Effect of Vacuum Annealing on Microstructure and Properties of Zr-B-N/ZrO2 Multilayered Coatings

YE Jiani, MA Lisha, ZHANG Jifu, LIU Yanmei, CAO Fengting, FAN Qixiang, WANG Tiegang

Surface Technology ›› 2025, Vol. 54 ›› Issue (13) : 107-120.

PDF(29630 KB)
PDF(29630 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (13) : 107-120. DOI: 10.16490/j.cnki.issn.1001-3660.2025.13.010
Friction, Wear and Lubrication

Effect of Vacuum Annealing on Microstructure and Properties of Zr-B-N/ZrO2 Multilayered Coatings

  • YE Jiani1, MA Lisha2*, ZHANG Jifu1, LIU Yanmei1, CAO Fengting1, FAN Qixiang1, WANG Tiegang1*
Author information +
History +

Abstract

The nano-composite structure of Zr-B-N coatings, consisting of amorphous nanocrystals, provides advantages such as high hardness, high toughness, and excellent wear resistance. However, during high-temperature operation, the amorphous BN phases within the coatings are prone to oxidation and volatilization, leading to poor high-temperature thermal stability and oxidation resistance. This significantly restricts its application in high-temperature environments like high-efficiency machining and dry cutting. To overcome these limitations, a nano-multilayer structure is designed to integrate the superior hardness-toughness balance of Zr-B-N layers with the excellent thermal resistance of ZrO2 layers. Periodic deposition of ZrO2 layers into the Zr-B-N coating is implemented to enhance thermal stability. Vacuum annealing further improves the properties of Zr-B-N/ZrO2 multilayer composite coatings to systematically investigate the mechanisms of interfacial diffusion behavior, microstructure, mechanical properties, and tribological properties at high temperature.
Zr-B-N/ZrO2 multilayer composite coatings are fabricated on YG 8 cemented carbide and single-crystal Si(100) substrates using composite magnetron sputtering technology. Vacuum annealing experiments are conducted at 500-800 ℃ (<10‒3 Pa, 1 h) in a vacuum tube furnace. The phase composition, micro-morphology, microstructure, mechanical properties, and tribological properties of the coatings are analyzed using XRD, FESEM, HRTEM, nanoindentation, high-load scratch testing, high-temperature tribometry, ultra-depth-of-field 3D microscopy, and white light interferometry.
The Zr-B-N/ZrO2 multilayer composite coating primarily consists of the t-ZrO2 phase and fcc-ZrN phase. As the annealing temperature increases, the B content gradually decreases while the O content increases, accompanied by enhanced diffraction peak intensity of the t-ZrO2 phase, which shifts toward larger angles. When annealing at 600 ℃, the coating surface remains dense with an intact nano-multilayer structure, exhibiting maximum hardness and elastic modulus values of 32.75 GPa and 391.70 GPa, respectively. The corresponding bonding strength reaches 47.95 N, with a friction coefficient of 0.658 and a wear rate of 1.11×10‒5 mm3/(N·m). When the annealing temperature reaches 800 ℃, the O content decreases while the B content increases, with fcc-ZrO and hcp-ZrB2 phases precipitating in the coating. The friction coefficient (0.507) and wear rate (4.54×10‒6 mm3/(N·m)) reach their lowest values, representing reductions of 43.29% and 69.97%, respectively, compared with the values before vacuum annealing. However, due to grain size growth, numerous microcracks form at grain boundaries. The formation of extensive cross-sectional microcrack channels enhances mutual diffusion between elements, leading to significant interfacial solubility and nearly complete collapse of the nano-multilayer structure. Edge dislocations in the Zr-B-N layer penetrate the interface and propagate into the ZrO2 layer. This interfacial degradation results in a notable reduction in adhesion between the coating and substrate, with hardness, elastic modulus, and bonding strength decreasing to their minimum values.
Appropriate vacuum annealing can significantly influence coating properties. When annealing at 600 ℃, the coating exhibits optimal comprehensive performance. Although wear resistance improves after annealing at 800 ℃, the overall performance deteriorates substantially due to structural damage.

Key words

hybrid magnetron sputtering / vacuum annealing / nano-multilayered coating / microstructure / mechanical property / tribological property

Cite this article

Download Citations
YE Jiani, MA Lisha, ZHANG Jifu, LIU Yanmei, CAO Fengting, FAN Qixiang, WANG Tiegang. Effect of Vacuum Annealing on Microstructure and Properties of Zr-B-N/ZrO2 Multilayered Coatings[J]. Surface Technology. 2025, 54(13): 107-120 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.13.010

References

[1] 王喜文. 中国制造2025解读: 从工业大国到工业强国[M]. 北京: 机械工业出版社, 2015.
WANG X W.Demystifying Made in China 2025[M]. Beijing: China Machine Press, 2015.
[2] 王铁钢, 张姣姣, 阎兵. 刀具涂层的研究进展及最新制备技术[J]. 真空科学与技术学报, 2017, 37(7): 727-738.
WANG T G, ZHANG J J, YAN B.Latest Progress in Surface Modification of Cutting Tools with Coatings[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(7): 727-738.
[3] 王启民, 黄健, 王成勇, 等. 高速切削刀具物理气相沉积涂层研究进展[J]. 航空制造技术, 2013, 56(14): 78-83.
WANG Q M, HUANG J, WANG C Y, et al.Development of PVD Coating for High-Speed Machining Cutting Tool[J]. Aeronautical Manufacturing Technology, 2013, 56(14): 78-83.
[4] 刘艳梅, 王铁钢, 郭玉垚, 等. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
LIU Y M, WANG T G, GUO Y Y, et al.Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. Acta Metallurgica Sinica, 2020, 56(11): 1521-1529.
[5] DONG Y, WANG T G, YAN B, et al.Study on the Microstructure and Mechanical Properties of Zr-B-(N) Tool Coatings Prepared by Hybrid Coating System[J]. Procedia Manufacturing, 2018, 26: 806-817.
[6] LEE J W, CHIH-HONG C, CHEN H W, et al.The Influence of Boron Contents on the Microstructure and Mechanical Properties of Cr-B-N Thin Films[J]. Vacuum, 2013, 87: 191-194.
[7] MENG Y, SONG Z X, LI Y H, et al.Thermal Stability of Ultra Thin Zr-B-N Films as Diffusion Barrier between Cu and Si[J]. Applied Surface Science, 2020, 527: 146810.
[8] MITTERER C, A Ü, EBNER R. Sputter Deposition of Wear-Resistant Coatings within the System Zr-B-N[J]. Materials Science and Engineering: A, 1991, 140: 670-675.
[9] A Ü, MITTERER C, EBNER R. Optical Properties and Corrosion Behaviour of Sputtered Zr-B and Zr-B-N Coatings[J]. Surface and Coatings Technology, 1993, 60(1/2/3): 571-576.
[10] 张纪福, 刘艳梅, 张涛, 等. 还原性气氛制备Zr-B-N纳米复合涂层的结构及性能分析[J]. 表面技术, 2022, 51(9): 83-90.
ZHANG J F, LIU Y M, ZHANG T, et al.Structure and Properties of Zr-B-N Nanocomposite Coatings Prepared in Reducing Reactive Atmosphere[J]. Surface Technology, 2022, 51(9): 83-90.
[11] KIRYUKHANTSEV-KORNEEV P, SYTCHENKO A, KAPLANSKII Y, et al.Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings[J]. Metals, 2021, 11(8): 1194.
[12] RAINFORTH W M, STEVENS R.A Transmission Electron Microscopy Study of Wear of Magnesia Partially Stabilised Zirconia[J]. Wear, 1993, 162: 322-331.
[13] WOYDT M, HABIG K H.High Temperature Tribology of Ceramics[J]. Tribology International, 1989, 22(2): 75-88.
[14] MAO D, XU Y, DONG L, et al.Optimization of the Oxidation Behavior and Mechanical Properties by Designing the TiB2/ZrO2 Multilayers[J]. Coatings, 2019, 9(10): 600.
[15] LI W, LIU P, ZHAO Y S, et al.Structure, Mechanical Properties and Thermal Stability of CrAlN/ZrO2 Nanomultilayers Deposited by Magnetron Sputtering[J]. Journal of Alloys and Compounds, 2013, 562: 5-10.
[16] 董翔. 氧化钒薄膜的脉冲反应磁控溅射制备及其特性研究[D]. 成都: 电子科技大学, 2014.
DONG X.Preparation and Characteristics of Vanadium Oxide Thin Films by Pulsed Reactive Magnetron Sputtering[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[17] 彭小珊. 高功率脉冲磁控溅射制备低氮纳米W涂层及性能研究[D]. 广州: 华南理工大学, 2019.
PENG X S.Preparation and Properties of Low Nitrogen Nano-W Coating by High Power Pulsed Magnetron Sputtering[D]. Guangzhou: South China University of Technology, 2019.
[18] 胡春华, 董学超, 李淼磊, 等. TiAlN/TiN纳米多层膜的微结构与力学性能[J]. 真空科学与技术学报, 2016, 36(7): 807-812.
HU C H, DONG X C, LI M L, et al.Microstructures and Mechanical Properties of TiAlN/TiN Nano-Multilayered Films[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7): 807-812.
[19] 喻利花, 董师润, 许俊华, 等. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究[J]. 物理学报, 2008, 57(11): 7063-7068.
YU L H, DONG S R, XU J H, et al.Superhardness Effect of TaN/TiN and NbN/TiN Nanostructure Multilayers and Its Mechanism[J]. Acta Physica Sinica, 2008, 57(11): 7063-7068.
[20] SOHRABIZADEH M, ELMKHAH H, LIN N M, et al.Enhancing Mechanical and Tribological Performance of CrN/CrTiSiN Coating through Annealing Treatment[J]. International Journal of Refractory Metals and Hard Materials, 2024, 119: 106551.
[21] POLYCHRONOPOULOU K, NEIDHARDT J, REBHOLZ C, et al.Synthesis and Characterization of Cr-B-N Coatings Deposited by Reactive Arc Evaporation[J]. Journal of Materials Research, 2008, 23(11): 3048-3055.
[22] WANG T G, LIU Y M, ZHANG T F, et al.Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films[J]. Journal of Materials Science & Technology, 2012, 28(11): 981-991.
[23] WANG D, LIN S S, LIU L Y, et al.Micro-Nano Multilayer Structure Design and Solid Particle Erosion Resistance Performance of CrAlNx/CrAlN Coating[J]. Vacuum, 2020, 172: 109064.
[24] LIN J L, MOORE J J, SPROUL W D, et al.The Structure and Properties of Chromium Nitride Coatings Deposited Using DC, Pulsed DC and Modulated Pulse Power Magnetron Sputtering[J]. Surface and Coatings Technology, 2010, 204(14): 2230-2239.
[25] 朱强. AlCrTiSiN/AlCrTiSiON多层复合涂层的研制及性能研究[D]. 天津: 天津职业技术师范大学, 2021.
ZHU Q.Development and Properties of AlCrTiSiN/ AlCrTiSiON Multilayer Composite Coating[D]. Tianjin: Tianjin University of Technology and Education, 2021.
[26] ZHU Y J, MA J L, WANG G X, et al.Corrosion Behaviour of Multilayer CrN Coatings Deposited by Hybrid HIPIMS after Oxidation Treatment[J]. Nanotechnology Reviews, 2020, 9(1): 596-609.
[27] SOHRABIZADEH M, ELMKHAH H, LIN N M, et al.Enhancing Mechanical and Tribological Performance of CrN/CrTiSiN Coating through Annealing Treatment[J]. International Journal of Refractory Metals and Hard Materials, 2024, 119: 106551.
[28] IBRAHIM K, RAHMAN M M, ZHAO X L, et al.Annealing Effects on Microstructural, Optical, and Mechanical Properties of Sputtered CrN Thin Film Coatings: Experimental Studies and Finite Element Modeling[J]. Journal of Alloys and Compounds, 2018, 750: 451-464.
[29] 蒙德强, 王铁钢, 彭勇, 等. 真空退火温度对AlCrSiN/Mo自润滑涂层结构与性能的影响[J]. 材料工程, 2021, 49(1): 126-132.
MENG D Q, WANG T G, PENG Y, et al.Influence of Vacuum Annealing Temperature on the Structure and Properties of AlCrSiN/Mo Self-Lubricating Coatings[J]. Journal of Materials Engineering, 2021, 49(1): 126-132.
[30] 白晓明. 沉积条件对Ti/TiN,CrN/SiNx纳米多层膜微观结构、界面结构和硬度的影响及其热稳定性[D]. 长春: 吉林大学, 2006.
BAI X M.Effect of Deposition Conditions on Microstructure, Interfacial Structure and Hardness of Ti/TiN and CrN/SiNx Nano-Multilayer Films and Their Thermal Stability[D]. Changchun: Jilin University, 2006.
[31] 董玉, 王铁钢, 郭玉垚, 等. 热处理对Zr-B-N纳米复合涂层显微结构的影响[J]. 真空科学与技术学报, 2018, 38(3): 214-220.
DONG Y, WANG T G, GUO Y Y, et al.Effect of N2-Flow Rate and Annealing Temperature on Properties Zr-B-N Nano-Composite Coatings[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(3): 214-220.
[32] LI W, LIU P, WANG J T, et al.Microstructure and Mechanical Properties of TiAlN/SiO2 Nanomultilayers Synthesized by Reactive Magnetron Sputtering[J]. Materials Letters, 2011, 65(4): 636-638.
[33] SHI C M, WANG T G, PEI Z L, et al.Microstructure, Interface, and Properties of Multilayered CrN/Cr2O3 Coatings Prepared by Arc Ion Plating[J]. Journal of Materials Science & Technology, 2014, 30(12): 1193-1201.
[34] RAAB R, KOLLER C M, KOLOZSVÁRI S, et al. Interfaces in Arc Evaporated Al-Cr-N/Al-Cr-O Multilayers and Their Impact on Hardness[J]. Surface and Coatings Technology, 2017, 324: 236-242.
[35] SONG J, SUN A, ZHANG P J, et al.Microstructure, Mechanical Performance, Thermal Stability, and Oxidation Resistance of AlCrN/AlCrBN Nano-Multilayer Coating[J]. Surface and Coatings Technology, 2024, 493: 131301.
[36] KONSTANTINIUK F, SCHIESTER M, TKADLETZ M, et al.Annealing Activated Substrate Element Diffusion and Its Influence on the Microstructure and Mechanical Properties of CVD TiN/TiCN Coatings[J]. Surface and Coatings Technology, 2024, 488: 131079.
[37] 郭福, 刘素婷, 左勇, 等. 混合集成电路用Pb-Sn- Sb-Ag钎料的热疲劳[J]. 北京工业大学学报, 2016, 42(7): 1114-1120.
GUO F, LIU S T, ZUO Y, et al.Pb-Sn-Sb-Ag Solder Thermal Fatigue of Hybrid Integrated Circuits[J]. Journal of Beijing University of Technology, 2016, 42(7): 1114-1120.
[38] 黎海旭, 唐鹏, 吴正涛, 等. TiSiN/AlCrN纳米多层涂层高温热稳定性及摩擦学特性研究[J]. 机械工程学报, 2018, 54(6): 32-40.
LI H X, TANG P, WU Z T, et al.High-Temperature Thermal Stability and Tribological Property of TiSiN/ AlCrN Nano-Multilayer Coatings[J]. Journal of Mechanical Engineering, 2018, 54(6): 32-40.
[39] DUBEY P, ARYA V, SRIVASTAVA S, et al.Study on Thermal Stability and Mechanical Properties of Nanocomposite Zr-W-B-N Thin Films[J]. Surface and Coatings Technology, 2015, 284: 173-181.
[40] XIAO B J, ZHANG T F, GUO Z, et al.Mechanical, Oxidation, and Cutting Properties of AlCrN/AlTiSiN Nano-Multilayer Coatings[J]. Surface and Coatings Technology, 2022, 433: 128094.
[41] 袁鸿斌, 王泽华, 张晶晶, 等. 热处理对等离子喷涂Al2O3-13%TiO2涂层结合强度的影响[J]. 机械工程材料, 2011, 35(1): 65-68.
YUAN H B, WANG Z H, ZHANG J J, et al.Effect of Heat Treatment on Bonding Strength of Plasma Sprayed Al2O3-13%TiO2 Coating[J]. Materials for Mechanical Engineering, 2011, 35(1): 65-68.
[42] 李晓兵. 划痕仪的校准及划痕法对薄膜结合强度的测试研究[D]. 太原: 太原理工大学, 2017.
LI X B.Calibration of Scratch Tester and Study on the Test of Film Bonding Strength by Scratch Method[D]. Taiyuan: Taiyuan University of Technology, 2017.
[43] 欧阳柳, 刘艳梅, 许人仁, 等. Zr-Ti-B-N刀具涂层在600 ℃恒温过程的演变研究[J]. 工具技术, 2024, 58(4): 31-36.
OUYANG L, LIU Y M, XU R R, et al.Research on Evolution Process of Zr-Ti-B-N Tool Coating at 600℃[J]. Tool Engineering, 2024, 58(4): 31-36.
[44] PARIS V, FRAGE N, DARIEL M P, et al.The Spall Strength of Silicon Carbide and Boron Carbide Ceramics Processed by Spark Plasma Sintering[J]. International Journal of Impact Engineering, 2010, 37(11): 1092-1099.
[45] HOU X M, CHOU K C.Quantitative Investigation of Oxidation Behavior of Boron Carbide Powders in Air[J]. Journal of Alloys and Compounds, 2013, 573: 182-186.
[46] 张纪福. Zr-B-N/ZrO2多层复合刀具涂层的设计、制备及性能研究[D]. 天津: 天津职业技术师范大学, 2022.
ZHANG J F.Design, Preparation and Properties of Zr-B-N/ZrO2 Multilayer Composite Tool Coating[D]. Tianjin: Tianjin University of Technology and Education, 2022.
[47] KIRYUKHANTSEV-KORNEEV P V, TRUKHANOV P A, BONDAREV A V, et al. Structure and Properties of Tribological Coatings in Cu-B System[J]. The Physics of Metals and Metallography, 2014, 115(7): 716-722.

Funding

Funds for Central Guidance of Local Science and Technology Development (24ZYCGCG00520); Natural Science Foundation of Tianjin (24JCYBJC00110)
PDF(29630 KB)

Accesses

Citation

Detail

Sections
Recommended

/