Research Progress of Virtual Crack Closure Technology in Crack Propagation of Thermal Barrier Coatings

LI Shuai, HE Yang, PENG Huixuan, REN Jihua, CAI Houdao, ZHOU Qixing

Surface Technology ›› 2025, Vol. 54 ›› Issue (13) : 29-42.

PDF(10583 KB)
PDF(10583 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (13) : 29-42. DOI: 10.16490/j.cnki.issn.1001-3660.2025.13.003
Research Review

Research Progress of Virtual Crack Closure Technology in Crack Propagation of Thermal Barrier Coatings

  • LI Shuai, HE Yang, PENG Huixuan, REN Jihua*, CAI Houdao, ZHOU Qixing
Author information +
History +

Abstract

Thermal barrier coatings are extensively utilized on the surfaces of high-temperature hot-end components, such as aero-engines, due to their excellent antioxidant, heat-insulating, and corrosion-resistant properties, as well as their simple structure. In complex service environments, coating failures are often attributed to crack propagation. Generally, three methods are employed to study crack propagation in thermal barrier coatings: analytical methods, experimental tests, and numerical simulations. For crack propagation in coatings, the most effective approach involves conducting numerical simulations of the damage process. Among these, the VCCT is widely used for its advantages, such as calculating the strain energy release rate using nodal forces and displacements, and obtaining deformation through a single comprehensive analysis of the thermal barrier coating without the need for singular elements.
This paper primarily discusses the research progress of applying the virtual crack closure technique to interface crack propagation in thermal barrier coatings. In the first chapter, research on crack propagation is introduced. The findings indicate that pre-fabricating vertical cracks in the bonding layer and altering the roughness of the bonding layer can enhance surface crack propagation. Additionally, rationally designing the ceramic layer structure and selecting an appropriate substrate can improve interface crack propagation. In the second chapter, common numerical simulation methods for crack propagation are presented. Currently, the primary numerical simulation methods for exploring cracks include the Cohesive Zone Model (CZM), the Extended Finite Element Method (XFEM), and the VCCT. Advantages of the VCCT are as follows: 1. It is not sensitive to the size of the finite-element mesh; 2. It can yield good results with a coarse mesh; 3. It does not require excessive additional efforts in mesh preparation. Subsequently, the fundamental principle of the virtual crack closure technique and its application in simulations are described. Since the VCCT principle is based on the concept that the required energy equals the work done in closing a crack, it is highly suitable for calculating the energy release rate during the crack propagation process. Therefore, in the third chapter, the research progress of the virtual crack closure technique in crack propagation of thermal barrier coatings is discussed in terms of energy release rate and fracture criterion. Additionally, the simulation method is summarized and its future prospects for crack propagation issues in thermal barrier coatings are outlined.
In conclusion, the virtual crack closure technique has been demonstrated to be a valuable tool for investigating interface crack propagation in thermal barrier coatings. Compared with traditional analytical and experimental methods, this technique can accurately simulate the crack propagation process and calculate key parameters such as the energy release rate and fracture criterion, offering significant advantages. In the future, it will be essential to develop a fine modeling method for multi-crack interactions, establish a data-driven model integrated with artificial intelligence technology, and reconstruct the stress field and constraint model using residual neural networks (ResNet) and generative admissible networks (GAN). This will facilitate the evaluation and lifetime analysis of crack propagation and promote the transition of coating failure analyses from offline simulation to real-time prediction.

Key words

thermal barrier coating / virtual crack closure technology / crack propagation / strain energy release rate / fracture criterion

Cite this article

Download Citations
LI Shuai, HE Yang, PENG Huixuan, REN Jihua, CAI Houdao, ZHOU Qixing. Research Progress of Virtual Crack Closure Technology in Crack Propagation of Thermal Barrier Coatings[J]. Surface Technology. 2025, 54(13): 29-42 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.13.003

References

[1] 唐詩白, 荆甫雷. 航空发动机热障涂层的主要失效模式[J]. 航空动力, 2019(3): 73-75.
TANG S B, JING F L.Main Failure Modes of TBC of Aero Engine[J]. Aerospace Power, 2019(3): 73-75.
[2] 刘纯波, 林锋, 蒋显亮. 热障涂层的研究现状与发展趋势[J]. 中国有色金属学报, 2007, 17(1): 1-13.
LIU C B, LIN F, JIANG X L.Current State and Future Development of Thermal Barrier Coating[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1): 1-13.
[3] FEUERSTEIN A, KNAPP J, TAYLOR T, et al.Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review[J]. Journal of Thermal Spray Technology, 2008, 17(2): 199-213.
[4] LI G R, YANG G J, LI C X, et al.Strain-Induced Multiscale Structural Changes in Lamellar Thermal Barrier Coatings[J]. Ceramics International, 2017, 43(2): 2252-2266.
[5] 周宏明, 易丹青, 余志明, 等. 热障涂层的研究现状与发展方向[J]. 材料导报, 2006, 20(3): 4-8.
ZHOU H M, YI D Q, YU Z M, et al.Research Status and Development Tendency of Thermal Barrier Coatings[J]. Materials Review, 2006, 20(3): 4-8.
[6] BEELE W, MARIJNISSEN G, VAN LIESHOUT A.The Evolution of Thermal Barrier Coatings: Status and Upcoming Solutions for Today's Key Issues[J]. Surface and Coatings Technology, 1999, 120: 61-67.
[7] 张天佑, 吴超, 熊征, 等. 热障涂层材料及其制备技术的研究进展[J]. 激光与光电子学进展, 2014, 51(3): 30004.
ZHANG T Y, WU C, XIONG Z, et al.Research Progress in Materials and Preparation Techniques of Thermal Barrier Coatings[J]. Laser & Optoelectronics Progress, 2014, 51(3): 30004.
[8] 李雪换, 底月兰, 王海斗, 等. 基于声发射技术的热障涂层损伤行为[J]. 材料导报, 2018, 32(19): 3368-3374.
LI X H, DI Y L, WANG H D, et al.Failure Behavior of Thermal Barrier Coatings Based on Acoustic Emission Technique[J]. Materials Review, 2018, 32(19): 3368-3374.
[9] 王铁军, 范学领, 孙永乐, 等. 重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J]. 固体力学学报, 2016, 37(6): 477-517.
WANG T J, FAN X L, SUN Y L, et al.The Stresses and Cracks in Thermal Barrier Coating System: A Review[J]. Chinese Journal of Solid Mechanics, 2016, 37(6): 477-517.
[10] ABUBAKAR A A, ARIF A F M, AKHTAR S S. Evolution of Internal Cracks and Residual Stress during Deposition of TBC[J]. Ceramics International, 2020, 46(17): 26731-26753.
[11] SFAR K, AKTAA J, MUNZ D.Numerical Investigation of Residual Stress Fields and Crack Behavior in TBC Systems[J]. Materials Science and Engineering: A, 2002, 333(1/2): 351-360.
[12] MENG Z W, LIU Y B, LI Y J, et al.An Analytical Model for Predicting Residual Stress in TBC-Film Cooling System Considering Non-Uniform Temperature Field[J]. Journal of Applied Physics, 2021, 129(13): 135301.
[13] 李帅, 底月兰, 王海斗, 等. 热障涂层TGO界面应力分布及裂纹扩展行为的研究进展[J]. 表面技术, 2021, 50(6): 138-147.
LI S, DI Y L, WANG H D, et al.Progress on Stress Distribution and Crack Propagation Behavior at the TGO Interfaces of Thermal Barrier Coatings[J]. Surface Technology, 2021, 50(6): 138-147.
[14] 宋佳楠, 李少林, 齐红宇, 等. 热障涂层失效行为与寿命预测研究进展[J]. 航空制造技术, 2019, 62(3): 34-40.
SONG J N, LI S L, QI H Y, et al.Research on Failure Behavior and Life Prediction of Thermal Barrier Coatings[J]. Aeronautical Manufacturing Technology, 2019, 62(3): 34-40.
[15] 董雅文, 张宝锋. 热障涂层安定分析与简化解析模型[J]. 机械强度, 2015, 37(4): 701-705.
DONG Y W, ZHANG B F.Shakedown Analysis of Thermal Barrier Coating and Simplified Analytic Model[J]. Journal of Mechanical Strength, 2015, 37(4): 701-705.
[16] ESMAEIL P, FARZAM M, JAVAD R, et al.Analytical and Experimental Study of Residual Stresses in Thermal Barrier Coatings Deposited on Gas Turbine Blades in Laboratory Dimensions by APS and HVOF Methods to Calculate the Optimal Thickness[J]. Journal of Thermal Spray and Engineering, 2021, 3(1): 63-67.
[17] 朱建国, 谢惠民, 刘战伟. 热障涂层力学性能的试验测试方法研究进展[J]. 力学学报, 2013, 45(1): 45-60.
ZHU J G, XIE H M, LIU Z W.Research Progress on the Experimental Measurement Methods of Mechanical Properties of Thermal Barrier Coatings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 45-60.
[18] SCOTSON D, PAKSOY A H, XIAO P.Characterisation Techniques for Investigating TBC and EBC Failure: A Review[J]. Frontiers in Ceramics, 2024, 1: 1307437.
[19] 周益春, 刘奇星, 杨丽, 等. 热障涂层的破坏机理与寿命预测[J]. 固体力学学报, 2010, 31(5): 504-531.
ZHOU Y C, LIU Q X, YANG L, et al.Failure Mechanisms and Life Prediction of Thermal Barrier Coatings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 504-531.
[20] 胡忠超, 王亮, 庄铭翔, 等. 热障涂层裂纹扩展的数值模拟研究进展[J]. 中国材料进展, 2020, 39(10): 740-753.
HU Z C, WANG L, ZHUANG M X, et al.Research Progress of Crack Growth of Thermal Barrier Coatings via Numerical Simulation[J]. Materials China, 2020, 39(10): 740-753.
[21] MAO W G, DAI C Y, ZHOU Y C, et al.An Experimental Investigation on Thermo-Mechanical Buckling Delamination Failure Characteristic of Air Plasma Sprayed Thermal Barrier Coatings[J]. Surface and Coatings Technology, 2007, 201(14): 6217-6227.
[22] CHEN Z X, ZHOU K, LU X H, et al.A Review on the Mechanical Methods for Evaluating Coating Adhesion[J]. Acta Mechanica, 2014, 225(2): 431-452.
[23] WEI Z Y, ZHANG W W, YI P.Simulation of Thermal Barrier Coating Spallation Induced by the Initiation/ Growth/Coalescence of Internal Crack and Interfacial Crack Based on a Real Image Model[J]. Ceramics International, 2022, 48(17): 24888-24897.
[24] LIU K, DU Y H, GUO X M, et al.Study of Stress-Driven Cracking Behavior and Competitive Crack Growth in Functionally Graded Thermal Barrier Coatings[J]. Surface and Coatings Technology, 2023, 473: 129969.
[25] 郭盾, 于庆民, 岑吕. CMAS对热障涂层界面裂纹和残余应力的影响[J]. 稀有金属材料与工程, 2020, 49(9): 2937-2947.
GUO D, YU Q M, CEN L.Effect of CMAS on Interfacial Crack and Residual Stress of Thermal Barrier Coatings[J]. Rare Metal Materials and Engineering, 2020, 49(9): 2937-2947.
[26] ZHOU B, KOKINI K.Effect of Pre-Existing Surface Crack Morphology on the Interfacial Thermal Fracture of Thermal Barrier Coatings: A Numerical Study[J]. Materials Science and Engineering: A, 2003, 348(1/2): 271-279.
[27] ZHOU B, KOKINI K.Effect of Preexisting Surface Cracks on the Interfacial Thermal Fracture of Thermal Barrier Coatings: An Experimental Study[J]. Surface and Coatings Technology, 2004, 187(1): 17-25.
[28] ZHE L, MIN-SIK K, SANG-WON M, et al.Thermal Stability and Mechanical Properties of Thick Thermal Barrier Coatings with Vertical Type Cracks[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: s29-s35.
[29] TAO S Q, YANG J S, SHAO F, et al.Effect of Cracks on Thermal Shock Behavior of Plasma-Sprayed Thick Thermal Barrier Coatings[J]. Journal of Materials Engineering and Performance, 2023, 32(11): 4998-5014.
[30] WANG L, DI Y L, WANG H D, et al.On Crack Evolution with Texturization of Bonding Layer in Thermal Barrier Coating[J]. Journal of the European Ceramic Society, 2021, 41(13): 6567-6577.
[31] WANG L L, ZHAN J Y, LIU Y K, et al.Research on Crack Propagation Behaviour of EB-PVD TBCS Based on TGO Evolution[J]. Scientific Reports, 2023, 13(1): 17550.
[32] YU Q M, HE Q.Effect of Material Properties on Residual Stress Distribution in Thermal Barrier Coatings[J]. Ceramics International, 2018, 44(3): 3371-3380.
[33] LIU K, DU Y H, GUO X M, et al.Study of Stress-Driven Cracking Behavior and Competitive Crack Growth in Functionally Graded Thermal Barrier Coatings[J]. Surface and Coatings Technology, 2023, 473: 129969.
[34] YU M Q, LIU N N, DOU R F, et al.Numerical Study on Effects of Interfacial Roughness and Microcracks on Stress Distribution in Thermal Barrier Coatings with Temperature Drop[J]. Heliyon, 2024, 10(22): e40167.
[35] DU J K, YU G Q, XUE B C, et al.Mechanism of Stress Evolution in Environmental Barrier Coatings Considering the Presence of Crack Channels[J]. Ceramics International, 2024, 50(16): 27737-27748.
[36] YAN K, YU H Y, XIANG Y, et al.Oxidation and Interfacial Cracking Behaviors of TBCs with Double-Layered Bond Coat on Different Substrate Materials[J]. Corrosion Science, 2022, 209: 110770.
[37] WEI Z Y, CAI H N, ZHAO S D.Comprehensive Understanding of Horizontal and Vertical Crack Effects on Failure Mechanism of Lamellar Structured Thermal Barrier Coatings[J]. Ceramics International, 2022, 48(6): 8143-8154.
[38] MAO W G, DAI C Y, YANG L, et al.Interfacial Fracture Characteristic and Crack Propagation of Thermal Barrier Coatings under Tensile Conditions at Elevated Temperatures[J]. International Journal of Fracture, 2008, 151(2): 107-120.
[39] DONG H, XU L, ZHOU P H, et al.Coupling Effect of Delamination Cracks and Vertical Cracks on Local Phase Transition of Ceramic Topcoat in Thermal Barrier Coatings[J]. Ceramics International, 2023, 49(8): 13176-13184.
[40] YANG M, WANG X Y, FENG W, et al.Effects of TGO Growth on the Interface Stress Distribution Based on 3D Pores in TBC Ceramics Layer[J]. Materials Today Communications, 2024, 38: 107878.
[41] CAI Z W, JIANG J S, WANG W Z, et al.CMAS Penetration-Induced Cracking Behavior in the Ceramic Top Coat of APS TBCs[J]. Ceramics International, 2019, 45(11): 14366-14375.
[42] LI C J, LI Y, YANG G J, et al.A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer between Porous YSZ and Bond Coat[J]. Journal of Thermal Spray Technology, 2012, 21(3): 383-390.
[43] LI G R, WANG L S, YANG G J.Achieving Self-Enhanced Thermal Barrier Performance through a Novel Hybrid- Layered Coating Design[J]. Materials & Design, 2019, 167: 107647.
[44] LI G R, XIE H, YANG G J, et al.A Comprehensive Sintering Mechanism for TBCS-Part I: An Overall Evolution with Two-Stage Kinetics[J]. Journal of the American Ceramic Society, 2017, 100(5): 2176-2189.
[45] WANG L, LI D C, YANG J S, et al.Modeling of Thermal Properties and Failure of Thermal Barrier Coatings with the Use of Finite Element Methods: A Review[J]. Journal of the European Ceramic Society, 2016, 36(6): 1313-1331.
[46] 底月兰, 王海斗, 董丽虹, 等. 扩展有限元法在裂纹扩展问题中的应用[J]. 材料导报, 2017, 31(3): 70-74.
DI Y L, WANG H D, DONG L H, et al.Application of the Extended Finite Element Method in Crack Propagation[J]. Materials Review, 2017, 31(3): 70-74.
[47] ZHANG W X, FAN X L, WANG T J.The Surface Cracking Behavior in Air Plasma Sprayed Thermal Barrier Coating System Incorporating Interface Roughness Effect[J]. Applied Surface Science, 2011, 258(2): 811-817.
[48] 李雪换, 底月兰, 王海斗, 等. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
LI X H, DI Y L, WANG H D, et al.An Overview on Failure Behavior Study of Thermal Barrier Coatings Based on Cohesive Zone Model[J]. Materials Reports, 2019, 33(9): 1500-1504.
[49] BOSTANC S M, GÜRSES E, DEMIRKAN Ç. Finite Element Modelling of TBC Failure Mechanisms by Using XFEM and CZM[J]. Procedia Structural Integrity, 2019, 21: 91-100.
[50] ZHU W, YANG L, GUO J W, et al.Numerical Study on Interaction of Surface Cracking and Interfacial Delamination in Thermal Barrier Coatings under Tension[J]. Applied Surface Science, 2014, 315: 292-298.
[51] GUO F N, GUO L C, HUANG K, et al.An Interaction Energy Integral Method for T-Stress Evaluation in Nonhomogeneous Materials under Thermal Loading[J]. Mechanics of Materials, 2015, 83: 30-39.
[52] BHATTACHARYA S, SINGH I V, MISHRA B K.Fatigue Life Simulation of Functionally Graded Materials under Cyclic Thermal Load Using XFEM[J]. International Journal of Mechanical Sciences, 2014, 82: 41-59.
[53] LU P, XIAO X, CHOU Y K.Interface Delamination Study of Diamond-Coated Carbide Tools Considering Coating Fractures[J]. Surface and Coatings Technology, 2014, 260: 239-245.
[54] BHATNAGAR H, GHOSH S, WALTER M E.A Parametric Study of Damage Initiation and Propagation in EB-PVD Thermal Barrier Coatings[J]. Mechanics of Materials, 2010, 42(1): 96-107.
[55] SUN Y, LIU M B.Analysis of the Crack Penetration/ Deflection at the Interfaces in the Intelligent Coating System Utilizing Virtual Crack Closure Technique[J]. Engineering Fracture Mechanics, 2015, 133: 152-162.
[56] LEE C C, SU Y F, WU C S, et al.Investigation of Interconnect Design on Interfacial Cracking Energy of Al/TiN Barriers under a Flexural Load[J]. Thin Solid Films, 2013, 544: 530-536.
[57] MEHBOOB G, XU T, LI G R, et al.Tailoring Periodic Vertical Cracks in Thermal Barrier Coatings Enabling High Strain Tolerance[J]. Coatings, 2021, 11(6): 720.
[58] RYBICKI E F, KANNINEN M F.A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral[J]. Engineering Fracture Mechanics, 1977, 9(4): 931-938.
[59] IRWIN G R.Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys[R]. Sagamore Research Conference Proceedings, 2022: 289-305.
[60] SHIVAKUMAR K N, TAN P W, NEWMAN J C.A Virtual Crack-Closure Technique for Calculating Stress Intensity Factors for Cracked Three Dimensional Bodies[J]. International Journal of Fracture, 1988, 36(3): R43-R50.
[61] RAJU I S.Calculation of Strain-Energy Release Rates with Higher Order and Singular Finite Elements[J]. Engineering Fracture Mechanics, 1987, 28(3): 251-274.
[62] KRUEGER R.Virtual Crack Closure Technique: History, Approach, and Applications[J]. Applied Mechanics Reviews, 2004, 57(2): 109-143.
[63] 王东旭, 武亮, 吕燕红. 虚拟裂纹闭合法在结构裂缝分析中的应用[J]. 人民长江, 2013, 44(13): 47-50.
WANG D X, WU L, LYU Y H.Application of Virtual Crack Closure Technique in Structure Crack Analysis[J]. Yangtze River, 2013, 44(13): 47-50.
[64] 孟令兵. 层压复合材料分层扩展分析的虚拟裂纹闭合技术及其应用[D]. 南京: 南京航空航天大学, 2009.
MENG L B.Virtual Crack Closure Technology for Delamination Growth Analysis of Laminated Composites and Its Application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[65] XIE D, CHUNG J, WAAS A M, et al.Failure Analysis of Adhesively Bonded Structures: From Coupon Level Data to Structural Level Predictions and Verification[J]. International Journal of Fracture, 2005, 134(3): 231-250.
[66] HE M Y, EVANS A G, HUTCHINSON J W.Crack Deflection at an Interface between Dissimilar Elastic Materials: Role of Residual Stresses[J]. International Journal of Solids and Structures, 1994, 31(24): 3443-3455.
[67] XIE D, BIGGERS S B.Strain Energy Release Rate Calculation for a Moving Delamination Front of Arbitrary Shape Based on the Virtual Crack Closure Technique. Part II: Sensitivity Study on Modeling Details[J]. Engineering Fracture Mechanics, 2006, 73(6): 786-801.
[68] XIE D, BIGGERS S B.Progressive Crack Growth Analysis Using Interface Element Based on the Virtual Crack Closure Technique[J]. Finite Elements in Analysis and Design, 2006, 42(11): 977-984.
[69] 李长安. 基于虚拟裂纹闭合法的裂纹扩展与疲劳寿命研究[D]. 武汉: 华中科技大学, 2008.
LI C A.Study on Crack Propagation and Fatigue Life Based on Virtual Crack Closure Method[D]. Wuhan: Huazhong University of Science and Technology, 2008.
[70] 范里夫. 基于虚拟裂纹闭合技术的断裂单元[D]. 武汉: 华中科技大学, 2011.
FAN L F.Fracture Element Based on Virtual Crack Closure Technology[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[71] 令波, 程哲, 张正艺, 等. 面内裂纹扩展问题的虚拟裂纹闭合法和离散内聚力模型[J]. 固体力学学报, 2011, 32(S1): 151-157.
LING B, CHENG Z, ZHANG Z Y, et al.Progressive Crack Growth Analysis Using Interface Element Based on the Virtual Crack Closure Technique and Discrete Cohesive Zone Model[J]. Chinese Journal of Solid Mechanics, 2011, 32(S1): 151-157.
[72] 肖涛, 左正兴. 虚拟裂纹闭合法在结构断裂分析中的应用[J]. 计算力学学报, 2008, 25(S1): 16-19.
XIAO T, ZUO Z X.Application of Virtual Crack Closure Technique in Structure Fracture Analysis[J]. Chinese Journal of Computational Mechanics, 2008, 25(S1): 16-19.
[73] QIAN Q, XIE D.Analysis of Mixed-Mode Dynamic Crack Propagation by Interface Element Based on Virtual Crack Closure Technique[J]. Engineering Fracture Mechanics, 2007, 74(5): 807-814.
[74] 李昊, 简方梁, 曹一山. 基于ABAQUS二次开发的索单元[J]. 交通科技, 2009(5): 10-13.
LI H, JIAN F L, CAO Y S.Cable Element Based on ABAQUS[J]. Transportation Science & Technology, 2009(5): 10-13.
[75] 周立明, 任书慧, 孟广伟, 等. 含裂纹功能梯度板能量释放率的ABAQUS用户子程序开发[J]. 东北大学学报(自然科学版), 2017, 38(9): 1309-1314.
ZHOU L M, REN S H, MENG G W, et al.ABAQUS User Subroutine Development for Energy Releasing Rate of the Functionally Graded Plate with Cracks[J]. Journal of Northeastern University (Natural Science), 2017, 38(9): 1309-1314.
[76] LIU Z.Phase-Field Modelling of Crack Initiation and Propagation in Polycrystalline Materials Under Thermomechanical Loadings[D] , 2021.
[77] WANG L, LI D C, YANG J S, et al.Modeling of Thermal Properties and Failure of Thermal Barrier Coatings with the Use of Finite Element Methods: A Review[J]. Journal of the European Ceramic Society, 2016, 36(6): 1313-1331.
[78] WEI Z Y, DONG X X, CAI H N, et al.Vertical Crack Distribution Effect on the TBC Delamination Induced by Crack Growth from the Ceramic Surface and near the Interface[J]. Ceramics International, 2022, 48(22): 33028-33040.
[79] WANG L S, SONG J B, DONG H, et al.Sintering- Induced Failure Mechanism of Thermal Barrier Coatings and Sintering-Resistant Design[J]. Coatings, 2022, 12(8): 1083.
[80] MEHBOOB G, XU T, LI G R, et al.Strain-Induced Cracking Behavior of Coating/Substrate Systems and Strain Tolerant Design for Thick Coatings[J]. Coatings, 2020, 10(11): 1066.
[81] MEHBOOB G, LIU G L, WANG S J, et al.Matching Design of Thickness Ratio to Extend the Lifespan of Double-Layered Thermal-Barrier Coatings[J]. Ceramics International, 2024, 50(1): 1505-1518.
[82] HUANG Y P, WEI Z Y, SUN J, et al.Undulating and Porous Structure Tuned Surface Cracking Behavior of Yb2Si2O7 Environmental Barrier Coatings under Steam Cycling[J]. Journal of the European Ceramic Society, 2023, 43(16): 7644-7655.
[83] WEI Z Y, CAI H N, ZHAO S D, et al.Dynamic Multi-Crack Evolution and Coupling TBC Failure Together Induced by Continuous TGO Growth and Ceramic Sintering[J]. Ceramics International, 2022, 48(11): 15913-15924.
[84] COOK J, GORDON J E.A Mechanism for the Control of Crack Propagation in All-Brittle Systems[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964, 282(1391): 508-520.
[85] GUPTA V, ARGON A S, SUO Z.Crack Deflection at an Interface between Two Orthotopic Media[J]. Journal of Applied Mechanics, 1992, 59(2S): S79-S87.
[86] HE M Y, EVANS A G, HUTCHINSON J W.Crack Deflection at an Interface between Dissimilar Elastic Materials: Role of Residual Stresses[J]. International Journal of Solids and Structures, 1994, 31(24): 3443-3455.
[87] JIA H K, WANG S B, LI L A, et al.Application of Optical 3D Measurement on Thin Film Buckling to Estimate Interfacial Toughness[J]. Optics and Lasers in Engineering, 2014, 54: 263-268.
[88] GODARA A, GORBATIKH L, KALINKA G, et al.Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes[J]. Composites Science and Technology, 2010, 70(9): 1346-1352.
[89] FAN X L, XU R, ZHANG W X, et al.Effect of Periodic Surface Cracks on the Interfacial Fracture of Thermal Barrier Coating System[J]. Applied Surface Science, 2012, 258(24): 9816-9823.
[90] X L FAN, R XU, W X ZHANG, et al.Interlayer Constraint of Thermal Barrier Coating with Multiple Surface Cracks and Delaminations[C] // The 9th International Conference on Fracture & Strength of Solids (FEOFS). Korea: [n. s.] , 2013: 9-13.
[91] CHENG B, WEI Z Y, CHEN L, et al.Prolong the Durability of La2Zr2O7/YSZ TBCs by Decreasing the Cracking Driving Force in Ceramic Coatings[J]. Journal of the European Ceramic Society, 2018, 38(16): 5482-5488.
[92] WEI Z Y, CAI H N, FENG R X, et al.Dynamic Crack Growth Mechanism and Lifetime Assessment in Plasma Sprayed Thermal Barrier System Upon Temperature Cycling[J]. Ceramics International, 2019, 45(12): 14896-14907.
[93] WEI Z Y, CAI H N.Comprehensive Effects of TGO Growth on the Stress Characteristic and Delamination Mechanism in Lamellar Structured Thermal Barrier Coatings[J]. Ceramics International, 2020, 46(2): 2220-2237.
[94] LI G R, TANG C H, YANG G J.Dynamic-Stiffening- Induced Aggravated Cracking Behavior Driven by Metal- Substrate-Constraint in a Coating/Substrate System[J]. Journal of Materials Science & Technology, 2021, 65: 154-163.

Funding

The National Natural Science Foundation of China (52375047)
PDF(10583 KB)

Accesses

Citation

Detail

Sections
Recommended

/