目的 研究变电站支柱绝缘子表面污秽积累规律以及脱附特性,为变电站支柱绝缘子清扫方式与机构设计提供理论指导。方法 以ZS-35/4支柱型绝缘子为样本,通过将流场仿真与物质点结构力学相结合的方法,计算了不同运行条件下的污秽颗粒黏附与脱附特性,并提出基于污秽黏附率和脱附率量化的绝缘子表面积污与清扫效果仿真模型,最终通过实验验证了模型的准确性。结果 随着绝缘子表面水膜面积增加,迎风区污秽黏附率增加显著,平均增长46.6%,背风区和侧风区污秽黏附率增长较为缓慢。当采用毛刷摩擦作为脱附手段时,干燥污秽最易脱附(脱附率99.6%),湿润污秽其次(脱附率70.4%),固结污秽最难脱附(脱附率9.6%)。当采用毛刷摩擦和水流冲洗结合的脱附方式时,水流通过毛刷摩擦形成的微孔逐步渗入固结污秽,将固结污秽转变为湿润污秽,同时水流冲洗增加脱附力。因此,固结污秽脱附率达到93.4%,比单独毛刷清扫增加83.8%,具有较好的脱附效果。结论 随着环境湿度增加,迎风区污秽黏附率增加比背风区和侧风区污秽黏附率增长更为快速。采用毛刷摩擦作为脱附手段时,干燥污秽脱附率大于湿润污秽,湿润污秽脱附率大于固结污秽。采用毛刷摩擦和水流冲洗结合的脱附方式清理固结污秽比单独摩擦或冲洗的脱附效果好。
Abstract
The surface cleanliness of insulators has a significant impact on their insulating performance. In a humid environment, the accumulation of pollutants on the surfaces of substation insulators significantly increases the probability of pollution flashovers, which endangers the safe operation of the power grid. Therefore, it is essential to investigate the pollutant adhesion and desorption characteristics of insulators in different operating environments to guide the selection of the insulator cleaning method and cleaning mechanism design. A model ZS-35/4 pillar insulator was selected for the investigation. The adhesion and desorption characteristics of pollutant particles under different operating conditions were calculated with a combined methodology of flow field simulation and material point dynamics. Quantitative metrics, including pollutant adhesion rate and desorption rate, were proposed to evaluate surface pollutant accumulation and cleaning effectiveness. Experiments were also carried out to verify the simulation model. The insulator surface was divided into a windward area, two lateral areas, and a leeward area based on the airflow direction. The windward area directly blocked the air flow with a wind speed of 0.75 m/s. The air flow blocked by the windward area converged into the lateral area, with the highest wind speed of 1.16 m/s. The leeward area had the lowest flow velocity of 0.24 m/s. In addition to the wind speed, the water film on the surface of the insulators increased the collision kinetic energy loss of the pollutant particles, which had an important effect on the pollutant accumulation characteristics. The simulation and experimental results demonstrated that as the water film area on the insulator surface increased (0%, 50%, 100%), the adhesion rate of the windward area exhibited a significant increment of 46.6% on average, while the adhesion rates of the leeward and lateral areas had lower increment rates. The pollutant adhesion rate of the lateral area increased from 1.67% to 9.95%, while the adhesion rate of the leeward area remained below 1%. The desorption process was investigated with dry, moist, and consolidated pollutants. Dry and moist pollutants formed in low and high-humidity environments, respectively, while consolidated pollutant was the formation of the moist pollutant after drying. In addition, consolidated pollutants were converted to moist pollutants by water flushing. The dry pollutant was composed of loose particles with a low inter-particle van der Waals force and no capillary force. The moist pollutant was a mixture of particles and moisture with a low van der Waals force and a high capillary force. The consolidated pollutant had no capillary force but a significantly high Van der Waals force because of the close combination of the pollutant particles. When brushing was used as one of the pollutant desorption methods, after brushing for 5 s, the dry pollutant demonstrated the highest pollutant desorption rate (99.6%), followed by moist pollutants (70.4%), with consolidated pollutants being the most resistant to be removed (9.6%). The combined desorption method of brushing and water flushing proves to be a more effective way of cleaning consolidated pollutants because the pollutant desorption rate increased from 9.6% to 93.4%. Its dual mechanisms are explained as follows: water gradually infiltrated consolidated pollutants via micro-pores formed by brush friction. It transforms them into a removable moist state, while hydraulic wash simultaneously enhances detachment forces. The combined desorption method represents an 83.8% improvement over the standalone desorption method of brushing, providing theoretical guidance for the design of pillar insulator cleaning methods.
关键词
支柱绝缘子 /
表面湿度 /
典型污秽 /
黏附特性 /
脱附特性 /
绝缘子清扫
Key words
pillar insulator /
surface moisture /
typical pollutant /
adhesion characteristics /
desorption characteristics /
insulator cleaning
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陶玉宁, 方春华. 考虑环境相对湿度和污秽度的零值绝缘子红外检测方法[J]. 电力工程技术, 2022, 41(1): 141-148.
TAO Y N, FANG C H.Infrared Detection Method of Zero Value Insulator Considering Relative Humidity and Pollution Degree[J]. Electric Power Engineering Technology, 2022, 41(1): 141-148.
[2] 张东东, 刘欣, 黄宵宁, 等. 典型工业粉尘地区复合绝缘子污秽成分及其闪络特性[J]. 电力工程技术, 2022, 41(4): 162-168.
ZHANG D D, LIU X, HUANG X N, et al.Pollution Constitutes and Flashover Characteristics of Composite Insulators in Typical Industrial Dust Areas[J]. Jiangsu Electrical Engineering, 2022, 41(4): 162-168.
[3] JIANG X L, REN X D, WANG H, et al.Effect of Inverted T Arrangement on AC Pollution Flashover Characteristics of Insulator Strings[J]. High Voltage, 2019, 4(2): 97-104.
[4] 梅红伟, 赵晨龙, 戴罕奇, 等. 染污瓷和玻璃绝缘子的湿润特性研究[J]. 中国电机工程学报, 2014, 34(9): 1471-1480.
MEI H W, ZHAO C L, DAI H Q, et al.Wetting Characteristics of Contaminated Porcelain and Glass Insulators[J]. Proceedings of the CSEE, 2014, 34(9): 1471-1480.
[5] 范超, 张血琴, 郭裕钧, 等. 绝缘材料表面污秽颗粒积聚规律研究[J]. 高压电器, 2022, 58(11): 212-220.
FAN C, ZHANG X Q, GUO Y J, et al.Study on Accumulation of Contamination Particles on Surface of Insulating Materials[J]. High Voltage Apparatus, 2022, 58(11): 212-220.
[6] 律方成, 黄华, 刘云鹏, 等. 风洞模拟自然横风条件下绝缘子带电积污特性[J]. 高电压技术, 2014, 40(5): 1281-1289.
LU F C, HUANG H, LIU Y P, et al.Contamination Depositing Characteristics of Insulators under Natural Crosswind Conditions with Wind Tunnel Simulation[J]. High Voltage Engineering, 2014, 40(5): 1281-1289.
[7] 刘云鹏, 黄志成, 耿江海, 等. 颗粒与复合绝缘子的碰撞粘附模型[J]. 中国电机工程学报, 2021, 41(21): 7540-7551.
LIU Y P, HUANG Z C, GENG J H, et al.Collision and Adhesion Model of Particle and Composite Insulator[J]. Proceedings of the CSEE, 2021, 41(21): 7540-7551.
[8] 王国志, 陈情. 电气化铁路接触网绝缘子积污特性模拟仿真[J]. 电瓷避雷器, 2020(6): 228-234.
WANG G Z, CHEN Q.Simulation on Contamination Depositing Characteristics of Electrified Railway Catenary Insulator[J]. Insulators and Surge Arresters, 2020(6): 228-234.
[9] 吕玉坤, 魏壮, 王晶. 大伞裙结构对复合绝缘子积污特性的影响[J]. 中国电机工程学报, 2023, 43(10): 4046-4055.
LYU Y K, WEI Z, WANG J.Influence of Large Shed Structure on Contamination Accumulation Characteristics of Composite Insulator[J]. Proceedings of the CSEE, 2023, 43(10): 4046-4055.
[10] 黄志成, 刘云鹏, 耿江海, 等. 复合绝缘子表面颗粒碰撞捕集模型与试验验证[J]. 高电压技术, 2022, 48(3): 902-913.
HUANG Z C, LIU Y P, GENG J H, et al.Model and Experimental Verification of Particle Collision Capture on Composite Insulator Surface[J]. High Voltage Engineering, 2022, 48(3): 902-913.
[11] HUANG Z C, LIU Y P, GENG J H, et al.Oblique Collision Experiment and Probability Calculation Model of Collision Coefficient between Micrometer Particles and Silicone Rubber Insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(2): 672-682.
[12] 刘冬雄, 杨忠毅, 曾祥君, 等. 基于离散元方法的复合绝缘子表面污秽沉积模型[J]. 高电压技术, 2024, 50(5): 2225-2236.
LIU D X, YANG Z Y, ZENG X J, et al.Contamination Deposition Model of Composite Insulator Surface Based on Discrete Element Analysis Method[J]. High Voltage Engineering, 2024, 50(5): 2225-2236.
[13] 律方成, 刘宏宇, 汪佛池, 等. 高速气流条件下污秽颗粒在复合绝缘子表面的沉积判据[J]. 电工技术学报, 2017, 32(1): 206-213.
LÜ F C, LIU H Y, WANG F C, et al.Deposit Criterion of Pollution Particles on Composite Insulators Surface under High Speed Aerosol[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 206-213.
[14] SUN J X, GAO G Q, ZHOU L J, et al.Pollution Accumulation on Rail Insulator in High-Speed Aerosol[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(3): 731-738.
[15] 刘溟, 王家礼, 马心良, 等. 干冰清洗变电站绝缘子试验[J]. 高电压技术, 2011, 37(7): 1649-1655.
LIU M, WANG J L, MA X L, et al.Cleaning Experiment of Substation Insulators by Dry Ice[J]. High Voltage Engineering, 2011, 37(7): 1649-1655.
[16] 陈泽康, 陈泽荣, 陈鸿伟, 等. 电力系统陶瓷绝缘子清洗的研究进展[J]. 陶瓷, 2023(3): 9-11.
CHEN Z K, CHEN Z R, CHEN H W, et al.Research Progress of Ceramic Insulator Cleaning in Power System[J]. Ceramics, 2023(3): 9-11.
[17] 万能, 白若蓉, 汪晓, 等. 用于清洗绝缘子的四旋翼无人机抗回冲力控制[J]. 控制理论与应用, 2021, 38(4): 496-502.
WAN N, BAI R R, WANG X, et al.Anti Backlash Force Control of Quadrotor Unmanned Aerial Vehicles for Insulator Cleaning[J]. Control Theory & Applications, 2021, 38(4): 496-502.
[18] 樊亚东, 胡聪, 王建国, 等. 500kV防污型与普通型支柱绝缘子带电清洗效率对比[J]. 高电压技术, 2017, 43(5): 1500-1508.
FAN Y D, HU C, WANG J G, et al.Comparison of Hot Water Washing Efficiency of 500 kV Post Insulator between Normal Type and Anti-Pollution Type[J]. High Voltage Engineering, 2017, 43(5): 1500-1508.
[19] 孙维, 陶玉宁, 方春华, 等. 脉冲激光清洗典型污秽瓷式绝缘子温度特性分析[J]. 电力工程技术, 2021, 40(3): 114-119.
SUN W, TAO Y N, FANG C H, et al.Temperature Characteristics of Typical Polluted Porcelain Insulator Cleaned by Pulse Laser[J]. Jiangsu Electrical Engineering, 2021, 40(3): 114-119.
[20] 任茂鑫, 关珮雯, 徐鹏, 等. MOPA脉冲光纤激光清洗电力绝缘子的工艺探索[J]. 激光技术, 2022, 46(5): 648-652.
REN M X, GUAN P W, XU P, et al.Research on Cleaning Technology of Electrical Insulators by MOPA Pulsed Fiber Laser[J]. Laser Technology, 2022, 46(5): 648-652.
[21] 刘凯, 朱天容, 刘庭, 等. 绝缘子污秽成分分析与清洗剂去污机理研究[J]. 高电压技术, 2012, 38(4): 892-898.
LIU K, ZHU T R, LIU T, et al.Chemical Composition of High-Voltage Insulator Contamination and Detergency Mechanism of the Electrified Detergent for Degreasing Insulators[J]. High Voltage Engineering, 2012, 38(4): 892-898.
[22] 李明哲, 邵仕超, 吴笑寒, 等. 特殊工业粉尘地区绝缘子超疏水涂层应用效果研究[J]. 电力工程技术, 2021, 40(6): 127-133.
LI M Z, SHAO S C, WU X H, et al.Effect of Super-Hydrophobic Coating in Special Industrial Dust Area[J]. Electric Power Engineering Technology, 2021, 40(6): 127-133.
[23] 王黎明, 王耿耿, 黄睿, 等. 降雨对绝缘子表面污秽的清洗作用[J]. 电网技术, 2015, 39(6): 1703-1708.
WANG L M, WANG G G, HUANG R, et al.Cleaning Effect of Rainfall on Surface Contamination of Insulators[J]. Power System Technology, 2015, 39(6): 1703-1708.
[24] SIMA W, YANG Q, MA G Q, et al.Experiments and Analysis of Sand Dust Flashover of the Flat Plate Model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 572-581.
[25] HE B, JIN H Y, GAO N K, et al.Characteristics of Dust Deposition on Suspended Insulators during Simulated Sandstorm[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 100-105.
[26] ABE K, KONDOH T, NAGANO Y.A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations[J]. International Journal of Heat and Mass Transfer, 1994, 37(1): 139-151.
[27] 郝金鹏, 柳萱, 伍弘, 等. 高浓度工业粉尘环境下宁夏地区线路瓷绝缘子积污模拟仿真[J]. 绝缘材料, 2023, 56(7): 82-88.
HAO J P, LIU X, WU H, et al.Simulation of Contamination Deposition on Porcelain Insulators of Transmission Lines in Ningxia under High Concentration Industrial Dust Environment[J]. Insulating Materials, 2023, 56(7): 82-88.
[28] 李成学, 吕邦欢. 基于带电颗粒动态积污的绝缘子电场分布研究[J]. 高压电器, 2024, 60(5): 147-155.
LI C X, LYU B H.Research on Electric Field Distribution of Insulators Based on Dynamic Pollution Accumulation of Charged Particles[J]. High Voltage Apparatus, 2024, 60(5): 147-155.
[29] 张友鹏, 张鼎昌, 董海燕, 等. 污秽颗粒在腕臂绝缘子表面分布规律仿真分析[J]. 铁道科学与工程学报, 2020, 17(4): 1015-1024.
ZHANG Y P, ZHANG D C, DONG H Y, et al.Simulation Analysis on Distribution Rules of Contamination Particles on the Surface of Cantilever Insulator[J]. Journal of Railway Science and Engineering, 2020, 17(4): 1015-1024.
基金
国网江苏省电力有限公司科技项目(J2024039)