Parameter Optimization of Magnetic Abrasive Grinding of Brass Pipes Assisted by Alternating Electromagnetic Field

LIU Bingyang, YAN Yuhang, DING Yunlong, HAN Bing, CHEN Yan

Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 152-163.

PDF(16540 KB)
PDF(16540 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 152-163. DOI: 10.16490/j.cnki.issn.1001-3660.2025.12.014
Precision and Ultra-precision Machining

Parameter Optimization of Magnetic Abrasive Grinding of Brass Pipes Assisted by Alternating Electromagnetic Field

  • LIU Bingyang, YAN Yuhang, DING Yunlong*, HAN Bing, CHEN Yan
Author information +
History +

Abstract

As an advanced machining method, compared with traditional machining technologies, magnetic particle lapping finishing has the advantages of high-precision surface treatment, little damage to the workpiece surface, good self-sharpening and high degree of automation. Therefore, it is suitable for treating the outer surface of the workpiece and the inner hole of the complex-shaped workpiece. This technology removes scratches and defects on the workpiece surface through magnetic particles moving along the magnetic inductance line under the action of the magnetic field, while generating uniform friction and grinding force. It is widely used in the surface treatment of high-precision mechanical parts, such as the surface treatment of aerospace, automotive industry, electronic equipment and medical device parts, to improve the surface quality and safety of use. In order to solve the problems such as the gathering or insufficient updating of magnetic particles inside the pipe fittings in traditional magnetic particle grinding, an alternating electromagnetic field assisted magnetic particle grinding device was designed to ensure the magnetic induction intensity inside the pipe fittings, and an alternating electromagnetic field was applied to promote the constant updating of magnetic particles and improve the grinding effect.
With h65 brass pipe as the processing object, the waveform of the current through the electromagnet was changed by the signal generator, and the current waveform most suitable for the grinding of pipe fitting was triangular wave. The transformer and power amplifier were used to multiply the power of the electromagnet. Under the conditions of grinding time of 15 min, feed speed of 5 mm/s and machining gap of 1.5 mm, the response surface method was used to optimize the test parameters. The model had good precision and high precision. The effect degree of the three factors on the surface roughness was duty ratio > voltage amplitude > frequency. Through the multiple regression equation, the surface and contour maps of the effect of pairwise interaction between different factors on the response value were obtained. The effect of interaction of any two factors on the response value was obtained by the control variable method. Finally, the optimal experimental parameters were obtained, the optimal test process parameter combination was voltage amplitude 6.854 V, frequency 3.515 Hz and duty ratio 20.195%. After machining under these parameters, the inner surface of the pipe fittings was detected by ultra-depth of field 3D electron microscope and stylus surface roughness measuring instrument. The transverse tensile texture, micro-cracks and concave points of the original surface were removed, and the surface roughness of the brass pipe was reduced from the original Ra 0.525 μm to Ra 0.056 μm and the error from the predicted value of 0.064 μm was only 12.5%.
Response surface analysis can reflect the effect of voltage amplitude (A), frequency (B) and duty cycle (C) on the surface roughness. Magnetic particle grinding technology is suitable for the inner surface machining of h65 brass. The machining of h65 brass pipe with optimal parameters can effectively eliminate the surface defects of the workpiece and reduce the surface roughness of the workpiece. The alternating electromagnetic field assisted magnetic particle grinding device can effectively promote the time renewal of magnetic abrasive particles and improve the grinding effect.

Key words

magnetic abrasive grinding / magnetic abrasive particle / alternating electromagnetic field / response surface methodology / parameter optimization / surface roughness

Cite this article

Download Citations
LIU Bingyang, YAN Yuhang, DING Yunlong, HAN Bing, CHEN Yan. Parameter Optimization of Magnetic Abrasive Grinding of Brass Pipes Assisted by Alternating Electromagnetic Field[J]. Surface Technology. 2025, 54(12): 152-163 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.014

References

[1] 张博, 李富柱, 郭玉琴, 等. 小孔内表面磁力研磨加工技术研究进展[J]. 表面技术, 2024, 53(6): 28-44.
ZHANG B, LI F Z, GUO Y Q, et al.Advances in Magnetic Abrasive Machining Technique for the Inner Surface of the Small Holes[J]. Surface Technology, 2024, 53(6): 28-44.
[2] 吴淑晶, 王大中, 谷顾全, 等. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167.
WU S J, WANG D Z, GU G Q, et al.High-Performance Machining of Complex Curved Surfaces in Multi-Energy Fields: Key Technologies and Advancements[J]. Journal of Mechanical Engineering, 2024, 60(9): 152-167.
[3] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展[J]. 表面技术, 2021, 50(1): 47-61.
LIU W H, CHEN Y, LI W L, et al.Research Progress of Magnetic Abrasive Finishing Technology[J]. Surface Technology, 2021, 50(1): 47-61.
[4] 肖春芳, 韩冰, 谢臻. 航空发动机弯管内表面磁力研磨技术的研究进展[J]. 电镀与精饰, 2024, 46(12): 91-100.
XIAO C F, HAN B, XIE Z.Research Progress on Magnetic Grinding Technology for the Inner Surface of Aircraft Engine Bend[J]. Plating and Finishing, 2024, 46(12): 91-100.
[5] 赵玉刚. 混粉气雾化快凝磁性磨料制备及难加工曲面磁粒光整加工关键技术[D]. 淄博: 山东理工大学, 2020.
ZHAO Y G.Key Technology for Preparation of Mixed Powder Aerosol Rapid Solidification Magnetic Abrasive and Hard to Machine Curved Surface Magnetic Abrasive Finishing[D]. Zibo: Shandong University of Technology, 2020.
[6] 刘宁. Inconel 625合金粉末SLM成形及其表面磁力研磨工艺研究[D]. 淄博: 山东理工大学, 2023.
LIU N.Study on SLM Forming of Inconel 625 alloy Powder and Its Surface Magnetic Grinding Process[D]. Zibo: Shandong University of Technology, 2023.
[7] 王硕, 陈松, 程海东, 等. 空间弯管内表面磁粒研磨位姿轨迹优化试验研究[J]. 表面技术, 2024, 53(14): 146-156.
WANG S, CHEN S, CHENG H D, et al.Experimental Study on Trajectory Optimization of Magnetic Particle Grinding on Inner Surface of Space Elbow[J]. Surface Technology, 2024, 53(14): 146-156.
[8] XIE H J, ZOU Y H, DONG C W, et al.Study on the Magnetic Abrasive Finishing Process Using Alternating Magnetic Field: Investigation of Mechanism and Applied to Aluminum Alloy Plate[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 1509-1520.
[9] LEE Y H, WU K L, BAI C T, et al.Planetary Motion Combined with Two-Dimensional Vibration-Assisted Magnetic Abrasive Finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9): 1865-1877.
[10] 崔运涛, 张桂香, 崔同磊, 等. 磁力研磨75°梯形开槽永磁极研究[J]. 制造技术与机床, 2020(8): 109-113.
CUI Y T, ZHANG G X, CUI T L, et al.Research on Magnetic Grinding 75° Trapezoidal Slotted Permanent Magnet[J]. Manufacturing Technology & Machine Tool, 2020(8): 109-113.
[11] 刘文浩, 陈燕, 张东阳. 基于低频交变磁场的陶瓷管内表面磁力研磨加工[J]. 中国表面工程, 2021, 34(5): 146-154.
LIU W H, CHEN Y, ZHANG D Y.Magnetic Abrasive Finishing of Ceramic Tube Inner Surface Based on Low Frequency Alternating Magnetic Field[J]. China Surface Engineering, 2021, 34(5): 146-154.
[12] 王燎原, 孙玉利, 张桂冠, 等. 基于Taguchi-GA协同的磁性磨料抛光性能预测及制备工艺参数寻优[J]. 湖南大学学报(自然科学版), 2024, 51(4): 43-53.
WANG L Y, SUN Y L, ZHANG G G, et al.Predicting Polishing Performance of Magnetic Abrasive and Optimizing Its Preparation Process Parameters Based on Taguchi-GA Synergy[J]. Journal of Hunan University (Natural Sciences), 2024, 51(4): 43-53.
[13] 潘明诗, 陈燕, 张东阳. 仿形磁极头对电磁研磨管件内表面形成的影响[J]. 中国表面工程, 2022, 35(6): 274-285.
PAN M S, CHEN Y, ZHANG D Y.Effect of Profiling Magnetic Pole Head on the Inner Surface of Electromagnetic Finishing Pipe Fittings[J]. China Surface Engineering, 2022, 35(6): 274-285.
[14] 陈晓明, 徐成宇, 季冬锋, 等. 基于混合粒径的TC4钛合金低粗糙度磁力研磨研究[J]. 表面技术, 2023, 52(12): 112-118.
CHEN X M, XU C Y, JI D F, et al.Research on Low Roughness Magnetic Grinding of TC4 Titanium Alloy Based on Mixed Particle Size[J]. Surface Technology, 2023, 52(12): 112-118.
[15] SINGH G, KUMAR H, KANSAL H K, et al.Effects of Chemically Assisted Magnetic Abrasive Finishing Process Parameters on Material Removal of Inconel 625 Tubes[J]. Procedia Manufacturing, 2020, 48: 466-473.
[16] 张祥, 马小刚, 张亮, 等. 脱合金法在TC4钛合金磁粒研磨光整加工中的应用[J]. 中国表面工程, 2023, 36(2): 189-199.
ZHANG X, MA X G, ZHANG L, et al.Application of the Dealloying Method to the Grinding and Finishing of TC4 Titanium Alloy Magnetic Particles[J]. China Surface Engineering, 2023, 36(2): 189-199.
[17] 廖明, 韩冰, 陈燕, 等. 钛合金管内表面的电化学磁力研磨复合光整试验[J]. 中国表面工程, 2016, 29(3): 123-131.
LIAO M, HAN B, CHEN Y, et al.Inner Surface of Titanium Alloy Tube by Eletrochemical Magnetic Abrasive Compound Finishing[J]. China Surface Engineering, 2016, 29(3): 123-131.
[18] 王荟江, 闫宇航, 丁云龙, 等. 永磁交变磁场平面磁粒研磨试验研究[J]. 表面技术, 2024, 53(16): 159-168.
WANG H J, YAN Y H, DING Y L, et al.Experimental Research on Planar Magnetic Abrasive Finishing with Permanent Magnet Alternating Magnetic Field[J]. Surface Technology, 2024, 53(16): 159-168.
[19] 焦安源, 张国富, 丁浩东, 等. TC4钛合金孔的磁粒研磨试验[J]. 东北大学学报(自然科学版), 2020, 41(9): 1304-1309.
JIAO A Y, ZHANG G F, DING H D, et al.Experiment of Magnetic Abrasive Finishing on TC4 Titanium Alloy Hole[J]. Journal of Northeastern University (Natural Science), 2020, 41(9): 1304-1309.
[20] 张东阳. 基于低频交变磁场对管件内表面精密磁粒研磨工艺研究[D]. 鞍山: 辽宁科技大学, 2021.
ZHANG D Y.Study on Precise Magnetic Particle Grinding Technology of Inner Surface of Pipe Fittings Based on Low Frequency Alternating Magnetic Field[D]. Anshan: University of Science and Technology Liaoning, 2021.
[21] 赵彬彬, 董威, 刘娟, 等. 等离子体射流防冰性能实验研究I.DBD-PA参数化分析及防冰效果验证[J]. 上海交通大学学报, 2018, 52(8): 924-929.
ZHAO B B, DONG W, LIU J, et al.Experimental Study on the Anti-Icing Performance of Plasma Jet I.Parametric Analysis of DBD-PA and Verification on the Anti-Icing Performance[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 924-929.
[22] 靳宗帅, 张恒旭, 石访, 等. 宽频带同步测量技术与应用[J]. 中国电机工程学报, 2022, 42(7): 2497-2508.
JIN Z S, ZHANG H X, SHI F, et al.Synchronized Wideband Measurement Technology and Its Applications[J]. Proceedings of the CSEE, 2022, 42(7): 2497-2508.
[23] 翟小飞, 李鑫航, 刘华, 等. 电磁轨道发射装置动态电感梯度分析[J]. 国防科技大学学报, 2022, 44(3): 156-163.
ZHAI X F, LI X H, LIU H, et al.Analysis of Dynamic Inductance Gradient of Electromagnetic Rail Launcher[J]. Journal of National University of Defense Technology, 2022, 44(3): 156-163.
[24] 胡春江, 刘康, 张广东, 等. 正弦波电流激励下干式空心电抗器的振动与噪声特性分析[J]. 变压器, 2021, 58(9): 51-55.
HU C J, LIU K, ZHANG G D, et al.Analysis of Vibration and Noise Characteristics of Dry-Type Aircore Reactors under Sine-Wave Current Excitation[J]. Transformer, 2021, 58(9): 51-55.
[25] 王景芳, 赵晨, 姚绪梁, 等. 一种带方波电流注入电路的串联型24脉波整流器[J]. 电力自动化设备, 2025, 45(3): 147-154.
WANG J F, ZHAO C, YAO X L, et al.A Series Type 24 Pulse Rectifier with Square Wave Current Injection Circuit[J]. Power Automation Equipment, 2025, 45(3): 147-154.
[26] 陈帅. 基于三角波电流的磁耦合谐振式无线电能与信号传输技术研究[D]. 马鞍山: 安徽工业大学, 2020.
CHEN S.Research on Magnetic Coupling Resonant Radio Energy and Signal Transmission Technology Based on Triangular Wave Current[D]. Maanshan: Anhui Universit of Technology, 2020.
[27] LI Z H, ZHAO Y G, LIU G X, et al.Parametric Studies on Finishing of AZ31B Magnesium Alloy with Al2O3 Magnetic Abrasives Prepared by Combining Plasma Molten Metal Powder with Sprayed Abrasive Powder[J]. Micromachines, 2022, 13(9): 1369.

Funding

Scientific Research Funding Project of the Education Department of Liaoning Province (LJ212410146074); The Start-up Funding for Ph. D. of Liaoning Provincial Department of Science and Technology (2021-BS-241)
PDF(16540 KB)

Accesses

Citation

Detail

Sections
Recommended

/