离子束加工镍单晶原子级去除行为与表面损伤机制研究

李晓静, 王泽骜, 秦胜建, 高永亮, 王林

表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 129-140.

PDF(14888 KB)
PDF(14888 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 129-140. DOI: 10.16490/j.cnki.issn.1001-3660.2025.22.012
精密与超精密加工

离子束加工镍单晶原子级去除行为与表面损伤机制研究

  • 李晓静1*, 王泽骜2, 秦胜建2, 高永亮1, 王林1
作者信息 +

Atomic-scale Removal and Surface Damage Mechanisms in Ion-beam Processing of Nickel Single Crystal

  • LI Xiaojing1*, WANG Zeao2, QIN Shengjian2, GAO Yongliang1, WANG Lin1
Author information +
文章历史 +

摘要

目的 模拟氩(Ar)离子束溅射单晶镍(Ni)的行为,分析其原子级结构演变规律,揭示金属Ni的去除机制及表面与亚表面损伤机制。方法 采用分子动力学(MD)方法,模拟不同溅射能量(600 eV、1 000 eV和1 400 eV)、剂量(1.562 5×1013 ions/cm2和3.125 0×1013 ions/cm2)及入射角度(30°、45°、60°、75°和90°)下,Ar离子束溅射单晶金属Ni(001)表面过程。基于原子级微结构表征,系统分析溅射能量、剂量及角度对Ni(001)表面损伤形貌、应变分布以及溅射产额的影响规律,阐明其表面损伤机制和原子去除机制。结果 Ar离子束溅射在Ni(001)面溅射核心区域形成凹坑与表面原子堆积,并在亚表面诱发非晶原子团簇及{111}面层错等损伤结构;伴随结构缺陷的产生,核心溅射区域产生应变集中。凹坑面积、表面堆积原子数、非晶团簇原子比例、层错原子比例、亚表面损伤深度和应变均随溅射能量和剂量的增加而增大;其中60°入射角下产生的表面及亚表面损伤最为显著。溅射产额亦随溅射能量和剂量的增加而升高;30°入射角下因独特的“铲削效应”,溅射产额达到最高;应变集中和层错在后续温度平衡过程中逐渐消失。结论 离子束加工条件(能量、剂量、角度)对单晶Ni表面及亚表面损伤具有显著影响。损伤程度随溅射能量和离子剂量的增加而加剧;60°入射角时损伤最显著,而30°入射角下原子去除效率最高。本研究为实验优化离子束加工工艺提供了理论依据。

Abstract

This study presents a comprehensive molecular dynamics (MD) investigation into the atomic-scale material removal behavior and the concomitant surface and subsurface damage mechanisms in single-crystal nickel (Ni) subject to argon (Ar) ion beam sputtering. The research systematically explores the influence of critical processing parameters, specifically sputtering energy (600 eV, 1 000 eV, and 1 400 eV), ion dose (1.562 5×1013 ions/cm² and 3.125 0×1013 ions/cm2), and incident angle (30°, 45°, 60°, 75°, and 90°), on the evolution of surface topography, strain field distribution, subsurface defect generation, and sputtering yield of the single crystal Ni (001) surface. MD simulations are conducted using the LAMMPS package with accurately calibrated interatomic potentials, providing detailed insights into the femtosecond-scale dynamics of ion-target interactions.
The simulation results unequivocally demonstrate that Ar ion beam sputtering produces distinct surface modifications characterized by the formation of nanoscale pits and adjacent atomic pile-ups within the core sputtered region. Concurrently, substantial subsurface damage manifests in the form of amorphous atomic clusters and crystallographic defects which are identified as {111}-plane stacking faults. These microstructural alterations are accompanied by significant strain concentration in the irradiated zone, with the magnitude and spatial distribution of strain being profoundly influenced by the specific processing parameters employed. Quantitative analysis establishes clear correlations between processing conditions and resultant damage characteristics. The pit area, the population of piled-up surface atoms, the proportional volume of amorphous material, the density of stacking fault atoms, the maximum depth of subsurface damage, and the peak strain values all exhibit a consistent and marked increase with escalating sputtering energy and accumulated ion dose.
There is a particularly noteworthy finding concerning the pivotal role of incident angle in modulating damage morphology and material removal efficiency. The most extensive surface and subsurface damage, in terms of both defect density and penetration depth, occurs at an incident angle of 60°. This optimal damage condition is attributed to the most effective synergy between the momentum components perpendicular and parallel to the target surface, facilitating maximum energy transfer and lattice disruption. In contrast, the sputtering yield, defined as the number of removed Ni atoms per incident Ar ion, follows a different angular dependence. It increases progressively with both energy and dose, reaching its absolute maximum at a shallower incidence angle of 30°. This peak removal efficiency is rationalized by a "shovel-sputtering effect," wherein the substantial parallel momentum component at shallow angles promotes efficient lateral displacement and ejection of surface atoms. Temporal analysis of the relaxation process further reveals that the initially generated strain concentrations and a considerable fraction of the stacking faults are not stable; they gradually dissipate and annihilate during subsequent thermal equilibration, highlighting the dynamic nature of defect evolution post-irradiation.
The collective findings underscore that ion beam processing parameters exert a profound and deterministic influence on the surface integrity, subsurface damage state, and material removal kinetics in single crystal Ni. The damage severity escalates systematically with increasing sputtering energy and ion fluence, while the incident angle dictates the balance between penetration-driven damage and surface-layer ejection efficiency. The observation that the most severe structural degradation (at 60°) is decoupled from the condition of maximum material removal rate (at 30°) provides crucial insight for process optimization. This detailed atomic-scale understanding of the interplay between processing parameters, defect generation, and material removal mechanisms offers valuable theoretical guidance and a robust predictive framework for the experimental optimization of ion beam processing techniques, particularly for high-precision machining and surface engineering applications of metallic single crystals and related advanced materials.

关键词

离子束加工 / 单晶 / 表面损伤 / 溅射产额 / 分子动力学

Key words

ion beam machining / single crystal / surface damage / sputtering yield / molecular dynamics

引用本文

导出引用
李晓静, 王泽骜, 秦胜建, 高永亮, 王林. 离子束加工镍单晶原子级去除行为与表面损伤机制研究[J]. 表面技术. 2025, 54(22): 129-140 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.012
LI Xiaojing, WANG Zeao, QIN Shengjian, GAO Yongliang, WANG Lin. Atomic-scale Removal and Surface Damage Mechanisms in Ion-beam Processing of Nickel Single Crystal[J]. Surface Technology. 2025, 54(22): 129-140 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.012
中图分类号: TH161   

参考文献

[1] 周济. 智能制造--“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.
ZHOU J.Intelligent Manufacturing—Main Direction of "Made in China 2025"[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284.
[2] HORST O M, ADLER D, GIT P, et al.Exploring the Fundamentals of Ni-Based Superalloy Single Crystal (SX) Alloy Design: Chemical Composition Vs. Microstructure[J]. Materials & Design, 2020, 195: 108976.
[3] KONG T, DO J, KIM Y K, et al.Mechanical Properties of Ni-Based Single-Crystal Superalloy at 4.2 K[J]. Materials Science and Engineering: A, 2025, 942: 148679.
[4] MARKL M, MÜLLER A, RITTER N, et al. Development of Single-Crystal Ni-Base Superalloys Based on Multi-Criteria Numerical Optimization and Efficient Use of Refractory Elements[J]. Metallurgical and Materials Transactions A, 2018, 49(9): 4134-4145.
[5] 夏斯伟, 周海, 徐晓明, 等. 单晶材料纳米加工的分子动力学模拟研究进展[J]. 金刚石与磨料磨具工程, 2018, 38(5): 78-86.
XIA S W, ZHOU H, XU X M, et al.Advances in Molecular Dynamics Simulation of Nano-Manufacturing of Monocrystalline Materials[J]. Diamond & Abrasives Engineering, 2018, 38(5): 78-86.
[6] LEE T Y, CHEN P T, HUANG C C, et al.Advances in Core Technologies for Semiconductor Manufacturing: Applications and Challenges of Atomic Layer Etching, Neutral Beam Etching and Atomic Layer Deposition[J]. Nanoscale Advances, 2025, 7(10): 2796-2817.
[7] MIKHAILENKO M S, PESTOV A E, CHKHALO N I, et al.Influence of Ion-Beam Etching by Ar Ions with an Energy of 200-1000?eV on the Roughness and Sputtering Yield of a Single-Crystal Silicon Surface[J]. Applied Optics, 2022, 61(10): 2825-2833.
[8] LI R X, ELICEIRI M H, LI J G, et al.Optical Emission Spectroscopy and Gas Kinetics of Picosecond Laser-Induced Chlorine Dissociation for Atomic Layer Etching of Silicon[J]. The Journal of Physical Chemistry C, 2025, 129(5): 2460-2466.
[9] COSTANTINI G, RUSPONI S, MONGEOT F B D, et al. Periodic Structures Induced by Normal-incidence Sputtering on Ag(110) and Ag(001): Flux and Temperature Dependence[J]. Journal of Physics Condensed Matter, 2001, 13(26): 5875.
[10] VALBUSA U, BORAGNO C, BUATIER DE MONGEOT F. Nanostructuring by Ion Beam[J]. Materials Science and Engineering: C, 2003, 23(1/2): 201-209.
[11] BERNHEIM M, SLODZIAN G.Effect of Oxygen on the Sputtering of Aluminium Targets Bombarded with Argon Ions[J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(1): 93-99.
[12] KARMAKAR P, GHOSE D.Ion Beam Sputtering Induced Ripple Formation in Thin Metal Films[J]. Surface Science, 2004, 554(2/3): L101-L106.
[13] MISHRA P, GHOSE D.Formation of Nanoripples in Al Films during O2+ Sputtering[J]. Physical Review B, 2006, 74(15): 155427.
[14] MISHRA P, GHOSE D.The Energy Dependence of Sputtering Induced Ripple Topography in Al Film[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(8): 1635-1641.
[15] MISHRA P, GHOSE D.Effect of Initial Target Surface Roughness on the Evolution of Ripple Topography Induced by Oxygen Sputtering of Al Films[J]. Journal of Applied Physics, 2009, 105: 014304.
[16] GAILLY P, PETERMANN C, TIHON P, et al.Ripple Topography and Roughness Evolution on Surface of Polycrystalline Gold and Silver Thin Films under Low Energy Ar-Ion Beam Sputtering[J]. Applied Surface Science, 2012, 258(19): 7717-7725.
[17] LIU F S, REN H T, PENG S X, et al.Effect of Crystal Orientation on Low Flux Helium and Hydrogen Ion Irradiation in Polycrystalline Tungsten[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 333: 120-123.
[18] BAUER J, FROST F.Orientation-Dependent Nanostructuring of Titanium Surfaces by Low-Energy Ion Beam Erosion[J]. Surface and Interface Analysis, 2020, 52(12): 1071-1076.
[19] BAUER J, FROST F, ARNOLD T.Reactive Ion Beam Figuring of Optical Aluminium Surfaces[J]. Journal of Physics D: Applied Physics, 2017, 50(8): 085101.
[20] BAUER J.Finishing of Metal Optics by Ion Beam Technologies[J]. Optical Engineering, 2019, 58(9): 1.
[21] BAUER J, ULITSCHKA M, FROST F, et al.Figuring of Optical Aluminium Devices by Reactive Ion Beam Etching[J]. EPJ Web of Conferences, 2019, 215: 06002.
[22] THOMPSON A P, AKTULGA H M, BERGER R, et al.LAMMPS-a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales[J]. Computer Physics Communications, 2022, 271: 108171.
[23] EVANS D J, HOLIAN B L.The Nose-Hoover Thermostat[J]. The Journal of Chemical Physics, 1985, 83(8): 4069-4074.
[24] ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers[J]. Physical Review B, 2004, 69(14): 144113.
[25] GRANBERG F, NORDLUND K, ULLAH M W, et al.Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys[J]. Physical Review Letters, 2016, 116(13): 135504.
[26] ZIEGLER J F, ZIEGLER M D, BIERSACK J P.SRIM-the Stopping and Range of Ions in Matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.
[27] STUKOWSKI A.Visualization and Analysis of Atomistic Simulation Data with OVITO-The Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.

PDF(14888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/