Chemical Vapor Deposition[J]. Materials Today Communications, 2022, 31: 103563.
[143] GILBERT D R, SINGH R, CLARKE R, et al.Dynamic Growth Effects during Low-Pressure Deposition of Diamond Films[J]. Applied Physics Letters, 1997, 70(15): 1974-1976.
[144] TANG C J, NEVES A J, FERNANDES A J S. Influence of Nucleation Density on Film Quality, Growth Rate and Morphology of Thick CVD Diamond Films[J]. Diamond and Related Materials, 2003, 12(9): 1488-1494.
[145] MOHAPATRA D R, RAI P, MISRA A, et al.Parameter Window of Diamond Growth on GaN Films by Microwave Plasma Chemical Vapor Deposition[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1775-1779.
[146] SEDOV V, MARTYANOV A, ASHKINAZI E, et al.Effect of Diamond Seeds Size on the Adhesion of CVD Diamond Coatings on WC-Co Instrument[J]. Surfaces and Interfaces, 2023, 38: 102861.
[147] GRAEBNER J E, JIN S, KAMMLOTT G W, et al.Large Anisotropic Thermal Conductivity in Synthetic Diamond Films[J]. Nature, 1992, 359: 401-403.
[148] AHMED R, NAZARI M, HANCOCK B L, et al.Ultraviolet Micro-Raman Stress Map of Polycrystalline Diamond Grown Selectively on Silicon Substrates Using Chemical Vapor Deposition[J]. Applied Physics Letters, 2018, 112(18): 181907.
[149] INOUE T, TACHIBANA H, KUMAGAI K, et al.Selected-Area Deposition of Diamond Films[J]. Journal of Applied Physics, 1990, 67(12): 7329-7336.
[150] 刘昌龙. CVD金刚石膜残余应力的数值模拟[D]. 成都: 西南交通大学, 2012.
LIU C L.Numerical Simulation of Residual Stress in CVD Diamond Film[D]. Chengdu: Southwest Jiaotong University, 2012.
[151] 龙芬. Mo箔基体上金刚石薄膜的制备及残余应力的研究[D]. 长沙: 中南大学, 2014.
LONG F.Preparation of Diamond Films on Mo Foil Substrate and Study on Residual Stress[D]. Changsha: Central South University, 2014.
[152] 王海阔, 张相法, 位星, 等. 直接转化法合成大尺寸纯相多晶金刚石[J]. 金刚石与磨料磨具工程, 2018, 38(1): 1-6.
WANG H K, ZHANG X F, WEI X, et al.Synthesizing Bulk Polycrystalline Diamond by Method of Direct Phase Transition[J]. Diamond & Abrasives Engineering, 2018, 38(1): 1-6.
[153] RATH P, KHASMINSKAYA S, NEBEL C, et al.Diamond-Integrated Optomechanical Circuits[J]. Nature Communications, 2013, 4: 1690.
[154] GOYAL V, SUMANT A V, TEWELDEBRHAN D, et al.Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530.
[155] LUO H, WEI Q P, YU Z M, et al.Effect of Film Thickness on the Temperature Dependence of Thermal Conductivity for Diamond/BeO Composites[J]. Ceramics International, 2015, 41(9): 12052-12057.
[156] GOYAL V, KOTCHETKOV D, SUBRINA S, et al.Thermal Conduction through Diamond - Silicon Heterostructures[C]//2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Las Vegas, NV, USA. IEEE, 2010: 1-6.
[157] MU F W, XU B, WANG X H, et al.A Novel Strategy for GaN-on-Diamond Device with a High Thermal Boundary Conductance[J]. Journal of Alloys and Compounds, 2022, 905: 164076.
[158] GRAY, KJ.Effective Thermal Conductivity of a Diamond Coated Heat Spreader[J]. Diamond and Related Materials, 2000, 9(2): 201-204
[159] ZHU Y L, CHEN Y H, GOU L.The Improvement in Heat Transfer Performance of Single Crystal Silicon Carbide with Diamond Film[J]. Journal of Crystal Growth, 2024, 630: 127601.
[160] HU X F, GE L, LIU Z H, et al.Diamond-SiC Composite Substrates: A Novel Strategy as Efficient Heat Sinks for GaN-Based Devices[J]. Carbon, 2024, 218: 118755.
[161] JAGANNADHAM K, WANG H.Thermal Resistance of Interfaces in AlN-Diamond Thin Film Composites[J]. Journal of Applied Physics, 2002, 91(3): 1224-1235.
[162] MIRANZO P, OSENDI M I, GARCIA E, et al.Thermal Conductivity Enhancement in Cutting Tools by Chemical Vapor Deposition Diamond Coating[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 703-707.
[163] GOYAL V, SUBRINA S, NIKA D L, et al.Reduced Thermal Resistance of the Silicon-Synthetic Diamond Composite Substrates at Elevated Temperatures[J]. Applied Physics Letters, 2010, 97(3): 031904.
[164] JAGANNADHAM K.Thermal Conductivity of AlN- Diamond Particulate Composite Films on Silicon[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006, 24(4): 895-899.
[165] HU X F, WANG Y N, PENG Y, et al. MPCVD Diamond-SiC Composite Stacks for Enhanced Thermal Performance: A Concise Review[J]. Japanese Journal of Applied Physics, 2023, 62: SC0802.

Funding

National Natural Science Foundation of China (U23A20569, 62305189); Shandong Provincial Natural Science Foundation (ZR2023ZD04, ZR2022QF129); Key R&D Program of Shandong Province, China (2022ZLGX02); Shandong College Youth Science and Technology Support Program (2022KJ032)
PDF(29398 KB)

Accesses

Citation

Detail

Sections
Recommended

/