Research Status and Prospects of Sherardizing Technology for Steel Surfaces

PENG Dong, WU Hulin, ZHOU Zhongfeng, LI Zhongsheng, HUANG Jun, SONG Kaiqiang, DAI Ye, WU Yongpeng, HUANG Anwei, CONG Dalong

Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 17-36.

PDF(26244 KB)
PDF(26244 KB)
Surface Technology ›› 2025, Vol. 54 ›› Issue (12) : 17-36. DOI: 10.16490/j.cnki.issn.1001-3660.2025.12.002
Research Review

Research Status and Prospects of Sherardizing Technology for Steel Surfaces

  • PENG Dong1,2, WU Hulin1, ZHOU Zhongfeng3, LI Zhongsheng1, HUANG Jun1, SONG Kaiqiang1, DAI Ye1, WU Yongpeng1,2, HUANG Anwei1,*, CONG Dalong1,*
Author information +
History +

Abstract

The corrosion of steel materials is a globally prevalent common issue. The tremendous economic, safety, and environmental hazards the corrosion has caused continue to drive innovation and development of advanced anti-corrosion materials and technologies. Sherardizing technology is an anti-corrosion process of preparing zinc alloy diffusion layers on steel surfaces based on the principles of chemical vapor deposition and atomic thermal diffusion. It offers advantages such as excellent corrosion resistance, high bonding strength, a hydrogen embrittlement-free process, suitability for complex-shaped components, and environmental friendliness. Consequently, it has gained significant popularity in the field of steel corrosion protection and is widely applied in industries such as automotive, shipbuilding, construction, tunneling, railways, water conservancy, and wind energy. Therefore, the work aims to focus on the study of five aspects, including technological evolution, pre-treatment, alloying, post-treatment, and mechanisms, to review the recent research progress of sherardizing technology in China and abroad.
Firstly, the evolution process of sherardizing preparation technology was introduced. The basic principles, main characteristics, and technical advantages of pack cementation, mechanical energy-assisted sherardizing, and vacuum sherardizing were analyzed. Then, special emphasis was placed on elucidating the effects of substrate and main agent nano-modification, multicomponent co-cementation, and rare earth activation on the diffusion of active atoms, microstructure, and properties of the sherardized coatings. The relationship between sherardizing parameters and coating thickness was systematically examined. The strengthening effects of composite post-treatment technologies on the corrosion resistance of cementation coatings were summarized. The formation mechanisms of typical multicomponent co- cementation coatings were analyzed. Finally, the challenges faced by the sherardizing technology for steel surfaces were presented, along with future development directions. This review aimed to provide references for preparing high-performance sherardized coatings and promoting technological innovation and application of sherardizing.
In terms of pre-treatment, the substrate surface nanocrystallization technology could effectively reduce the zinc diffusion temperature, shorten the diffusion cycle, and simultaneously improve the atomic penetration depth, thickness, surface hardness, and corrosion resistance of the sherardized coatings. Regarding alloying, researchers focused on penetrant formulations and rare earth activation. By leveraging the complementary advantages and synergistic effects of various elements, high-corrosion- resistance metal elements such as Al, Ni, Cr, Mg, Cu, Mn, and Ti were introduced to prepare binary or even ternary zinc-based alloy sherardized coatings, significantly enhancing comprehensive properties such as wear and corrosion resistance. Based on the high activity of rare earth elements like Y, Ce, and La, the activation energy for sherardized coating formation was reduced, while their grain boundary pinning and microstructure regulation effects were utilized to achieve synergistic improvement in wear and corrosion resistance of the sherardized coatings. For post-treatment, technologies such as "passivation + organic sealing" and composite coating were employed, relying on physical shielding, electrochemical corrosion resistance, and passivation effects, to elevate the corrosion resistance of the sherardized coatings to over 2000 hours. Concerning the formation mechanism of the sherardized coatings, the formation mechanisms of mono- and binary sherardized coatings were clarified based on the atomic diffusion theory.
In the future, as steel materials face increasingly harsh application environments, higher demands will be placed on the protective performance of sherardized coatings. Sherardizing technology will continue to develop in directions such as multi-component powder diffusion and composite coating post-treatment. Simultaneously, to promote the application of sherardized coatings in extreme environments, research on the environmental adaptability of sherardized coatings should be strengthened. This includes revealing the environmental damage mechanisms of sherardized coatings under typical extreme natural conditions and establishing correlations between laboratory accelerated tests and natural environmental tests.

Key words

sherardizing technology / multi-element sherardizing / alloying / post-treatment / formation mechanism of sherardized coatings

Cite this article

Download Citations
PENG Dong, WU Hulin, ZHOU Zhongfeng, LI Zhongsheng, HUANG Jun, SONG Kaiqiang, DAI Ye, WU Yongpeng, HUANG Anwei, CONG Dalong. Research Status and Prospects of Sherardizing Technology for Steel Surfaces[J]. Surface Technology. 2025, 54(12): 17-36 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.002

References

[1] PISTOFIDIS N, VOURLIAS G, CHALIAMPALIAS D, et al.DSCstudy of the Deposition Reactions of Zinc Pack Coatings up to 550 ℃[J]. Journal of Thermal Analysis and Calorimetry, 2006, 84(1): 191-194.
[2] 白薇, 温鸣, 曹晓明, 等. 热扩散粉末渗锌技术综述[C]// 第10届中国热浸镀学术技术交流会暨节能减排新技术推介会论文集. 天津: 中国腐蚀与防护学, 2014.
BAI W, WENG M, CAO X M, et al.Review of Thermal Diffusion Powder Zinc Coating Technology[C]// Proceedings of the 10th China Hot Dip Galvanizing Academic Conference.Tianjin: Chinese Society for Corrosion and Protection, 2014.
[3] 张琪, 张潇华, 成琳, 等. 渗镀温度对真空粉末渗锌涂层性能的影响[J]. 现代涂料与涂装, 2020, 23(7): 11-14.
ZHANG Q, ZHANG X H, CHENG L, et al.Effect of Sherardizing Temperature on Properties of Vacuum Powder Zinc Coating[J]. Modern Paint & Finishing, 2020, 23(7): 11-14.
[4] VOURLIAS G, PISTOFIDIS N, CHALIAMPALIAS D, et al.A Comparative Study of the Structure and Properties of Zinc Coatings Deposited with Various Methods[J]. Solid State Phenomena, 2007, 130: 207-212.
[5] VOURLIAS G, PISTOFIDIS N, CHALIAMPALIAS D, et al.A Comparative Study of the Structure and the Corrosion Behavior of Zinc Coatings Deposited with Various Methods[J]. Surface and Coatings Technology, 2006, 200(22/23): 6594-6600.
[6] 辛江萍, 胡水平, 张思远, 等. 稀土元素La对金属表面粉末渗锌层组织结构和性能的影响[J]. 稀有金属材料与工程, 2022, 51(5): 1887-1895.
XIN J P, HU S P, ZHANG S Y, et al.Effect of Rare Earth Element La on the Structure and Properties of the Powder Sheradizing Layer on the Metal Surface[J]. Rare Metal Materials and Engineering, 2022, 51(5): 1887-1895.
[7] BIRYUKOV A, KOZADEROV O A, GALIN R, et al.Details of the Mechanism of Dissolution of Iron-Zinc Coatings Based on the Δ-Phase in Acidic Media[J]. International Journal of Corrosion and Scale Inhibition, 2020, 9(4) : 1477-1489.
[8] 王媛媛, 朱培, 王小龙, 等. 热渗锌工艺对钢制螺栓力学性能的影响研究[J]. 环境技术, 2024, 42(1): 34-41.
WANG Y Y, ZHU P, WANG X L, et al.An Investigation into the Effects of the Hot-Dip Galvanization Process on the Mechanical Performance Characteristics of Steel Bolts[J]. Environmental Technology, 2024, 42(1): 34-41.
[9] SKOTNICKI W, JĘDRZEJCZYK D. Analysis of the Properties of Anticorrosion Systems Used for Structural Component Protection in Truck Trailers[J]. Materials, 2024, 17(24): 6303.
[10] NATRUP F, GRAF W.Sherardizing: Corrosion Protection of Steels by Zinc Diffusion Coatings[M]//Thermochemical Surface Engineering of Steels. Amsterdam: Elsevier, 2015: 737-750.
[11] GALIN R G, ZAKHARYEVICH D A, RUSHCHITS S V.Formation and Structure of Diffusional Zinc Coatings Formed in Nanocrystallized Zinc Powders[J]. Materials Science Forum, 2016, 870: 404-408.
[12] 钟芳兴. AM355不锈钢机械能助渗铝涂层的制备及组织性能研究[D]. 南昌: 南昌航空大学, 2015.
ZHONG F X.Preparation, Microstructure and Properties of Mechanical Energy Aluminizing Coating on AM355 Stainless Steel[D]. Nanchang: Nanchang Hangkong University, 2015.
[13] 顾建, 李冬青, 刘胜春, 等. CeO2添加量对粉末渗锌层耐磨性能和耐腐蚀性能的影响[J]. 机械工程材料, 2024, 48(12): 31-38.
GU J, LI D Q, LIU S C, et al.Effect of CeO2 Addition Amount on Wear Resistance and Corrosion Resistance of Powder Sherardizing Layers[J]. Materials for Mechanical Engineering, 2024, 48(12): 31-38.
[14] XUE Q, SUN C Y, YU J Y, et al.Microstructure Evolution of a Zn-Al Coating Co-Deposited on Low-Carbon Steel by Pack Cementation[J]. Journal of Alloys and Compounds, 2017, 699: 1012-1021.
[15] 徐鹏辉, 王胜民, 乐林江, 等. Zn-Ni合金渗层的组织结构及腐蚀性能[J]. 中国表面工程, 2022, 35(1): 135-143.
XU P H, WANG S M, LE L J, et al.Microstructure and Corrosion Properties of Zn-Ni Co-Cementation Layer[J]. China Surface Engineering, 2022, 35(1): 135-143.
[16] 顾建, 李冬青, 刘胜春, 等. 保温温度对含Mg粉末渗锌层耐磨性和耐蚀性的影响[J]. 金属热处理, 2024, 49(12): 221-228.
GU J, LI D Q, LIU S C, et al.Effect of Holding Temperature on Wear Resistance and Corrosion Resistance of Powder Sherardized Layer Containing Mg[J]. Heat Treatment of Metals, 2024, 49(12): 221-228.
[17] 龙君碧. 粉末渗锌工艺的BP模型及锌钛渗层组织与耐蚀性研究[D]. 湘潭: 湘潭大学, 2020.
LONG J B.BP Model of Powder Zincification Process and Study on Microstructure and Corrosion Resistance of Zinc-titanium Layer[D]. Xiangtan: Xiangtan University, 2020.
[18] 彭淀. 低碳钢表面锌铜合金渗层的制备及组织性能研究[D]. 湘潭: 湘潭大学, 2019.
PENG D.Preparation, Microstructure and Properties of Zn-Cu alloy Infiltration Layer on Low Carbon Steel Surface[D]. Xiangtan: Xiangtan University, 2019.
[19] 钟云聪. 粉末渗锌层的相分析及锌锰共渗工艺与渗层研究[D]. 湘潭: 湘潭大学, 2020.
ZHONG Y C.Phase Analysis of Powder Zinc-infiltrated Layer and Study on Zinc-manganese Co-infiltration Process and Layer[D]. Xiangtan: Xiangtan University, 2020.
[20] 朱孝培, 赵麦群, 高辉, 等. 紧固件的机械能助渗锌-低铬达克罗复合防护技术[J]. 电镀与涂饰, 2017, 36(23): 1260-1264.
ZHU X P, ZHAO M Q, GAO H, et al.Protection Technology for Fasteners by Combination of Mechanical Energy-Assisted Sherardizing and Low-Chromium Dacromet Coating[J]. Electroplating & Finishing, 2017, 36(23): 1260-1264.
[21] 徐鹏辉. Zn-Ni合金渗层的制备及研究[D]. 昆明: 昆明理工大学, 2022.
XU P H.Preparation and Study of Zn-Ni Alloy Infiltration Layer[D]. Kunming: Kunming University of Science and Technology, 2022.
[22] 武传杰. 渗锌—锌铝复合涂层的制备及耐蚀性能研究[D]. 青岛: 青岛科技大学, 2014.
WU C J.Preparation and Corrosion Resistance of Zinc-Zn-Al Composite Coating[D]. Qingdao: Qingdao University of Science & Technology, 2014.
[23] WANG W, GUO M X, SUN C Y, et al.Zn-Al Pack Co-Cementation on AISI 1020 Steel: Structural, Mechanical and Tribological Appraisal[J]. Philosophical Magazine, 2023, 103(7): 654-672.
[24] DREWETT R. A Review of Some Aspects Concerning the Formation of Metallic Diffusion Coatings on Ferrous Metals[J]. Corrosion Science, 1969, 9(11): 823-IN4.
[25] 武传杰, 林志峰, 李相波, 等. 粉末渗锌工艺及应用发展趋势[J]. 热加工工艺, 2013, 42(22): 20-22.
WU C J, LIN Z F, LI X B, et al.Study on Zinc Powder Sherardizing Manufacturing Process and Its Application Trends[J]. Hot Working Technology, 2013, 42(22): 20-22.
[26] 杨新岐. 工业化粉末渗锌技术原理及市场发展前景[C]// 第四届中国国际腐蚀控制大会论文集. 宿州: 中国工业防腐蚀技术协会, 2009.
YANG X Q.Principles and Market Prospects of Industrialized Powder Zinc Coating technology[C]//. Proceedings of the 4th China International Corrosion Control Conference. Suzhou: China Industrial Anti-Corrosion Technology Association, 2009.
[27] VOURLIAS G, PISTOFIDIS N, CHALIAMPALIAS D, et al.Zinc Deposition with Pack Cementation on Low Carbon Steel Substrates[J]. Journal of Alloys and Compounds, 2006, 416(1/2): 125-130.
[28] ALTUNCU E, SELEN A.Characterization of Zinc Coating by Sherardizing[J]. Academic Perspective Procedia, 2021, 4(1): 232-239.
[29] 陈鹭滨, 孙希泰. 机械能助渗的基本规律及其发展前景[J]. 金属热处理, 2004, 29(2): 25-28.
CHEN L B, SUN X T.General Rule and Promising Future of Mechanical Energy Aided Thermal Diffusing Process[J]. Heat Treatment of Metals, 2004, 29(2): 25-28.
[30] 张跃, 姚长文, 张灵宇, 等. 采用机械能助渗法制备渗锌层的显微组织与性能[J]. 机械工程材料, 2014, 38(11): 60-65.
ZHANG Y, YAO C W, ZHANG L Y, et al.Microstructure and Properties of Zincizing Layer Prepared by Mechanical Energy Aided Diffusing Method[J]. Materials for Mechanical Engineering, 2014, 38(11): 60-65.
[31] 张佃臣, 杜溪婷, 李茂林, 等. 粉末渗锌防腐在海上平台上的应用[J]. 辽宁化工, 2021, 50(12): 1857-1859.
ZHANG D C, DU X T, LI M L, et al.Application of Powder Zincification Anticorrosion on Offshore Platforms[J]. Liaoning Chemical Industry, 2021, 50(12): 1857-1859.
[32] 张忠恩, 朱宗元, 方向威. 真空粉末机械渗锌技术[J]. 腐蚀与防护, 1998, 19(4): 187-188.
ZHANG Z E, ZHU Z Y, FANG X W.Vacuum Powder Mechanical Zincification Technology[J]. Corrosion & Protection, 1998, 19(4): 187-188.
[33] TONG W P, HE C S, HE J C, et al.Strongly Enhanced Nitriding Kinetics by Means of Grain Refinement[J]. 2006, 89(2): 021918.
[34] 张晶, 杨新岐. 表面纳米化对渗锌过程的影响[J]. 腐蚀与防护, 2009, 30(11): 837-838.
ZHANG J, YANG X Q.Influence of Surface Nanocrystallization on Thermal Diffusion of Zn[J]. Corrosion & Protection, 2009, 30(11): 837-838.
[35] 尹丽晶. 表面自纳米化在热浸镀锌和粉末渗锌中的应用研究[D]. 重庆: 重庆大学, 2014.
YIN L J.Study on Application of Surface Self-nanocrystallization in Hot Dip Galvanizing and Powder Zincification[D]. Chongqing: Chongqing University, 2014.
[36] PENG Y Y, LI C, GUO Q Y, et al.Vacuum Diffusion Bonding between Ni3Al-Based Superalloy and S31042 Steel by Surface Self-Nanocrystallization Treatment[J]. Materials Characterization, 2023, 202: 113031.
[37] 彭浩平, 徐宁, 何祖新, 等. Mg对机械能助渗铝锌渗层组织的影响[J]. 常州大学学报(自然科学版), 2019, 31(4): 39-44.
PENG H P, XU N, HE Z X, et al.Effect of Mg on Mechanically Assisted Infiltration of Aluminum-Zinc Layer[J]. Journal of Changzhou University (Natural Science Edition), 2019, 31(4): 39-44.
[38] Chaliampalias, Pistofidis, Vourlias. Effect of Temperature and Zinc Concentration on Zinc Coatings Deposited with Pack Cementation[J]. Surface Engineering, 2008, 24(4): 259-263.
[39] 呼海龙. 结构钢粉末渗锌剂优化与工艺研究[D]. 西安: 西安理工大学, 2014.
HU H L.Sherardizing Medium Optimize and Process Study[D]. Xi'an: Xi'an university of technology, 2014.
[40] 张建文, 张巍, 方小晴, 等. 不同粒度锌粉对热渗锌涂层的性能影响研究[J]. 环境技术, 2024, 42(9): 181-186.
ZHANG J W, ZHANG W, FANG X Q, et al.Research on Effect of Different Particle Size of Zinc Powder on the Properties of Thermal Diffusion Zinc Coating[J]. Environmental Technology, 2024, 42(9): 181-186.
[41] 张潇华, 于思荣, 刘彦, 等. 粉末渗锌钢渗层的形成机理及影响因素研究进展[J]. 表面技术, 2020, 49(11): 141-150.
ZHANG X H, YU S R, LIU Y, et al.Research Progress of Formation Mechanism and Influencing Factors of Sherardizing Coating on Steel[J]. Surface Technology, 2020, 49(11): 141-150.
[42] 林志峰, 李相波, 许立坤, 等. 纳米复合粉末渗锌涂层耐海水腐蚀性能研究[C]// 2012海洋腐蚀与生物污损学术研讨会论文集. 青岛: 中国海洋湖沼学会, 2012.
LIN Z F, LI X B, XU L K, et al.Study on Seawater Corrosion Resistance of Nano-composite Powder Zinc Coating[C]// Proceedings of 2012 Symposium on Marine Corrosion and Biofouling. Qingdao: Chinese Society for Oceanology and Limnology, 2012.
[43] 张晶, 杨新岐, 姜海龙, 等. 应用纳米锌粉及稀土的粉末渗锌技术研究[J]. 中国表面工程, 2005, 18(3): 31-33.
ZHANG J, YANG X Q, JIANG H L, et al.Investigation on Sherardizing Process Using Nano Zinc Powder and Nano Rare Earth[J]. China Surface Engineering, 2005, 18(3): 31-33.
[44] BIRYUKOV A, ZAKHARYEVICH D, GALIN R, et al.Corrosion Resistance of Thermal Diffusion Zinc Coatings of "PNTZ" in Oilfield Environments[J]. E3S Web of Conferences, 2019, 121: 02005.
[45] 宋峰雨, 李瑞平, 陈镇平, 等. 渗剂中Al含量对渗锌层质量的影响[J]. 安阳工学院学报, 2024, 23(2): 39-43.
SONG F Y, LI R P, CHEN Z P, et al.The Influence of Al Content in the Infiltration Agent on the Quality of the Zinc Infiltration Layer[J]. Journal of Anyang Institute of Technology, 2024, 23(2): 39-43.
[46] 薛智峰. 支座预埋板锌铝合金粉末共渗工艺概述[J]. 高速铁路新材料, 2024, 3(1): 29-31.
XUE Z F.A Brief Introduction to the Zinc-Aluminum Alloy Powder Co-Infiltration Process for the Bearing Embedded Plate[J]. Advanced Materials of High Speed Railway, 2024, 3(1): 29-31.
[47] SHEN T H, TSAI C Y, LIN C S.Growth Behavior and Properties of Zn-Al Pack Cementation Coatings on Carbon Steels[J]. Surface and Coatings Technology, 2016, 306: 455-461.
[48] 孙才沅, 周辉, 李承洋, 等. 碳钢表面Zn-Al合金渗层的制备及性能研究[J]. 热处理技术与装备, 2015, 36(5): 16-19.
SUN C Y, ZHOU H, LI C Y, et al.Preparation and Property Study of Zn-Al Alloy Layers on Surface of Carbon Steel[J]. Heat Treatment Technology and Equipment, 2015, 36(5): 16-19.
[49] 杜存山, 贾恒琼, 王涛, 等. 锌铝合金共渗防腐技术[J]. 高速铁路新材料, 2022, 1(2): 20-23.
DU C S, JIA H Q, WANG T, et al.Anti-Corrosion Technique for Zinc-Aluminum Alloy Powder Diffusion[J]. Advanced Materials of High Speed Railway, 2022, 1(2): 20-23.
[50] ANTONOV B D, CHERNOV Y B, PANKRATOV A A, et al.The Phase Composition of a Diffusion Zinc Coating Alloyed with Nickel on Steel 20[J]. Protection of Metals, 2006, 42(1): 51-54.
[51] 张进, 林元华, 郭孟鑫, 等. 包埋法制备Zn-Ni渗层的结构及摩擦学行为研究[J]. 材料保护, 2021, 54(10): 7-12.
ZHANG J, LIN Y H, GUO M X, et al.Study on the Structure and Tribological Behavior of Zn-Ni Coating by Pack-Cementation[J]. Materials Protection, 2021, 54(10): 7-12.
[52] 徐鹏辉, 王胜民, 乐林江, 等. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 209-216.
XU P H, WANG S M, LE L J, et al.Effect of Temperature and Nickel Formate Content on the Preparation of Zn-Ni Cementation Layer[J]. Materials Reports, 2023, 37(16): 209-216.
[53] 胡旭, 谭峰亮, 张海筹, 等. 锌镍合金渗层制备工艺、组织及耐蚀性研究[J/OL]. 热加工工艺 (2024-11-25). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJGY2025042700E&dbname=CJFD&dbcode=CJFQ.
HU X, TAN F L, ZHANG H C, et al. Study on Preparation Technology, Microstructure and Corrosion Resistance of Zn-Ni Alloy Infiltration Layer[J/OL]. China Industrial Economics, (2024-11-25). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJGY2025042700E&dbname=CJFD&dbcode=CJFQ.
[54] CHALIAMPALIAS D, PAPAZOGLOU M, TSIPAS S, et al.The Effect of Al and Cr Additions on Pack Cementation Zinc Coatings[J]. Applied Surface Science, 2010, 256(11): 3618-3623.
[55] 刘秋元, 乐林江, 沈伟. 机械能助渗法制备Zn-Mg合金渗层的显微组织及耐蚀性[J]. 腐蚀与防护, 2022, 43(6): 53-57.
LIU Q Y, LE L J, SHEN W.Microstructure and Corrosion Resistance of Zn-Mg Alloy Coating Prepared by Mechanical Energy Aided Diffusing Method[J]. Corrosion & Protection, 2022, 43(6): 53-57.
[56] 何祖新, 苏旭平, 彭浩平, 等. 机械能助Al-Zn-Cr共渗工艺及渗层组织[J]. 中国表面工程, 2016, 29(6): 44-51.
HE Z X, SU X P, PENG H P, et al.Al-Zn-Cr Diffusion Process Aided by Mechanical Energy and Microstructure of Alloying Layer[J]. China Surface Engineering, 2016, 29(6): 44-51.
[57] WORTELEN D, FRIELING R, BRACHT H, et al.Impact of Zinc Halide Addition on the Growth of Zinc-Rich Layers Generated by Sherardizing[J]. Surface and Coatings Technology, 2015, 263: 66-77.
[58] LIU L, YU S R.A Comparative Study on Zn and Zn-Y Coatings on 42CrMo Steel by Pack Cementation Process[J]. International Journal of Electrochemical Science, 2017, 12(10): 9575-9587.
[59] 黄燕滨, 黄俊雄, 王期超, 等. 钢制紧固件稀土镧改性渗锌层的制备与性能研究[J]. 装备环境工程, 2017, 14(8): 60-64.
HUANG Y B, HUANG J X, WANG Q C, et al.Preparation and Properties of Sherardizing Layer on Steel Fasteners Modified by Rare Earth Lanthanum[J]. Equipment Environmental Engineering, 2017, 14(8): 60-64.
[60] 东晓林, 时小军, 黄燕滨, 等. 稀土镧不同化合物对渗锌层耐蚀性能的影响[J]. 表面技术, 2016, 45(4): 193-197.
DONG X L, SHI X J, HUANG Y B, et al.Effect of Different Compounds of Rare Earth Lanthanum on Corrosion Resistance of Zinc Layer[J]. Surface Technology, 2016, 45(4): 193-197.
[61] 东晓林, 黄燕滨, 时小军, 等. 采用稀土化学活化处理的锌粉制备渗锌层及其耐蚀性[J]. 电镀与涂饰, 2016, 35(11): 571-574.
DONG X L, HUANG Y B, SHI X J, et al.Preparation and Corrosion Resistance of Sherardized Coating Using Zinc Powder Chemically Activated by Rare Earth Salt[J]. Electroplating & Finishing, 2016, 35(11): 571-574.
[62] 李瑞平. 保温温度对粉末渗锌工艺的影响研究[J]. 高速铁路新材料, 2022, 1(3): 28-32.
LI R P.Study on Influence of Heat Preservation Temperature on Powder Sherardizing Process[J]. Advanced Materials of High Speed Railway, 2022, 1(3): 28-32.
[63] ZHANG X H, GUO L J, WANG W, et al.Effect of Temperature on the Performance of Sherardizing Coating[J]. Journal of Physics: Conference Series, 2021, 1798(1): 012041.
[64] 朱孝培, 赵麦群, 杨楠, 等. 保温温度对A3钢粉末渗锌层性能的影响研究[J]. 全面腐蚀控制, 2017, 31(10): 81-86.
ZHU X P, ZHAO M Q, YANG N, et al.Research on Effect of Heat Preservation Temperature to the Characteristics of Powder Sherardizing of A3 Steel[J]. Total Corrosion Control, 2017, 31(10): 81-86.
[65] 李金柱, 农登, 郑开宏, 等. Zn-Fe合金粉末渗层的制备及耐蚀性能[J]. 材料保护, 2013, 46(12): 17-19.
LI J Z, NONG D, ZHENG K H, et al.Preparation and Corrosion Resistance Evaluation of Powder Sherardizing Zinc-Iron Coatings on Q235 Steel 1, 211[J]. Materials Protection, 2013, 46(12): 17-19.
[66] GAO H Y, LI X B, FENG W Y, et al.Numerical Modeling of Zinc Diffusion during Sherardizing Process[J]. Journal of Phase Equilibria and Diffusion, 2018, 39(2): 237-245.
[67] JIANG J H, MA A B, FAN X D, et al. Sherardizing and Characteristic of Zinc Protective Coating on High-Strength Steel Bridge Cable Wires[J]. Advanced Materials Research, 2010, 97/98/99/100/101: 1368-1372.
[68] 李春红, 杜安, 马瑞娜, 等. 42CrMo钢锌铝共渗层的组织及性能[J]. 金属热处理, 2017, 42(10): 47-51.
LI C H, DU A, MA R N, et al.Microstructure and Properties of Zn-Al Thermochemical Treated on 42CrMo Steel[J]. Heat Treatment of Metals, 2017, 42(10): 47-51.
[69] 东晓林, 时小军, 黄燕滨, 等. 螺纹紧固件腐蚀防护技术的应用现状[J]. 电镀与涂饰, 2016, 35(9): 481-485.
DONG X L, SHI X J, HUANG Y B, et al.Application Status of Corrosion Protection Technologies to Threaded Fasteners[J]. Electroplating & Finishing, 2016, 35(9): 481-485.
[70] 梁俊福. 铬酸钝化锌表面的封闭处理液[J]. 表面技术, 1991, 20(5): 25.
LIANG J F.Sealing Treatment Solution for Chromic Acid Passivation of Zinc Surface[J]. Surface Technology, 1991, 20(5): 25.
[71] 姚建洮, 吴博瑞, 高成, 等. 渗锌钢表面含氧化石墨烯的有机封闭钝化工艺研究[J]. 化工技术与开发, 2023, 52(4): 20-23.
YAO J T, WU B R, GAO C, et al.Study on Organic Closed Passivation Process of Zinc-Impregnated Steel Containing Graphene Oxide[J]. Technology & Development of Chemical Industry, 2023, 52(4): 20-23.
[72] 边飞龙, 黄燕滨, 时小军, 等. 海洋环境下螺纹紧固件复合防腐技术[J]. 电镀与涂饰, 2010, 29(12): 64-66.
BIAN F L, HUANG Y B, SHI X J, et al.Composite Corrosion Protection Technique for Threaded Fasteners in Marine Environment[J]. Electroplating & Finishing, 2010, 29(12): 64-66.
[73] 李瑞平. 海洋环境中渗锌层和锌铬涂层的耐蚀性研究[J]. 科技与创新, 2019(9): 66-67.
LI R P.Study on Corrosion Resistance of Zinc-Infiltrated Layer and Zinc-Chromium Coating in Marine Environment[J]. Science and Technology & Innovation, 2019(9): 66-67.
[74] 张涛, 王胜民, 梁伟, 等. 渗锌层表面水性锌铝涂层制备及耐蚀性能[J/OL]. 中国表面工程(2024-12-18) [2025-03-25]. https://link.cnki.net/urlid/11.3905.TG.20241217.2347.032.
ZHANG T, WANG S M, LIANG W, et al. Preparation and corrosion resistance of waterborne Zn-Al coatingon the surface of sherardized coating[J/OL]. China surface engineering(2024-12-18)[2025-03-25]. https://link.cnki.net/urlid/11.3905.TG.20241217.2347.032.
[75] PISTOFIDIS N, VOURLIAS G, CHALIAMPALIAS D, et al.On the Mechanism of Formation of Zinc Pack Coatings[J]. Journal of Alloys and Compounds, 2006, 407(1/2): 221-225.
[76] 刘丽. 42CrMo钢表面Zn-Al-Fe-Y系列复合渗层的制备及耐腐蚀性研究[D]. 东营: 中国石油大学(华东), 2019.
LIU L.Preparation and Corrosion Resistance of Zn-Al- Fe-Y Series Composite Infiltration layer on 42CrMo Steel Surface[D]. Dongying: China University of Petroleum (Huadong), 2019.
PDF(26244 KB)

Accesses

Citation

Detail

Sections
Recommended

/