Advances in High-temperature Steam Oxidation of Microarc Oxidation Coatings and Cr-based Composite Coatings on Zirconium Fuel Claddings

XUE Wenbin, LI Xin, WANG Lijiao, CHAI Luqi, ZHOU Qian, WANG Xingping, XU Chi, JIN Xiaoyue, DU Jiancheng

Surface Technology ›› 2025, Vol. 54 ›› Issue (15) : 1-23.

PDF(9630 KB)
PDF(9630 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (15) : 1-23. DOI: 10.16490/j.cnki.issn.1001-3660.2025.15.001
Research Review

Advances in High-temperature Steam Oxidation of Microarc Oxidation Coatings and Cr-based Composite Coatings on Zirconium Fuel Claddings

  • XUE Wenbin1, 2, 3, LI Xin1, WANG Lijiao1, CHAI Luqi1, ZHOU Qian1, WANG Xingping4, XU Chi1, 2, 3, JIN Xiaoyue2, DU Jiancheng1
Author information +
History +

Abstract

Zirconium alloys have been used as reactor structural materials such as fuel claddings in light water reactors (LWRs) owing to their low neutron capture cross section, good mechanical performance and corrosion resistance. However, the fuel claddings will undergo severe high-temperature steam oxidation under the loss-of-coolant accident (LOCA) condition, and the hydrogen released from oxidation of Zr with water vapor might also trigger severe hydrogen explosion accidents. In recent years, accident tolerant fuel (ATF) has been proposed to reduce the steam oxidation rate and widen the safety margin under normal operation condition. One of the most important ATF concepts is to develop the steam oxidation-resistant coatings on Zr cladding. Up to now, the Cr has been considered to be a potential coating material for Zr cladding, because a dense Cr2O3 layer can be formed to significantly suppress oxygen diffusion inwards. An insulating MAO interlayer between the Cr layer and Zr substrate can be designed to suppress the Cr/Zr inter-diffusion in the high-temperature steam and the galvanic corrosion between Cr layer and Zr substrate in high-temperature lithium borate solution under normal operation condition. The work aims to introduce the preparation process and microstructure of both the MAO coating and MAO/Cr composite coating on Zr and its alloys. The present advances about the oxidation kinetics curves, the evolution of microstructure and composition of these coatings in 900-1 200 ℃ steam environment were emphasized, and the effect of Al and Si alloying elements on the high-temperature oxidation behavior of MAO/Cr-based composite coating was analyzed. Furthermore, the high energy ion irradiation effect for MAO/Cr-based composite coating was also briefly introduced. Finally, the future research topics about MAO/Cr-based composite coatings were suggested. It is found that the MAO coating and MAO/Cr-based composite coating on Zr alloys have excellent steam oxidation resistance. However, the MAO coating will fail above 1 100 ℃, while the MAO/Cr composite coating still keeps excellent steam oxidation resistance at 1 100 ℃. In addition, the MAO insulating interlayer between the Cr layer and Zr substrate can suppress the Cr and Zr inter-diffusion in high-temperature environment. The addition of Al and Si elements in the Cr outer layer can further improve the oxidation resistance of MAO/Cr coating, which is ascribed to the formation of Al2O3 barrier layer in MAO/CrAl composite coating and Zr2Si barrier layer in MAO/CrAlSi composite coating, respectively.

Key words

microarc oxidation / zirconium fuel claddings / steam oxidation / Cr-based composite coatings / inter-diffusion

Cite this article

Download Citations
XUE Wenbin, LI Xin, WANG Lijiao, CHAI Luqi, ZHOU Qian, WANG Xingping, XU Chi, JIN Xiaoyue, DU Jiancheng. Advances in High-temperature Steam Oxidation of Microarc Oxidation Coatings and Cr-based Composite Coatings on Zirconium Fuel Claddings[J]. Surface Technology. 2025, 54(15): 1-23 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.001

References

[1] GHOSAL S K, PALIT G C, DE P K.Corrosion of Zirconium Alloys in Nuclear Applications - A Review[J]. Mineral Processing and Extractive Metallurgy Review, 2002, 22(4/5/6): 519-546.
[2] SAWARN T K, BANERJEE S, SAMANTA A, et al.Study of Oxide and Α-Zr(O) Growth Kinetics from High Temperature Steam Oxidation of Zircaloy-4 Cladding[J]. Journal of Nuclear Materials, 2015, 467: 820-831.
[3] YANEZ J, KUZNETSOV M, SOUTO-IGLESIAS A.An Analysis of the Hydrogen Explosion in the Fukushima-Daiichi Accident[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8261-8280.
[4] KIM J H, CHOI B K, BAEK J H, et al.Effects of Oxide and Hydrogen on the Behavior of Zircaloy-4 Cladding during the Loss of the Coolant Accident (LOCA)[J]. Nuclear Engineering and Design, 2006, 236(22): 2386-2393.
[5] ZINKLE S J, TERRANI K A, GEHIN J C, et al.Accident Tolerant Fuels for LWRS: A Perspective[J]. Journal of Nuclear Materials, 2014, 448(1/2/3): 374-379.
[6] TANG C C, STUEBER M, SEIFERT H J, et al.Protective Coatings on Zirconium-Based Alloys as Accident-Tolerant Fuel (ATF) Claddings[J]. Corrosion Reviews, 2017, 35(3): 141-165.
[7] CHARIT I.Accident Tolerant Nuclear Fuels and Cladding Materials[J]. JOM, 2018, 70(2): 173-175.
[8] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报, 2018, 32(11): 1757-1778.
LIU J K, ZHANG X H, YUN D.A Complete Review and a Prospect on the Candidate Materials for Accident-Tolerant Fuel Claddings[J]. Materials Review, 2018, 32(11): 1757-1778.
[9] TERRANI K A.Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30.
[10] 曹国钦, 任莹莹, 仵康康, 等. 轻水堆包壳锆材服役环境下延寿策略及研究进展[J]. 表面技术, 2019, 48(11): 69-81.
CAO G Q, REN Y Y, WU K K, et al.Life Extension Strategy and Research Progress of Zirconium Alloy Cladding Applied to Light Water Reactors[J]. Surface Technology, 2019, 48(11): 69-81.
[11] PARK D J, KIM H G, JUNG Y I, et al.Behavior of an Improved Zr Fuel Cladding with Oxidation Resistant Coating under Loss-of-Coolant Accident Conditions[J]. Journal of Nuclear Materials, 2016, 482: 75-82.
[12] LEE K G, IN W K, KIM H G.Quenching Experiment on Cr-Alloy-Coated Cladding for Accident-Tolerant Fuel in Water Pool under Low and High Subcooling Conditions[J]. Nuclear Engineering and Design, 2019, 347: 10-19.
[13] BRACHET J C, IDARRAGA-TRUJILLO I, LE FLEM M, et al.Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285.
[14] 杨红艳, 陈寰, 张瑞谦, 等. 核电耐事故锆包壳表面涂层研究进展[J]. 表面技术, 2022, 51(7): 87-97.
YANG H Y, CHEN H, ZHANG R Q, et al.Research Progress of the Surface Coating for Zirconium Alloy Cladding of Accident Tolerant Fuel in Nuclear Power Plant[J]. Surface Technology, 2022, 51(7): 87-97.
[15] PARK J H, KIM H G, PARK J Y, et al.High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings[J]. Surface and Coatings Technology, 2015, 280: 256-259.
[16] KIM H G, KIM I H, JUNG Y I, et al.Adhesion Property and High-Temperature Oxidation Behavior of Cr-Coated Zircaloy-4 Cladding Tube Prepared by 3D Laser Coating[J]. Journal of Nuclear Materials, 2015, 465: 531-539.
[17] KIM D, LEE Y.Diffusion of Chromium of Cr-Coated Zircaloy Accident Tolerant Fuel Cladding: Model Development and Experimental Validation[J]. Surface and Coatings Technology, 2023, 468: 129698.
[18] MA J J, MENG C Y, WANG H, et al.Effect of Al Content on the High-Temperature Oxidation Resistance and Structure of CrAl Coatings[J]. Coatings, 2021, 11(12): 1434.
[19] ZHONG W C, MOUCHE P A, HAN X C, et al.Performance of Iron-Chromium-Aluminum Alloy Surface Coatings on Zircaloy 2 under High-Temperature Steam and Normal BWR Operating Conditions[J]. Journal of Nuclear Materials, 2016, 470: 327-338.
[20] PARK D J, KIM H G, PARK J Y, et al.A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment[J]. Corrosion Science, 2015, 94: 459-465.
[21] WANG Y D, ZHOU W C, WEN Q L, et al.Behavior of Plasma Sprayed Cr Coatings and FeCrAl Coatings on Zr Fuel Cladding under Loss-of-Coolant Accident Conditions[J]. Surface and Coatings Technology, 2018, 344: 141-148.
[22] HAN X C, WANG Y, PENG S M, et al.Oxidation Behavior of FeCrAl Coated Zry-4 under High Temperature Steam Environment[J]. Corrosion Science, 2019, 149: 45-53.
[23] GIGAX J G, KENNAS M, KIM H, et al.Interface Reactions and Mechanical Properties of FeCrAl-Coated Zircaloy-4[J]. Journal of Nuclear Materials, 2019, 519: 57-63.
[24] HE X J, ZHAN H Y, LIN J, et al.Effect of Si Content of CrSi-Based Coatings on Their Oxidation Resistance in High Temperature Air[J]. Ceramics International, 2020, 46(8): 11357-11363.
[25] MAIER B R, GARCIA-DIAZ B L, HAUCH B, et al. Cold Spray Deposition of Ti2AlC Coatings for Improved Nuclear Fuel Cladding[J]. Journal of Nuclear Materials, 2015, 466: 712-717.
[26] USUI T, SAWADA A, AMAYA M, et al.SiC Coating as Hydrogen Permeation Reduction and Oxidation Resistance for Nuclear Fuel Cladding[J]. Journal of Nuclear Science and Technology, 2015, 52(10): 1318-1322.
[27] AL-OLAYYAN Y, FUCHS G E, BANEY R, et al.The Effect of Zircaloy-4 Substrate Surface Condition on the Adhesion Strength and Corrosion of SiC Coatings[J]. Journal of Nuclear Materials, 2005, 346(2/3): 109-119.
[28] KASHKAROV E B, SYRTANOV M S, MURASHKINA T L, et al.Hydrogen Sorption Kinetics of SiC-Coated Zr-1Nb Alloy[J]. Coatings, 2019, 9(1): 31.
[29] BAO W C, XUE J X, LIU J X, et al.Coating SiC on Zircaloy-4 by Magnetron Sputtering at Room Temperature[J]. Journal of Alloys and Compounds, 2018, 730: 81-87.
[30] LIU J K, HAO Z, CUI Z X, et al.Oxidation Behavior, Thermal Stability, and the Coating/Substrate Interface Evolution of CRN-Coated Zircaloy under High-Temperature Steam[J]. Corrosion Science, 2021, 185: 109416.
[31] KHATKHATAY F, JIAO L, JIAN J, et al.Superior Corrosion Resistance Properties of TiN-Based Coatings on Zircaloy Tubes in Supercritical Water[J]. Journal of Nuclear Materials, 2014, 451(1/2/3): 346-351.
[32] XIAO W W, DENG H, ZOU S L, et al.Effect of Roughness of Substrate and Sputtering Power on the Properties of TiN Coatings Deposited by Magnetron Sputtering for ATF[J]. Journal of Nuclear Materials, 2018, 509: 542-549.
[33] XIAO W W, CHEN H Q, LIU X S, et al.Thermal Shock Resistance of TiN-, Cr-, and TiN/Cr-Coated Zirconium Alloy[J]. Journal of Nuclear Materials, 2019, 526: 151777.
[34] ALAT E, MOTTA A T, COMSTOCK R J, et al.Multilayer (TiN, TiAlN) Ceramic Coatings for Nuclear Fuel Cladding[J]. Journal of Nuclear Materials, 2016, 478: 236-244.
[35] SYRTANOV M, PIROZHKOV A, SIDELEV D.In situ Phase Transformations in CRN/Cr-Сoated E110 Alloy under High Temperature[J]. Key Engineering Materials, 2022, 910: 940-946.
[36] XIANG Y, LIU C H, LI Z, et al.Interface Stability and Microstructural Evolution of the (Cr/CrN)24-Coated Zirconium Alloy under Different Thermal Shock Temperatures[J]. Surface and Coatings Technology, 2022, 429: 127947.
[37] LIU J K, HAO Z, CUI Z X, et al.Investigation of the Oxidation Mechanisms of Superlattice Cr-CrN/TiSiN-Cr Multilayer Coatings on Zircaloy Substrates under High- Temperature Steam Atmospheres[J]. Corrosion Science, 2021, 192: 109782.
[38] LI Z, LIU C H, CHEN Q S, et al.Microstructure, High- Temperature Corrosion and Steam Oxidation Properties of Cr/CrN Multilayer Coatings Prepared by Magnetron Sputtering[J]. Corrosion Science, 2021, 191: 109755.
[39] YANG J Q, STEINBRÜCK M, TANG C C, et al. Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding[J]. Journal of Alloys and Compounds, 2022, 895: 162450.
[40] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
WANG X P, XUE W B, WANG W X.High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. Chinese Journal of Materials Research, 2023, 37(10): 759-769.
[41] CHEN H, WANG X M, ZHANG R Q.Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials[J]. Coatings, 2020, 10(9): 808.
[42] CHEN H, WANG X M, ZHANG R Q.Application and Development Progress of Cr-Based Surface Coating in Nuclear Fuel Elements: Ⅱ. Current Status and Shortcomings of Performance Studies[J]. Coatings, 2020, 10(9): 835.
[43] 王淑祥, 白书欣, 朱利安, 等. 核燃料包壳锆合金表面铬涂层研究进展[J]. 表面技术, 2021, 50(1): 221-231.
WANG S X, BAI S X, ZHU L A, et al.Research Progress of Chromium Coating on Zirconium Alloy for Nuclear Fuel Cladding[J]. Surface Technology, 2021, 50(1): 221-231.
[44] BRACHET J C, ROUESNE E, RIBIS J, et al.High Temperature Steam Oxidation of Chromium-Coated Zirconium-Based Alloys: Kinetics and Process[J]. Corrosion Science, 2020, 167: 108537.
[45] YANG J Q, STEGMAIER U, TANG C C, et al.High Temperature Cr-Zr Interaction of Two Types of Cr-Coated Zr Alloys in Inert Gas Environment[J]. Journal of Nuclear Materials, 2021, 547: 152806.
[46] LI Q, SONG P, ZHANG R Q, et al.Oxidation Behavior and Cr-Zr Diffusion of Cr Coatings Prepared by Atmospheric Plasma Spraying on Zircaloy-4 Cladding in Steam at 1 300 ℃[J]. Corrosion Science, 2022, 203: 110378.
[47] BRACHET J C, LE SAUX M, LE FLEM M, et al.On-going Studies at CEA on Chromium Coated Zirconium Based Nuclear Fuel Claddings for Enhanced Accident Tolerant LWRs Fuel[C]// TopFuel 2015, 2015: 31-38.
[48] HE X R, FENG T, CHENG Y L, et al.Fast Formation of a Black Inner Α-Al2O3 Layer Doped with CuO on Al-Cu-Li Alloy by Soft Sparking PEO Process[J]. Journal of the American Ceramic Society, 2023, 106(11): 7019-7042.
[49] KASEEM M, FATIMAH S, NASHRAH N, et al.Recent Progress in Surface Modification of Metals Coated by Plasma Electrolytic Oxidation: Principle, Structure, and Performance[J]. Progress in Materials Science, 2021, 117: 100735.
[50] CLYNE T W, TROUGHTON S C.A Review of Recent Work on Discharge Characteristics during Plasma Electrolytic Oxidation of Various Metals[J]. International Materials Reviews, 2019, 64(3): 127-162.
[51] GAMBA M, CRISTOFORETTI A, FEDEL M, et al.Plasma Electrolytic Oxidation (PEO) Coatings on Aluminum Alloy 2024: A Review of Mechanisms, Processes, and Corrosion Resistance Enhancement[J]. Applied Surface Science Advances, 2025, 26: 100707.
[52] 王亚明, 邹永纯, 王树棋, 等. 金属微弧氧化功能陶瓷涂层设计制备与使役性能研究进展[J]. 中国表面工程, 2018, 31(4): 20-45.
WANG Y M, ZOU Y C, WANG S Q, et al.Design, Fabrication and Performance of Multifuctional Ceramic Coatings Formed by Microarc Oxidation on Metals: A Critial Review[J]. China Surface Engineering, 2018, 31(4): 20-45.
[53] LI H M, ZHANG M, WU X W, et al.Effect of Electrical Modes on Dielectric and Insulation Properties of Plasma Electrolytic Oxidation Ceramic Films on Al[J]. Surface and Coatings Technology, 2024, 485: 130881.
[54] LU P, ZHANG Z H, YANG M L, et al.Efficient Synthesis and Lithium Storage Performance of SiO2/TiO2 Composite Film Anode by Plasma Electrolytic Oxidation[J]. Materials Letters, 2024, 371: 136902.
[55] YANG Y, ZHANG W H, ZHANG K L, et al.Enhanced Wear Resistance, Hydrophobic Properties and Corrosion Resistance of Plasma Electrolyte Oxidation Coatings on Ti6Al4V Alloys via Addition of ZrO2 Nanoparticles[J]. Journal of Materials Research and Technology, 2025, 34: 463-478.
[56] LIU Z H, LU H L, ZHAO Z Y, et al.Influence of Ultrasonic Power Modulation on the Optimisation of Aluminium Alloy Micro-Arc Oxidation Coating Properties[J]. Applied Surface Science, 2025, 679: 161067.
[57] ZHANG X X, ZHANG T, LV Y, et al.Enhanced Uniformity, Corrosion Resistance and Biological Performance of Cu-Incorporated TiO2 Coating Produced by Ultrasound-Auxiliary Micro-Arc Oxidation[J]. Applied Surface Science, 2021, 569: 150932.
[58] CHENG S T, LIU Z, ZHU Z Y, et al.Effect of Micro-Arc Oxidation/Gravel Epoxy Composite Coating on Electrochemical Behavior and Wear Resistance of Rolled AZ31B[J]. Materials Today Communications, 2025, 42: 111260.
[59] ALBERO ROJAS C, SIMCHEN F, WINTER L, et al.Fracture Behaviour of Plasma Electrolytic Oxide Coatings on an Aluminium Substrate Using Acoustic Emission[J]. Surface and Coatings Technology, 2023, 475: 130125.
[60] CHENG Y L, WANG T, LI S X, et al.The Effects of Anion Deposition and Negative Pulse on the Behaviours of Plasma Electrolytic Oxidation (PEO) - a Systematic Study of the PEO of a Zirlo Alloy in Aluminate Electrolytes[J]. Electrochimica Acta, 2017, 225: 47-68.
[61] 魏克俭, 薛文斌, 曲尧, 等. 锆微弧氧化表面处理技术研究进展[J]. 表面技术, 2019, 48(7): 11-23.
WEI K J, XUE W B, QU Y, et al.Advance in Microarc Oxidation Surface Treatment on Zr[J]. Surface Technology, 2019, 48(7): 11-23.
[62] MALINOVSCHI V, MARIN A, NEGREA D, et al.Characterization of Al2O3/ZrO2 Composite Coatings Deposited on Zr-2.5Nb Alloy by Plasma Electrolytic Oxidation[J]. Applied Surface Science, 2018, 451: 169-179.
[63] WANG X P, GUAN H H, LIAO Y Z, et al.Enhancement of High Temperature Steam Oxidation Resistance of Zr-1Nb Alloy with ZrO2/Cr Bilayer Coating[J]. Corrosion Science, 2021, 187: 109494.
[64] SYRTANOV M S, KASHKAROV E B, ABDULMENOVA A V, et al.High-Temperature Oxidation of Zr1Nb Zirconium Alloy with Protective Cr/Mo Coating[J]. Surface and Coatings Technology, 2022, 439: 128459.
[65] ZHU C W, LI P C, CHEN C, et al.Microstructure Evolution and Oxidation Behavior of Bi-Layer CrAl-Mo Coated Zircaloy-4 in Steam at 1 200 ℃ and 1 300 ℃[J]. Corrosion Science, 2022, 208: 110632.
[66] SIDELEV D V, RUCHKIN S E, SHELEPOV I A, et al.Protective Cr Coatings with ZrO2/Cr Multilayers for Zirconium Fuel Claddings[J]. Coatings, 2022, 12(10): 1409.
[67] WANG Y, TANG H, HAN X C, et al.Oxidation Resistance Improvement of Zr-4 Alloy in 1 000?℃ Steam Environment Using ZrO2/FeCrAl Bilayer Coating[J]. Surface and Coatings Technology, 2018, 349: 807-815.
[68] WU J, CHEN L, QU Y, et al.In-Situ High Temperature Electrochemical Investigation of ZrO2/CrN Ceramic Composite Film on Zirconium Alloy[J]. Surface and Coatings Technology, 2019, 359: 366-373.
[69] WU J, LU P, DONG L, et al.Combination of Plasma Electrolytic Oxidation and Pulsed Laser Deposition for Preparation of Corrosion-Resisting Composite Film on Zirconium Alloys[J]. Materials Letters, 2020, 262: 127080.
[70] 薛文斌, 金乾, 朱庆振, 等. 锆合金表面微弧氧化陶瓷膜制备及特性分析[J]. 材料热处理学报, 2010, 31(2): 119-122.
XUE W B, JIN Q, ZHU Q Z, et al.Preparation and Properties of Ceramic Coating Formed by Microarc Oxidation on Zirconium Alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(2): 119-122.
[71] YAN Y Y, HAN Y, LI D C, et al.Effect of NaAlO2 Concentrations on Microstructure and Corrosion Resistance of Al2O3/ZrO2 Coatings Formed on Zirconium by Micro-Arc Oxidation[J]. Applied Surface Science, 2010, 256(21): 6359-6366.
[72] WANG L L, HU X, NIE X.Deposition and Properties of Zirconia Coatings on a Zirconium Alloy Produced by Pulsed DC Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology, 2013, 221: 150-157.
[73] CHENG Y L, CAO J H, PENG Z M, et al.Wear-Resistant Coatings Formed on Zircaloy-2 by Plasma Electrolytic Oxidation in Sodium Aluminate Electrolytes[J]. Electrochimica Acta, 2014, 116: 453-466.
[74] ZOU Z F, XUE W B, JIA X N, et al.Effect of Voltage on Properties of Microarc Oxidation Films Prepared in Phosphate Electrolyte on Zr-1Nb Alloy[J]. Surface and Coatings Technology, 2013, 222: 62-67.
[75] CHENG Y L, WU F, DONG J L, et al.Comparison of Plasma Electrolytic Oxidation of Zirconium Alloy in Silicate- and Aluminate-Based Electrolytes and Wear Properties of the Resulting Coatings[J]. Electrochimica Acta, 2012, 85: 25-32.
[76] MALINOVSCHI V, MARIN A, NEGREA D, et al.Tetragonal ZrO2 Phase Stabilization in Coating Layers Prepared on Zr-2.5%Nb Alloy during Plasma Electrolytic Oxidation in Sodium Aluminate Electrolytes[J]. Materials Research Express, 2017, 4(9): 095702.
[77] WEI K J, CHEN L, QU Y, et al.Tribological Properties of Microarc Oxidation Coatings on Zirlo Alloy[J]. Surface Engineering, 2019, 35(8): 692-700.
[78] XUE W B, ZHU Q Z, JIN Q, et al.Characterization of Ceramic Coatings Fabricated on Zirconium Alloy by Plasma Electrolytic Oxidation in Silicate Electrolyte[J]. Materials Chemistry and Physics, 2010, 120(2/3): 656-660.
[79] WEI K J, ZHANG Y F, YU J H, et al.Analyses of Hydrogen Release on Zirlo Alloy Anode during Plasma Electrolytic Oxidation[J]. Materials Chemistry and Physics, 2020, 251: 123054.
[80] WEI K J, CHEN L, QU Y, et al.Zeta Potential of Microarc Oxidation Film on Zirlo Alloy in Different Aqueous Solutions[J]. Corrosion Science, 2018, 143: 129-135.
[81] FARRAKHOV R G, MUKAEVA V R, FATKULLIN A R, et al.Plasma Electrolytic Oxidation Treatment Mode Influence on Corrosion Properties of Coatings Obtained on Zr-1Nb Alloy in Silicate-Phosphate Electrolyte[J]. IOP Conference Series: Materials Science and Engineering, 2018, 292: 012006.
[82] AJIRIYANTO M K, ANAWATI A.Ultrasonication Assisted Plasma Electrolytic Oxidation Accelerated Growth of SiO2/ZrO2 Coating on Zircaloy-4[J]. Surface and Coatings Technology, 2023, 456: 129261.
[83] MATYKINA E, ARRABAL R, SKELDON P, et al.Plasma Electrolytic Oxidation of a Zirconium Alloy under AC Conditions[J]. Surface and Coatings Technology, 2010, 204(14): 2142-2151.
[84] WANG Y, TANG H, WANG R, et al.Cathodic Voltage- Dependent Composition, Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on Zr-4 Alloy[J]. RSC Advances, 2016, 6(41): 34616-34624.
[85] WEI K J, QU Y, LI J H, et al.Surface Charge and Corrosion Behavior of Plasma Electrolytic Oxidation Film on Zr3Al Based Alloy[J]. Surface and Coatings Technology, 2019, 357: 412-417.
[86] 王兴平, 廖燚钊, 关浩浩, 等. 锆表面微弧氧化膜1 000~1 200 ℃高温蒸汽氧化行为研究[J]. 表面技术, 2021, 50(6): 23-31.
WANG X P, LIAO Y Z, GUAN H H, et al.High Temperature Oxidation Behavior of Pure Zr Coated by Microarc Oxidation in 1 000-1 200 ℃ Steam[J]. Surface Technology, 2021, 50(6): 23-31.
[87] YANG J X, WANG X, WEN Q, et al.The Effect of Microarc Oxidation and Excimer Laser Processing on the Microstructure and Corrosion Resistance of Zr-1Nb Alloy[J]. Journal of Nuclear Materials, 2015, 467: 186-193.
[88] HAN Y, YAN Y, LU C, et al.Bioactivity and Osteoblast Response of the Microarc Oxidized Zirconia Films[J]. Journal of Biomedical Materials Research Part A, 2009, 88(1): 117-127.
[89] SANDHYARANI M, PRASADRAO T, RAMESHBABU N.Role of Electrolyte Composition on Structural, Morphological and In-vitro Biological Properties of Plasma Electrolytic Oxidation Films Formed on Zirconium[J]. Applied Surface Science, 2014, 317: 198-209.
[90] SANDHYARANI M, RAMESHBABU N, VENKATESWARLU K, et al.Surface Morphology, Corrosion Resistance and in Vitro Bioactivity of P Containing ZrO2 Films Formed on Zr by Plasma Electrolytic Oxidation[J]. Journal of Alloys and Compounds, 2013, 553: 324-332.
[91] CHEN Y, NIE X, NORTHWOOD D O.Investigation of Plasma Electrolytic Oxidation (PEO) Coatings on a Zr-2.5Nb Alloy Using High Temperature/Pressure Autoclave and Tribological Tests[J]. Surface and Coatings Technology, 2010, 205(6): 1774-1782.
[92] LAI P, ZHANG H, ZHANG L F, et al.Effect of Micro-Arc Oxidation on Fretting Wear Behavior of Zirconium Alloy Exposed to High Temperature Water[J]. Wear, 2019, 424: 53-61.
[93] 王双, 郭锋, 白海瑞, 等. 不同电解液体系中锆合金微弧氧化陶瓷层组织结构和耐磨性能[J]. 稀有金属材料与工程, 2010, 39(4): 739-742.
WANG S, GUO F, BAI H R, et al.Microstructure and Wear Resistance of Micro-Arc Oxidized Ceramic Coatings on Zr-4 Alloy in Different Electrolyte Systems[J]. Rare Metal Materials and Engineering, 2010, 39(4): 739-742.
[94] YAN Y Y, HAN Y, HUANG J J.Formation of Al2O3-ZrO2 Composite Coating on Zirconium by Micro-Arc Oxidation[J]. Scripta Materialia, 2008, 59(2): 203-206.
[95] WANG Y M, FENG W, XING Y R, et al.Degradation and Structure Evolution in Corrosive LiOH Solution of Microarc Oxidation Coated Zircaloy-4 Alloy in Silicate and Phosphate Electrolytes[J]. Applied Surface Science, 2018, 431: 2-12.
[96] HUI R, COOK W, SUN C W, et al.Deposition, Characterization and Performance Evaluation of Ceramic Coatings on Metallic Substrates for Supercritical Water-Cooled Reactors[J]. Surface and Coatings Technology, 2011, 205(11): 3512-3519.
[97] WEI K J, WANG X P, ZHU M H, et al.Effects of Li, B and H Elements on Corrosion Property of Oxide Films on ZIRLO Alloy in 300 ℃/14 MPa Lithium Borate Buffer Solutions[J]. Corrosion Science, 2021, 181: 109216.
[98] WEI K J, WANG X P, XU C, et al.Analyses of Electrochemical Behavior of Plasma Electrolytic Oxidation Film on Zirlo Alloy in Lithium Borate Buffer Solution at 25-300 ℃[J]. Surface and Coatings Technology, 2022, 429: 127935.
[99] WEI K J, WANG X P, LI J H, et al.In-Situ Electrochemical Study of Plasma Electrolytic Oxidation Treated Zr3Al Based Alloy in 300 ℃/14 MPa Lithium Borate Buffer Solution[J]. Thin Solid Films, 2020, 707: 138066.
[100] 曲尧, 关浩浩, 王兴平, 等. Zr-0.39Sn-0.32Nb合金微弧氧化膜变温介电性能研究[J]. 表面技术, 2021, 50(11): 121-128.
QU Y, GUAN H H, WANG X P, et al.Temperature Dependence of Dielectric Properties of Microarc Oxidation Coatings on Zr-0.39Sn-0.32Nb Alloy[J]. Surface Technology, 2021, 50(11): 121-128.
[101] BAEK J H, PARK K B, JEONG Y H.Oxidation Kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at Temperatures of 700-1 200 ℃[J]. Journal of Nuclear Materials, 2004, 335(3): 443-456.
[102] WANG X P, WEI K J, GUAN H H, et al.High Temperature Oxidation of Zr1Nb Alloy with Plasma Electrolytic Oxidation Coating in 900-1200 ℃ Steam Environment[J]. Surface and Coatings Technology, 2021, 407: 126768.
[103] GUAN H H, WANG X P, XU C, et al.Effects of Steam Concentration and Flow Rate on the High Temperature Oxidation of PEO-Coated Zirconium Alloy at 1 000 ℃ and 1 200 ℃[J]. Surface and Coatings Technology, 2022, 448: 128896.
[104] UETSUKA H, OTOMO T.High Temperature Oxidation of Zircaloy-4 in Diluted Steam[J]. Journal of Nuclear Science and Technology, 1989, 26(2): 240-248.
[105] UETSUKA H, OTOMO T, KAWASAKI S.Oxidation of Zircaloy-4 under Limited Steam Supply from 1 000 to 1 400 ℃[J]. Journal of Nuclear Science and Technology, 1986, 23(10): 928-930.
[106] ZINO R, CHOSSON R, OLLIVIER M.Breakaway Characterization of Zircaloy-4 Oxidized in Steam and in Oxygen at High Temperatures Using HT- XRD Analysis[J]. Corrosion Science, 2020, 176: 109028.
[107] STEINBRÜCK M, GROßE M. Oxidation of Advanced Zirconium Cladding Alloys in Steam atTemperatures in the Range of 600-1 200 ℃[J]. Oxidation of Metals, 2011, 76: 215-232.
[108] BAEK J H, JEONG Y H.Breakaway Phenomenon of Zr-Based Alloys during a High-Temperature Oxidation[J]. Journal of Nuclear Materials, 2008, 372(2/3): 152-159.
[109] SAUX M L, BRACHET J C, VANDENBERGHE V, et al.Breakaway Oxidation of Zirconium Alloys Exposed to Steam around 1 000?℃[J]. Corrosion Science, 2020, 176: 108936.
[110] LASSERRE M, PERES V, PIJOLAT M, et al.Qualitative Analysis of Zircaloy-4 Cladding Air Degradation in O2-N2 Mixtures at High Temperature[J]. Materials and Corrosion, 2014, 65(3): 250-259.
[111] STEINBRÜCK M, BÖTTCHER M. Air Oxidation of Zircaloy-4, M5® and ZIRLO™ Cladding Alloys at High Temperatures[J]. Journal of Nuclear Materials, 2011, 414(2): 276-285.
[112] STEINBRÜCK M. High-Temperature Oxidation of Zirconium Alloys in Various Atmospheres[M]// Encyclopedia of Materials: Metals and Alloys. Amsterdam: Elsevier, 2022: 454-463.
[113] GUAN H H, ZHOU Q, XU C, et al.High-Temperature Degradation Behavior of PEO-Coated ZIRLO Alloy in N2 and N2+ steam Environments at 900 and 1 000 ℃[J]. Journal of Nuclear Materials, 2024, 597: 155091.
[114] IDARRAGA I, MERMOUX M, DURIEZ C, et al.Raman Investigation of Pre- and Post-Breakaway Oxide Scales Formed on Zircaloy-4 and M5® in Air at High Temperature[J]. Journal of Nuclear Materials, 2012, 421(1/2/3): 160-171.
[115] LASSERRE M, PERES V, PIJOLAT M, et al.Modelling of Zircaloy-4 Accelerated Degradation Kinetics in Nitrogen- Oxygen Mixtures at 850 ℃[J]. Journal of Nuclear Materials, 2015, 462: 221-229.
[116] MAIER B R, YEOM H, JOHNSON G, et al.In Situ TEM Investigation of Irradiation-Induced Defect Formation in Cold Spray Cr Coatings for Accident Tolerant Fuel Applications[J]. Journal of Nuclear Materials, 2018, 512: 320-323.
[117] YEOM H, MAIER B, JOHNSON G, et al.High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments[J]. Journal of Nuclear Materials, 2019, 526: 151737.
[118] HAN X C, CHEN C, TAN Y Q, et al.A Systematic Study of the Oxidation Behavior of Cr Coatings on Zry4 Substrates in High Temperature Steam Environment[J]. Corrosion Science, 2020, 174: 108826.
[119] WANG D, ZHONG R H, ZHANG Y P, et al.Isothermal Experiments on Steam Oxidation of Magnetron-Sputtered Chromium-Coated Zirconium Alloy Cladding at 1 200 ℃[J]. Corrosion Science, 2022, 206: 110544.
[120] KO J, KIM J W, MIN H W, et al.Review of Manufacturing Technologies for Coated Accident Tolerant Fuel Cladding[J]. Journal of Nuclear Materials, 2022, 561: 153562.
[121] JIANG J S, MA X F, WANG B.Positive or Negative Role of Preoxidation in the Crack Arresting of Cr Coating for Accident Tolerant Fuel Cladding[J]. Corrosion Science, 2021, 193: 109870.
[122] KASHKAROV E B, SIDELEV D V, SYRTANOV M S, et al.Oxidation Kinetics of Cr-Coated Zirconium Alloy: Effect of Coating Thickness and Microstructure[J]. Corrosion Science, 2020, 175: 108883.
[123] ZUO X, ZHANG D, CHEN R D, et al.Spectroscopic Investigation on the Near-Substrate Plasma Characteristics of Chromium HiPIMS in Low Density Discharge Mode[J]. Plasma Sources Science and Technology, 2020, 29(1): 015013.
[124] LIAO B, OUYANG X P, ZHANG X, et al.Effect of Coil Current on the Properties of Hydrogenated DLC Coatings Fabricated by Filtered Cathodic Vacuum Arc Technique[J]. Journal of Materials Engineering and Performance, 2018, 27(1): 72-79.
[125] QUILLIN K, YEOM H, DABNEY T, et al.Microstructural and Nanomechanical Studies of PVD Cr Coatings on SiC for LWR Fuel Cladding Applications[J]. Surface and Coatings Technology, 2022, 441: 128577.
[126] WANG Z, LI W T, WANG Z Y, et al.Comparative Study on Protective Cr Coatings on Nuclear Fuel Cladding Zirlo Substrates by AIP and HiPIMS Techniques[J]. Ceramics International, 2023, 49(14): 22736-22744.
[127] CHEN S N, ZHAO Y M, ZHANG Y F, et al.Influence of Carbon Content on the Structure and Tribocorrosion Properties of TiAlCN/TiAlN/TiAl Multilayer Composite Coatings[J]. Surface and Coatings Technology, 2021, 411: 126886.
[128] 黄杰, 史学伟, 廖斌, 等. 新型多弧磁过滤系统对TiAlN薄膜的组分调控[J]. 中国表面工程, 2019, 32(2): 27-33.
HUANG J, SHI X W, LIAO B, et al.Composition Control of TiAlN Thin Film by a Novel Multi-Arc Magnetic Filter System[J]. China Surface Engineering, 2019, 32(2): 27-33.
[129] ZHOU H, HOU Q Y, XIAO T Q, et al.The Composition, Microstructure and Mechanical Properties of Ni/DLC Nanocomposite Films by Filtered Cathodic Vacuum Arc Deposition[J]. Diamond and Related Materials, 2017, 75: 96-104.
[130] 王兴平, 魏克俭, 廖斌, 等. 锆表面磁过滤阴极真空弧离子镀Cr涂层高温蒸汽氧化行为研究[J]. 稀有金属材料与工程, 2021, 50(5): 1665-1672.
WANG X P, WEI K J, LIAO B, et al.High Temperature Steam Oxidation Behavior of Cr-Coated Zr Fabricated by Filtered Cathodic Vacuum Arc Ion Deposition[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1665-1672.
[131] 吴先映, 廖斌, 张旭, 等. MEVVA离子束技术的发展及应用[J]. 北京师范大学学报(自然科学版), 2014, 50(2): 132-138.
WU X Y, LIAO B, ZHANG X, et al.Development and Applications of Mevva Technique at Bnu: A Review[J]. Journal of Beijing Normal University (Natural Science), 2014, 50(2): 132-138.
[132] PAN X L, QIU L S, HU X G, et al.Corrosion and Wear Properties of Cr Coating and ZrO2/Cr Bilayer Coating on Zr-4 Alloy[J]. Coatings, 2022, 12(9): 1281.
[133] 王郑, 王振玉, 汪爱英, 等. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
WANG Z, WANG Z Y, WANG A Y, et al.Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. Acta Metallurgica Sinica, 2024, 60(5): 691-698.
[134] WANG X P, LIAO Y Z, XU C, et al.Steam Oxidation Behavior of ZrO2/Cr-Coated Pure Zirconium Prepared by Plasma Electrolytic Oxidation Followed by Filtered Cathodic Vacuum Arc Deposition[J]. Journal of Alloys and Compounds, 2021, 883: 160798.
[135] 王兴平. 纯锆和Zr-1Nb合金表面抗蒸汽氧化ZrO2/Cr复合膜的高温腐蚀行为研究[D]. 北京: 北京师范大学, 2022: 149-159.
WANG X P.High Temperature Corrosion Behavior of ZrO2/Cr Composite Coating Resistant to Steam Oxidation on Pure Zr and Zr-1Nb Alloy[D]. Beijing: Beijing Normal University, 2022: 149-159.
[136] ZHOU Q, QU Y, LIAO Y Z, et al.Effects of Al and Si Elements on Oxidation Behavior in 1 000-1 200 ℃ Steam for PEO/CrAlSi Composite Coating on Zr Alloy[J]. Surface and Coatings Technology, 2024, 482: 130705.
[137] WANG X P, LIAO Y Z, XU C, et al.Effect of PEO Interlayer on Oxidation Behavior of PEO/Cr Composite Coating on Zr-1 Nb Alloy in 1 200 ℃ Steam[J]. Corrosion Science, 2024, 226: 111676.
[138] SHEN Y Q, LIAO B, ZHANG Z Q, et al.Anti-Sand Erosion and Tribological Performance of Thick DLC Coatings Deposited by the Filtered Cathodic Vacuum Arc[J]. Applied Surface Science, 2020, 533: 147371.
[139] XU C, WANG X P, ZHOU Q, et al.TEM Characterizations of a ZrO2/Cr Composite Coating on Zr-1Nb Alloy after 1 200 ℃ Steam Oxidation[J]. Materials Characterization, 2023, 197: 112701.
[140] MA H B, YAN J, ZHAO Y H, et al.Oxidation Behavior of Cr-Coated Zirconium Alloy Cladding in High-Temperature Steam above 1 200?℃[J]. NPJ Materials Degradation, 2021, 5: 7.
[141] LIU J K, STEINBRÜCK M, GROßE M, et al. Systematic Investigations on the Coating Degradation Mechanism during the Steam Oxidation of Cr-Coated Zry-4 at 1 200 ℃[J]. Corrosion Science, 2022, 202: 110310.
[142] LIU J K, TANG C C, STEINBRÜCK M, et al. Transient Experiments on Oxidation and Degradation of Cr-Coated Zircaloy in Steam up to 1 600 ℃[J]. Corrosion Science, 2021, 192: 109805.
[143] ARIFIN S K, HAMID M, BERAHIM A N, et al.Effects of Water Vapor on Protectiveness of Cr2O3 Scale at 1 073 K[J]. IOP Conference Series: Materials Science and Engineering, 2018, 290: 012085.
[144] LIU J K, CUI Z X, HAO Z, et al.Steam Oxidation of Cr-Coated Sn-Containing Zircaloy Solid Rod at 1 000?℃[J]. Corrosion Science, 2021, 190: 109682.
[145] HAN X C, XUE J X, PENG S M, et al.An Interesting Oxidation Phenomenon of Cr Coatings on Zry-4 Substrates in High Temperature Steam Environment[J]. Corrosion Science, 2019, 156: 117-124.
[146] YANG J Q, SHANG L L, SUN J Y, et al.Restraining the Cr-Zr Interdiffusion of Cr-Coated Zr Alloys in High Temperature Environment: A Cr/CrN/Cr Coating Approach[J]. Corrosion Science, 2023, 214: 111015.
[147] WEI K J, CUI L J, LI B, et al.Direct Experimental Evidence of the Reduction of Cr2O3 by Zr at High Temperature[J]. Corrosion Science, 2023, 225: 111587.
[148] LI Y, WANG B Q, ZHANG X Y, et al.High-Temperature Oxidation Behavior and Degradation Mechanism of Chromium-Coated Zirconium Alloy Cladding: A Review[J]. Tungsten, 2025, 7(1): 50-70.
[149] WEI T G, ZHANG R Q, YANG H Y, et al.Microstructure, Corrosion Resistance and Oxidation Behavior of Cr-Coatings on Zircaloy-4 Prepared by Vacuum Arc Plasma Deposition[J]. Corrosion Science, 2019, 158: 108077.
[150] ZHONG W C, MOUCHE P A, HEUSER B J. Response of Cr and Cr-Al Coatings on Zircaloy-2 to High Temperature Steam[J]. Journal of Nuclear Materials, 2018, 498: 137-148.]
[151] LIU J K, CUI Z X, MA D Y, et al.Investigation of Oxidation Behaviors of Coated Zircaloy as Accident- Tolerant Fuel with CrAlN and CrAlSiN Coatings in High- Temperature Steam[J]. Corrosion Science, 2020, 175: 108896.
[152] TANIGUCHI S, SHIBATA T, ITOH S.Oxidation Behavior of TiAl at High Temperatures in Purified Oxygen[J]. Materials Tran

Funding

National Natural Science Foundation of China (12405329); Nuclear Materials Innovation Foundation (ICNM-2022-YZ-02, ICNM-2020-YZ-04); Open Fund of Key Laboratory of Beam Technology of Ministry of Education (BEAM2024G03)
PDF(9630 KB)

Accesses

Citation

Detail

Sections
Recommended

/