Corrosion Difference of 13Cr Martensitic Stainless Steel in Sodium Chloride and Potassium Formate Environment

CHEN Haodong, WEI Anchao, XIAO Ping, LI Zhujun, LOU Yiwei, YU Yanzhao, ZHANG Xinxin, LIU Jiale

Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 124-133.

PDF(6073 KB)
PDF(6073 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 124-133. DOI: 10.16490/j.cnki.issn.1001-3660.2025.12.011
Corrosion and Protection

Corrosion Difference of 13Cr Martensitic Stainless Steel in Sodium Chloride and Potassium Formate Environment

  • CHEN Haodong1, WEI Anchao1,2, XIAO Ping1, LI Zhujun1,2, LOU Yiwei3, YU Yanzhao4,*, ZHANG Xinxin4, LIU Jiale4
Author information +
History +

Abstract

With the development of deep and ultra-deep wells in oil and gas fields, the high temperature and high pressure environment puts forward higher requirements for the performance of completion fluid. Formate completion fluid is more popular in oilfield application due to its advantages of high density, good thermal stability, strong anti-pollution and low corrosion. 13Cr martensitic stainless steel is the main material of high CO2 well casing. When the failure of downhole packer leads to the invasion of CO2 into the annulus of oil casing, the coexistence of weak alkaline environment of potassium formate completion fluid and CO2 may cause complex corrosion problems of 13Cr materials. There is still a lack of systematic understanding of the dissolution characteristics of potassium formate under the synergistic action of CO2, the stability of passivation film and its corrosion behavior to metals. It is necessary to further explore its corrosion mechanism to optimize the safety design of deep well completion.
13Cr samples (50 mm×10 mm×3 mm) were polished (240#-1200# sandpaper), cleaned, dried, and weighed (0.1 mg accuracy). After N2 deaeration (2 h) in a high-temperature/high-pressure autoclave, corrosion tests were conducted at 60 ℃/90 ℃ under 10 MPa CO2 (static, 5 days). After the test, samples were reweighed to calculate uniform corrosion rates. Pitting depth and rates were measured via laser confocal microscopy. Surface morphology and corrosion products were analyzed through SEM and XPS.
In-situ electrochemical tests, including polarization curves and electrochemical impedance spectroscopy (EIS), were performed to analyze the microscopic corrosion behavior of 13Cr steel in different corrosive environments under high temperature and high pressure conditions. In addition, a Pt counter electrode and an Ag/AgCl reference electrode were adopted in the tests. Samples (φ15 mm×3 mm) were polarized in NaCl solution from -300 mV to +300 mV (vs. ocp) and in potassium formate solution from -300 mV to +1 300 mV (vs. ocp), with a scan rate of 0.2 mV/s. For EIS measurements, an AC signal amplitude of 10 mV and a frequency range of 10 mHz to 100 kHz were applied. Data from the EIS spectra were analyzed with ZSimpWin.
In the comparison of potassium formate and sodium chloride environment, 13Cr showed more negative self-corrosion potential and larger self-corrosion current density in the potassium formate system, and the anodic polarization curve showed a significant passivation zone, which was directly related to the reaction of formate (HCOO-) with dissolved Cr element to form Cr (HCOO)3 surface sediment. EIS analysis showed that the AC impedance value in the potassium formate environment was significantly lower than that in the sodium chloride environment, and the protective passivation film of Cr2O3/Cr(OH)3 on the surface was completely destroyed. The formation of Cr(HCOO)3 not only hinders the formation of Cr(OH)3 and Cr2O3 passivation film, but also accelerates the dissolution of anode metal. At the same time, the H2CO3 generated by CO2 dissolves in water, enhancing the cathodic hydrogen evolution reaction, and the synergistic effect of the two leads to a significant increase in the corrosion rate of 13Cr in the presence of CO2-potassium formate.

Key words

13Cr martensitic stainless steel / potassium formate completion fluid / sodium chloride completion fluid / CO2 corrosion

Cite this article

Download Citations
CHEN Haodong, WEI Anchao, XIAO Ping, LI Zhujun, LOU Yiwei, YU Yanzhao, ZHANG Xinxin, LIU Jiale. Corrosion Difference of 13Cr Martensitic Stainless Steel in Sodium Chloride and Potassium Formate Environment[J]. Surface Technology. 2025, 54(12): 124-133 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.011

References

[1] 陆凯. 注CO2井环空腐蚀行为及油基环空保护液研究[D]. 成都: 西南石油大学, 2018.
LU K.Study on Annular Corrosion Behavior of CO2 Injection Well and Oil-based Annular Protective Fluid[D]. Chengdu: Southwest Petroleum University, 2018.
[2] 黄致尧. CO2驱注入井水基环空保护液技术研究[D]. 成都: 西南石油大学, 2019.
HUANG Z Y.Study on CO2 Flooding Technology for Injecting Well-based Annular Protective Fluid[D]. Chengdu: Southwest Petroleum University, 2019.
[3] 刘喜亮, 丁朋. 高温高密度完井液研究进展及应用现状[J]. 化学工程师, 2022, 36(5): 71-74.
LIU X L, DING P.Application and Research Progress of High Temperature and High Density Completion Fluids[J]. Chemical Engineer, 2022, 36(5): 71-74.
[4] 张涛, 任松涛, 梅明阳, 等. 低固相高密度完井液在东方B气田完井中的应用[J]. 科学技术创新, 2022(6): 188-191.
ZHANG T, REN S T, MEI M Y, et al.Application of Low Solid and High Density Completion Fluid in Dongfang B Gas Field[J]. Scientific and Technological Innovation, 2022(6): 188-191.
[5] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95-102.
WANG Z H.Review of Progress on Drilling Fluid Technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95-102.
[6] 李斌. 抗高温钻井液技术研究与应用[D]. 济南: 山东大学, 2008.
LI B.Research and Application of High Temperature Resistant Drilling Fluid Technology[D]. Jinan: Shandong University, 2008.
[7] 余明炎. 甲酸盐钻井液完井液及其应用之研究[J]. 当代化工研究, 2016(6): 102-103.
YU M Y.Research on Drilling Fluid and Completion Fluid of Formate and It Application[J]. Modern Chemical Research, 2016(6): 102-103.
[8] 谢盛涛, 赵虎. 完井液应用进展[J]. 广东化工, 2015, 42(5): 82.
XIE S T, ZHAO H.Progress of Application in Completion Fluid[J]. Guangdong Chemical Industry, 2015, 42(5): 82.
[9] 王永生, 初光友, 卜平, 等. 抗高温无粘土相甲酸盐钻完井液的研制及其在英台气田的应用[J]. 化学与生物工程, 2012, 29(10): 82-84.
WANG Y S, CHU G Y, BU P, et al.Preparation of High- Temperature Resistant Clay-Free Formate Integrated Drilling and Completion Fluid and Its Application in Yingtai Gas Field[J]. Chemistry & Bioengineering, 2012, 29(10): 82-84.
[10] 刘菊泉, 王洪福, 卢思华, 等. pH缓冲剂在酸性气田甲酸盐完井液中的应用[J]. 河北能源职业技术学院学报, 2012, 12(2): 38-40.
LIU J Q, WANG H F, LU S H, et al.The Application of pH Buffer in Well Completion Fluid of Formate Brine in Acid Gas Field[J]. Journal of Hebei Energy Institute of Vocation and Technology, 2012, 12(2): 38-40.
[11] 王垚, 李春福, 林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
WANG Y, LI C F, LIN Y H.Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy[J]. Acta Metallurgica Sinica, 2017, 53(5): 622-630.
[12] 陈胜迁, 王海艳, 宋东福, 等. Cr含量对合金钢在弱碱性溶液中腐蚀行为的影响[J]. 材料保护, 2017, 50(1): 73-76.
CHEN S Q, WANG H Y, SONG D F, et al.Effects of Chromium Content on Corrosion Behavior of Alloy Steels in Weak Alkaline Solution[J]. Materials Protection, 2017, 50(1): 73-76.
[13] 梁剑雄, 王长军, 高韩蓉, 等. 微观调控对13Cr15Ni4Mo3N高强不锈钢电化学行为钝化膜性能的影响[J]. 腐蚀科学与防护技术, 2017, 29(4): 401-406.
LIANG J X, WANG C J, GAO H R, et al.Influence of Aging Treatment on Electrochemical Behavior and Property of Passive Film of 13Cr15Ni4Mo3N Stainless Steel[J]. Corrosion Science and Protection Technology, 2017, 29(4): 401-406.
[14] 张艳, 田苗苗, 李墨, 等. 不同Cr含量的Ni基合金电化学腐蚀行为[J]. 材料研究学报, 2011, 25(6): 645-650.
ZHANG Y, TIAN M M, LI M, et al.Electrechemical Corrosion of Nickel-Based Alloys with Different Chromium Contents[J]. Chinese Journal of Materials Research, 2011, 25(6): 645-650.
[15] 潘鑫, 任泽, 连景宝, 等. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
PAN X, REN Z, LIAN J B, et al.Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(5): 752-758.
[16] 姚小飞, 谢发勤, 王毅飞. pH值对超级13Cr钢在NaCl溶液中腐蚀行为与腐蚀膜特性的影响[J]. 材料工程, 2014, 42(3): 83-89.
YAO X F, XIE F Q, WANG Y F.Effects of pH Values on Corrosive Films Characteristics and Corrosive Behaviors of Super 13Cr Tubing Steels in NaCl Solution[J]. Journal of Materials Engineering, 2014, 42(3): 83-89.
[17] 姚小飞, 谢发勤, 吴向清, 等. 超级13Cr钢在不同温度NaCl溶液中的膜层电特性与腐蚀行为[J]. 中国表面工程, 2012, 25(5): 73-78.
YAO X F, XIE F Q, WU X Q, et al.Films Electrochemical Characteristic and Corrosion Behaviors of Super 13Cr Tubing Steels in NaCl Solution at Different Temperature[J]. China Surface Engineering, 2012, 25(5): 73-78.
[18] 蔡文婷, 赵国仙, 赵大伟, 等. 超级13Cr不锈钢的钝化膜耐蚀性与半导体特性[J]. 北京科技大学学报, 2011, 33(10): 1226-1230.
CAI W T, ZHAO G X, ZHAO D W, et al.Corrosion Resistance and Semiconductor Properties of Passive Films Formed on Super 13Cr Stainless Steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(10): 1226-1230.
[19] 吕祥鸿, 赵国仙, 杨延清, 等. 13Cr钢高温高压CO2腐蚀电化学特性研究[J]. 材料工程, 2004, 32(10): 16-20.
LYU X H, ZHAO G X, YANG Y Q, et al.Study on the CO2 Corrosion Electrochemical Characteristics of 13Cr Steel at High Temperature and High Pressure[J]. Journal of Materials Engineering, 2004, 32(10): 16-20.
[20] 张伟, 曹文凯, 阳俊龙. 温度和Cl-浓度对完井液中Cr13油管的电化学腐蚀的影响[J]. 石油化工腐蚀与防护, 2023, 40(4): 1-5.
ZHANG W, CAO W K, YANG J L.Effects of Temperature and Chloride Ion Concentration on Electrochemical Corrosion of Cr13 Tubing in Completion Fluid[J]. Corrosion & Protection in Petrochemical Industry, 2023, 40(4): 1-5.
[21] 张威, 王铎. 高温高压CO2含Cl-环境下超级Cr13马氏体不锈钢的腐蚀行为[J]. 兵器材料科学与工程, 2014, 37(1): 111-114.
ZHANG W, WANG D.Corrosion Behavior of Supermartensitic Stainless Steel Super-Cr13 under High Temperature and High Pressure CO2 Containing Cl-[J]. Ordnance Material Science and Engineering, 2014, 37(1): 111-114.
[22] 毕凤琴, 管轶鑫, 孙振旭, 等. Cr13钢在含CO2油田采出液中腐蚀行为的实验研究[J]. 化工机械, 2016, 43(6): 727-730.
BI F Q, GUAN Y X, SUN Z X, et al.Experimental Study of Corrosion Behavior of Cr13 Stainless Steel in Oilfield Produced Liquid Containing Saturated CO2[J]. Chemical Engineering & Machinery, 2016, 43(6): 727-730.
[23] 雷冰, 马元泰, 李瑛, 等. 高氯环境中饱和CO2对13Cr油管钢腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2013, 25(2): 95-99.
LEI B, MA Y T, LI Y, et al.Effect of Saturated CO2 on Corrosion Behavior of 13Cr Pipe Steel in High Chloride Environment[J]. Corrosion Science and Protection Technology, 2013, 25(2): 95-99.
[24] 凌东, 何坤, 余靓, 等. 高温高压CO2环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
LING D, HE K, YU L, et al.Finite Element Simulation of Pitting Corrosion of Super 13Cr Stainless Steel in High- Temperature and High-Pressured CO2 Containing Artificial Formation Waters[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(2): 303-311.
[25] 邢希金, 王贝, 谷林, 等. 高温超临界CO2工况下气源纯度对油套管腐蚀行为的影响[J]. 腐蚀与防护, 2024, 45(1): 7-11.
XING X J, WANG B, GU L, et al.Effect of Gas Purity on Corrosion Behavior of Tubing and Casing under High- Temperature Supercritical CO2 Condition[J]. Corrosion & Protection, 2024, 45(1): 7-11.
[26] 朱培珂, 邓金根, 闫伟, 等. 3Cr钢和13Cr钢在高矿化度CO2环境中的腐蚀行为[J]. 腐蚀与防护, 2014, 35(12): 1221-1225.
ZHU P K, DENG J G, YAN W, et al.Corrosion Behavior of 3Cr and 13Cr in High Salinity Brine and CO2 Environment[J]. Corrosion & Protection, 2014, 35(12): 1221-1225.

Funding

Major Science and Technology Projects of CNOOC Group During the 14th Five-Year Plan Period (KJGG2021-0800)
PDF(6073 KB)

Accesses

Citation

Detail

Sections
Recommended

/