It is a research study which aims to enhance the magnetorheological polishing (MRP) process for titanium alloys through modifications to the excitation device and the liquid carrier wheel. Due to their exceptional material properties, titanium alloys are widely used in aerospace, medical, automotive, and other industries. However, the high hardness and high melting point of titanium alloys pose significant challenges for conventional polishing tools to achieve effective surface material removal. In this study, magnetorheological polishing (MRP) is employed to process the surface of titanium alloys, and a pulsed Halbach array is utilized to strengthen the magnetic field, thereby improving the material removal efficiency of the magnetorheological polishing (MRP) process. During the magnetorheological polishing (MRP) process, the magnet rotor is separated from the liquid carrier wheel containing the magnetorheological fluid, and both components are set to rotate concentrically in opposite directions. This configuration induces great variations in the magnetic field lines within the working space, allowing the magnetic flux to exhibit a broad range of motion trajectories. Consequently, the frictional force between the magnetic flux and the liquid carrier wheel is enhanced, ultimately increase the material removal capability.
The objective of optimizing the magnetorheological polishing (MRP) process for titanium alloys is to elevate their surface quality and enhance the polishing efficiency. A comprehensive analysis is performed to evaluate the effects of various polishing parameters within the pulsed Halbach array magnetic field-assisted MRP framework. Parameters under scrutiny include polishing interval, magnet rotational speed, liquid carrier wheel speed, carbonyl iron powder concentration, and abrasive particle concentration, all of which are assessed for their effects on shear force, pressure, and the roughness of titanium alloy surfaces. It is observed that an increase in the polishing interval leads to a gradual reduction in shear force and pressure applied by the polishing tool, while simultaneously increasing the surface roughness of the workpiece. An escalation in magnet rotational speed results in a gradual decrease in shear force, with pressure experiencing minimal fluctuations. The surface roughness of the workpiece follows a pattern of initial increase, subsequent decrease, and a final increase. Accelerating the liquid carrier wheel speed corresponds with an increase in shear force, with pressure changes remaining negligible. The overall surface roughness of the workpiece decreases, with a minor uptick observed after the optimal surface quality is achieved. An increase in carbonyl iron powder concentration induces a gradual rise in both shear force and pressure applied by the polishing tool, with the workpiece's surface roughness mirroring a trend of initial decrease followed by an increase. A rise in abrasive particle concentration initially boosts shear force, which then declines, while pressure continues to ascend. The trend in surface roughness mirrors that observed with increasing magnet rotational speed. Optimal process parameters are attained with a magnetorheological fluid volume of 3 mL, a polishing interval of 0.3 mm, a liquid carrier wheel speed of 250 r/min, a magnet rotational speed of 150 r/min, a carbonyl iron powder concentration of 45wt.%, an abrasive particle concentration of 2wt.%, and a polishing duration of 30 min. Under these conditions, the surface roughness (Sa) of the titanium alloy workpiece is reduced from 60 nm to 36 nm.
The pulsed Halbach array magnetic field-assisted MRP process has been demonstrated to significantly improve the polishing efficiency of magnetorheological fluid and to augment the surface quality of titanium alloy workpieces, positioning it as an effective technique for refining the finish of these materials.
Key words
magnetorheological polishing /
Halbach array /
titanium alloy /
roughness /
pressure and shear forces
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王美晨, 储双杰, 梁高飞, 等. TC4钛合金热轧过程中组织演变和性能控制机理研究及展望[J]. 塑性工程学报, 2024, 31(9): 1-22.
WANG M C, CHU S J, LIANG G F, et al.Research and Prospect on Mechanism of Tissue Evolution and Property Control of TC4 Titanium Alloy during Hot Rolling Process[J]. Journal of Plasticity Engineering, 2024, 31(9): 1-22.
[2] 李佳怡. 双相钛合金超低温塑性变形行为与机理研究[D]. 北京: 北方工业大学, 2024.
LI J Y.Study on Ultra-low Temperature Plastic Deformation Behavior and Mechanism of Dual-phase Titanium Alloy[D]. Beijing: North China University of Technology, 2024.
[3] 袁铭扬. 热处理对TC4钛合金的组织与超高周疲劳性能的影响[D]. 杭州: 浙江大学, 2024.
YUAN M Y.Effect of Heat Treatment on Microstructure and Ultra-high Cycle Fatigue Properties of TC4 Titanium Alloy[D]. Hangzhou: Zhejiang University, 2024.
[4] 黄艳松, 龙永胜, 刘泓利. 钛合金叶片数控抛光试验[J]. 金属加工(冷加工), 2024(11): 37-43.
HUANG Y S, LONG Y S, LIU H L.Numerical Control Polishing Test of Titanium Alloy Blades[J]. Metal Working (Metal Cutting), 2024(11): 37-43.
[5] 周迪, 吴松全, 李紫杨, 等. 粉末床熔融钛合金的表面抛光技术研究进展[J]. 材料保护, 2024, 57(8): 147-154.
ZHOU D, WU S Q, LI Z Y, et al.Research Progress on Surface Polishing Technology of Powder Bed Fusion Titanium Alloy[J]. Materials Protection, 2024, 57(8): 147-154.
[6] GOGIA A K.High-Temperature Titanium Alloys[J]. Defence Science Journal, 2005, 55(2): 149-173.
[7] EYLON D, FUJISHIRO S, POSTANS P J, et al.High- Temperature Titanium Alloys—A Review[J]. JOM, 1984, 36(11): 55-62.
[8] 田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020, 49(8): 17-20.
TIAN Y W, ZHU L L, LI W D, et al.Application and Development of High Temperature Titanium Alloys[J]. Hot Working Technology, 2020, 49(8): 17-20.
[9] 郭克星. 钛合金的制备和应用[J]. 热处理, 2023, 38(5): 8-12.
GUO K X.Fabrication and Applications of Titanium Alloy[J]. Heat Treatment, 2023, 38(5): 8-12.
[10] 张猛. TC4钛合金高温拉伸变形行为及微观组织演变研究[D]. 武汉: 华中科技大学, 2023.
ZHANG M.Study on Tensile Deformation Behavior and Microstructure Evolution of TC4 Titanium Alloy at High Temperature[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[11] 杨雪玲, 苏君. 磁流变抛光技术现状与进展[J]. 武汉理工大学学报, 2010, 32(24): 136-139.
YANG X L, SU J.Progress of Magnetorheological Finishing[J]. Journal of Wuhan University of Technology, 2010, 32(24): 136-139.
[12] 傅茂辉. 半导体晶片磁流变抛光的磁场发生装置设计[D]. 北京: 北京交通大学, 2018.
FU M H.Design of Magnetic Field Generator for Magnetorheological Polishing of Semiconductor Wafer[D]. Beijing: Beijing Jiaotong University, 2018.
[13] 潘文波. 典型手机外壳材料的集群磁流变平面抛光加工研究[D]. 广州: 广东工业大学, 2018.
PAN W B.Study on Cluster Magnetorheological Plane Polishing of Typical Mobile Phone Shell Materials[D]. Guangzhou: Guangdong University of Technology, 2018.
[14] 徐超, 胡皓, 彭小强, 等. 复杂曲面铝反射镜磁流变抛光工艺优化[J]. 航空学报, 2021, 42(10): 524914.
XU C, HU H, PENG X Q, et al.Optimization of Magnetorheological Finishing Process for Aluminum Mirror with Complex Surface[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524914.
[15] 陈刚, 肖强. 单晶蓝宝石基片抛光工艺研究进展[J]. 工具技术, 2018, 52(3): 3-9.
CHEN G, XIAO Q.Progress Research in Polishing Process of Single Crystal Sapphire Substrate[J]. Tool Engineering, 2018, 52(3): 3-9.
[16] 潘继生, 阎秋生, 路家斌, 等. 集群磁流变平面抛光加工技术[J]. 机械工程学报, 2014, 50(1): 205-212.
PAN J S, YAN Q S, LU J B, et al.Cluster Magnetorheological Effect Plane Polishing Technology[J]. Journal of Mechanical Engineering, 2014, 50(1): 205-212.
[17] ZHAI Q, ZHAI W J, DENG T H.Study on Process Optimization of Ultrasound Assisted Magneto-Rheological Polishing of Sapphire Hemisphere Surface Based on Fe3O4/SiO2 Core-Shell Abrasives[J]. Tribology International, 2023, 181: 108318.
[18] 梁志强, 苏志朋, 胡雨童, 等. 钛合金结构件磁流变电解复合抛光试验研究[J]. 表面技术, 2023, 52(12): 102-111.
LIANG Z Q, SU Z P, HU Y T, et al.Experimental Study on Magnetorheological Electrolysis Composite Polishing of Titanium Alloy Structural Parts[J]. Surface Technology, 2023, 52(12): 102-111.
[19] 鲍中宇. TC4增材成型表面磁流变抛光关键技术研究[D]. 福州: 福建工程学院, 2022.
BAO Z Y.Research on Key Technologies of Magnetorheological Polishing for TC4 Additive Molding Surface[D]. Fuzhou: Fujian University of Technology, 2022.
[20] 赵言. 医用合金材料磁流变超光滑抛光加工研究[D]. 广州: 广东工业大学, 2021.
ZHAO Y.Study on Magnetorheological Ultra-smooth Polishing of Medical Alloy Materials[D]. Guangzhou: Guangdong University of Technology, 2021.
[21] 石沛. 钛合金管内壁珩磨式磁流变抛光方法及机理研究[D]. 沈阳: 东北大学, 2019.
SHI P.Study on Honing Magnetorheological Polishing Method and Mechanism of Titanium Alloy Pipe Inner Wall[D]. Shenyang: Northeastern University, 2019.
[22] 郑其涵, 王夏宇, 刘耀庭, 等.磁流变抛光液流变学特性测试方法及仿真建模[J/OL]. 上海交通大学学报(2024- 11-08). https://doi.org/10.16183/j.cnki.jsjtu.2024.326.
ZHENG Q H, WANG X Y, LIU Y T, et al.Test Method and Simulation Modeling of Rheological Properties of Magnetorheological Polishing Fluid[J/OL]. Journal of Shanghai Jiao Tong University (2024-11-08). https://doi.org/10.16183/j.cnki.jsjtu.2024.326.
[23] 张祥雷, 陈卓杰, 廖煜晖, 等. 医用钛合金海尔贝克磁场阵列化学磁流变抛光研究[J]. 湖南大学学报(自然科学版), 2024, 51(4): 90-98.
ZHANG X L, CHEN Z J, LIAO Y H, et al.Study on Chemical Magnetorheological Polishing of Medical Titanium Alloy by Halbach Magnetic Field Array[J]. Journal of Hunan University (Natural Sciences), 2024, 51(4): 90-98.
[24] 刘乐, 李秀红, 李文辉, 等. 磁性磨具光整加工中基于Halbach Array的磁场设计与实验研究[J]. 表面技术, 2020, 49(4): 47-54.
LIU L, LI X H, LI W H, et al.Magnetic Field Design and Experimental Research Based on Halbach Array in Magnetic Abrasives Finishing[J]. Surface Technology, 2020, 49(4): 47-54.
[25] 郭源帆, 尹韶辉, 黄帅. Halbach阵列与不同励磁方式的磁流变抛光特性及机理研究[J]. 机械工程学报, 2023, 59(15): 341-353.
GUO Y F, YIN S H, HUANG S.Study on Machining Characteristic and Its Mechanism of Magnetorheological Polishing with Halbach Array and Other Excitation Modes[J]. Journal of Mechanical Engineering, 2023, 59(15): 341-353.
[26] 廖煜晖, 周宏明, 张泽林, 等. 基于响应面法的钛合金Halbach阵列增强磁流变抛光工艺参数优化[J]. 表面技术, 2024, 53(3): 53-64.
LIAO Y H, ZHOU H M, ZHANG Z L, et al.Optimization of Process Parameters for Halbach Array-Enhanced Magnetorheological Polishing of Titanium Alloy Based on Response Surface Method[J]. Surface Technology, 2024, 53(3): 53-64.
Funding
Major Science and Technology Innovation Project in Wenzhou (ZG2022029); Fundamental Scientific Research Project in Wenzhou (Y20220466); Natural Science Foundation of Zhejiang Province (LQ22E050008); The Master's Innovation Foundation of Wenzhou University (3162024003072)