二维h-BN的制备及在防腐涂层中的应用研究进展

冯雪莲, 李桂花, 刘晓燕, 高元明, 白玉, 马文

表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 16-30.

PDF(8442 KB)
PDF(8442 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 16-30. DOI: 10.16490/j.cnki.issn.1001-3660.2025.22.002
研究综述

二维h-BN的制备及在防腐涂层中的应用研究进展

  • 冯雪莲, 李桂花*, 刘晓燕, 高元明, 白玉, 马文
作者信息 +

Research Progress on Preparation of Two-dimensional h-BN and Application in Anti-corrosion Coatings

  • FENG Xuelian, LI Guihua*, LIU Xiaoyan, GAO Yuanming, BAI Yu, MA Wen
Author information +
文章历史 +

摘要

六方氮化硼(h-BN)作为一种典型的二维层状材料,凭借其优异的高温稳定性、化学惰性和电绝缘性,在有机防腐涂层领域展现出巨大的应用潜力。系统综述了二维h-BN的制备及在有机防腐涂层中的应用研究进展,内容涵盖h-BN的晶体结构、材料特性、制备方法及其在有机防腐涂层中的应用等多个方面。首先,简单阐述了h-BN的晶体结构特征及其关键材料特性。其次,详细介绍了制备h-BN纳米片的方法,主要包括两大类,一类是“自上而下”法(如机械法、液相法、插层法等),另一类是“自下而上”法(如化学气相沉积、物理气相沉积等)。同时,比较了各种制备方法在产率、成本控制、均一性及规模化生产可行性等方面的突出优缺点。随后,重点探讨了h-BN纳米片在有机防腐涂层中的应用研究进展,重点聚焦环氧树脂、聚氨酯及丙烯酸树脂三类典型聚合物涂层体系。通过对比分析h-BN纳米片改性前后涂层体系的耐蚀性演变规律,深入阐释了其增强机制。最后,简要分析了h-BN纳米片当前面临的技术瓶颈,并对其未来发展方向进行了展望,以期为该材料在防腐蚀领域的进一步研究和应用提供参考。

Abstract

Hexagonal boron nitride, as a typical two-dimensional material, demonstrates significant application potential in anti-corrosion coatings by virtue of its excellent high-temperature stability, chemical inertness, and electrical insulation. Research shows monolayer or multilayer h-BN in coatings generate "labyrinth effect", providing superior corrosion protection than multilayer h-BN. However, the partial ionic bonding characteristics between boron and nitrogen atoms within h-BN interlayers make it difficult to exfoliate h-BN into monolayer or multilayer nanosheets. To solve this problem, researchers are developing efficient preparation methods for h-BN nanosheets, which is particularly crucial for the practical application of h-BN practical applications in corrosion prevention.
This paper systematically reviews the research progress on preparation of two-dimensional hexagonal boron nitride (h-BN) and its application in organic anti-corrosion coatings. The content encompasses multiple aspects, including the crystal structure, material properties, preparation methods, and applications in organic anti-corrosion coatings of h-BN.
Firstly, the crystal structure characteristics and key material properties of h-BN are briefly described. As one of the most common crystalline forms of boron nitride, h-BN features a layered structure similar to graphite. Within each layer, boron (B) and nitrogen (N) atoms are alternately arranged in a 1∶1 ratio to form a honeycomb-like structure, while the adjacent layers are connected by van der Waals forces. Compared with graphite, h-BN not only exhibits comparable mechanical strength and thermal properties but also possesses additional superior characteristics, such as being electrically insulating and having a chemically inert surface.
Secondly, the methods for preparing h-BN nanosheets are discussed in detail, which are primarily categorized into two major classes: one is the "top-down" approach (such as mechanical exfoliation, liquid-phase exfoliation, intercalation methods, etc.), and the other is the "bottom-up" approach (such as chemical vapor deposition, physical vapor deposition, etc.). At the same time, the prominent advantages and disadvantages of various preparation methods in terms of yield, cost control, uniformity, and feasibility of large-scale production are compared in detail. For example, the "top-down" approachs have a simple operation process but uneven product quality, while the "bottom-up" approachs can achieve precise structural control, but are limited by equipment complexity and cost-effectiveness.
Furthermore, this article also discusses in detail the application research progress of h-BN nanosheets in organic anti-corrosion coatings, focusing on three typical polymer coating systems: epoxy resin, polyurethane, and acrylic resin. By comparing and analyzing the corrosion resistance evolution of the coating system before and after modification with h-BN nanosheets, the enhancement mechanisms are deeply elucidated, including key mechanisms such as physical barrier effects, prolonged diffusion path of corrosive medium, and interfacial bonding reinforcement. These key mechanisms lay a solid foundation for the application of h-BN nanosheets in organic anti-corrosion coatings.
Finally, based on the systematic summary of the existing research progress of h-BN nanosheets, this paper briefly analyzes the technical bottlenecks currently faced by h-BN nanosheets from the aspects such as preparation process, dispersion effect, and protective performance. And the future development direction is predicted, providing a valuable reference for expanding the research and application of h-BN in the anti-corrosion field.

关键词

六方氮化硼 / 制备方法 / 有机防腐涂层 / 环氧树脂 / 聚氨酯 / 丙烯酸树脂

Key words

hexagonal boron nitride / preparation method / organic anti-corrosion coating / epoxy resin / polyurethane / acrylic resin

引用本文

导出引用
冯雪莲, 李桂花, 刘晓燕, 高元明, 白玉, 马文. 二维h-BN的制备及在防腐涂层中的应用研究进展[J]. 表面技术. 2025, 54(22): 16-30 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.002
FENG Xuelian, LI Guihua, LIU Xiaoyan, GAO Yuanming, BAI Yu, MA Wen. Research Progress on Preparation of Two-dimensional h-BN and Application in Anti-corrosion Coatings[J]. Surface Technology. 2025, 54(22): 16-30 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.002
中图分类号: TG174.4   

参考文献

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669.
[2] WADHWA G K, LATE D J, CHARHATE S, et al.1D and 2D Boron Nitride Nano Structures: A Critical Analysis for Emerging Applications in the Field of Nanocomposites[J]. ACS Omega, 2024, 9(25): 26737-26761.
[3] 罗曼, 周杨, 成田恬, 等. 二维六方氮化硼的制备及其光电子器件研究进展[J]. 光子学报, 2024, 53(7): 0753307.
LUO M, ZHOU Y, CHENG T T, et al.Research Progress on Fabrication of Two-Dimensional Hexagonal Boron Nitride and Its Optoelectronic Devices(Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753307.
[4] HOANG D Q, VU N H, NGUYEN T Q, et al.Growth Mechanisms of hBN Crystalline Nanostructures with Rf Sputtering Deposition: Challenges, Opportunities, and Future Perspectives[J]. Physica Scripta, 2023, 98(4): 042001.
[5] GORBACHEV R V, RIAZ I, NAIR R R, et al.Hunting for Monolayer Boron Nitride: Optical and Raman Signatures[J]. Small, 2011, 7(4): 465-468.
[6] LI X M, LONG Y Y, MA L M, et al.Coating Performance of Hexagonal Boron Nitride and Graphene Layers[J]. 2D Materials, 2021, 8(3): 034002.
[7] JIANG X F, WENG Q H, WANG X B, et al.Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review[J]. Journal of Materials Science & Technology, 2015, 31(6): 589-598.
[8] WU Y Q, HE Y, ZHOU T G, et al.Synergistic Functionalization of H-BN by Mechanical Exfoliation and PEI Chemical Modification for Enhancing the Corrosion Resistance of Waterborne Epoxy Coating[J]. Progress in Organic Coatings, 2020, 142: 105541.
[9] LIU D A, WANG Y Q, GONG Q X, et al.Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis[J]. The Chemical Record, 2024, 24(7): e202300334.
[10] GADORE V, MISHRA S R, SINGH A K, et al.Advances in Boron Nitride-Based Nanomaterials for Environmental Remediation and Water Splitting: A Review[J]. RSC Advances, 2024, 14(5): 3447-3472.
[11] MATETI S, SULTANA I, CHEN Y, et al.Boron Nitride-Based Nanomaterials: Synthesis and Application in Rechargeable Batteries[J]. Batteries, 2023, 9(7): 344.
[12] KIM D C, PARK H.Ultraviolet Photodetector Using Nanostructured Hexagonal Boron Nitride with Gold Nanoparticles[J]. Sensors, 2025, 25(3): 759.
[13] VAN HAU T, VAN DUONG L, HONG HANH P, et al.Hexagonal Boron Nitride Nanosheets Reinforcing Ni-Mo Alloy Coating for Improved Wear Resistance[J]. Materials Letters, 2023, 352: 135054.
[14] TAHERINIA Z, GHORBANI-CHOGHAMARANI A, NAGHIPOUR A.Catalytic Performance of Hexagonal Boron Nitride@APTS-SO3H as Heterogeneous Nanocatalyst for Biodiesel Production[J]. Fuel, 2024, 374: 132410.
[15] GONZALEZ-ORTIZ D, SALAMEH C, BECHELANY M, et al.Nanostructured Boron Nitride-Based Materials: Synthesis and Applications[J]. Materials Today Advances, 2020, 8: 100107.
[16] 李群. 低维六方氮化硼制备及功能化应用的基础研究[D]. 北京: 北京科技大学, 2020.
LI Q.Fundamental research on preparation and functional application of low-dimensional hexagonal boron nitride[D]. Beijing: University of Science and Technology Beijing, 2020.
[17] ALI M, ABDALA A.Large Scale Synthesis of Hexagonal Boron Nitride Nanosheets and Their Use in Thermally Conductive Polyethylene Nanocomposites[J]. International Journal of Energy Research, 2022, 46(8): 10143-10156.
[18] LEI W W, MOCHALIN V N, LIU D, et al.Boron Nitride Colloidal Solutions, Ultralight Aerogels and Freestanding Membranes through One-Step Exfoliation and Functionalization[J]. Nature Communications, 2015, 6: 8849.
[19] CHEN S H, XU R Z, LIU J M, et al.Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation[J]. Advanced Materials, 2019, 31(10): 1804810.
[20] MA J R, LUO N, XIE Z L, et al. Preparation of Modified Hexagonal Boron Nitride by Ball-Milling and Enhanced Thermal Conductivity of Epoxy Resin[J]. Materials Research Express, 2019, 6(10): 1050d8.
[21] LIU R, GUO D G, DU X X, et al. Fabrication of Surface-Carbonated Boron Nitride Nanosheets and Their Application as Water-Based Lubrication Additives[J]. Wear, 2025, 560/561: 205633.
[22] AMIRI A, NARAGHI M, AHMADI G, et al.A Review on Liquid-Phase Exfoliation for Scalable Production of Pure Graphene, Wrinkled, Crumpled and Functionalized Graphene and Challenges[J]. FlatChem, 2018, 8: 40-71.
[23] GAN W T, CHEN C J, WANG Z Y, et al.Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating[J]. Advanced Functional Materials, 2020, 30(10): 1909196.
[24] NASR ESFAHANI A, MALCOLM A J, XU L Z, et al.Ultra-Thin Films of Solution-Exfoliated Hexagonal Boron Nitride by Langmuir Deposition[J]. Journal of Materials Chemistry C, 2020, 8(39): 13695-13704.
[25] CHOUDHARY P, SINGH CHAUHAN S, SHARMA D, et al.Nanoarchitectonics of Sulfonated Boron Nitride for Catalytic Synthesis of Aromatic Nitriles under Mild Conditions[J]. Chemical Engineering Journal, 2023, 475: 146055.
[26] XUE Y F, LIU Q, HE G J, et al.Excellent Electrical Conductivity of the Exfoliated and Fluorinated Hexagonal Boron Nitride Nanosheets[J]. Nanoscale Research Letters, 2013, 8(1): 49.
[27] ZHU Y J, WANG W W, QI R J, et al.Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids[J]. Angewandte Chemie International Edition, 2004, 43(11): 1410-1414.
[28] SUN G X, BI J Q.Scalable Production of Boron Nitride Nanosheets in Ionic Liquids by Shear-Assisted Thermal Treatment[J]. Ceramics International, 2021, 47(6): 7776-7782.
[29] MORISHITA T, OKAMOTO H, KATAGIRI Y, et al.A High-Yield Ionic Liquid-Promoted Synthesis of Boron Nitride Nanosheets by Direct Exfoliation[J]. Chemical Communications, 2015, 51(60): 12068-12071.
[30] DENG W W, YU L, LI X, et al.Hexafluoroisopropanol-Based Hydrophobic Deep Eutectic Solvents for Dispersive Liquid-Liquid Microextraction of Pyrethroids in Tea Beverages and Fruit Juices[J]. Food Chemistry, 2019, 274: 891-899.
[31] EL ACHKAR T, GREIGE-GERGES H, FOURMENTIN S.Basics and Properties of Deep Eutectic Solvents: A Review[J]. Environmental Chemistry Letters, 2021, 19(4): 3397-3408.
[32] DING Q H, SHAN Q, ZHANG Q, et al.Research on the Effect of DES Properties on the Preparation of H-BN Nanosheets by Electrochemical-Liquid Phase Exfoliation Method[J]. Journal of Molecular Liquids, 2024, 409: 125496.
[33] WANG N, DUCHAMP M, XUE C, et al.Single-Crystalline W-Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses near Room Temperature[J]. Advanced Materials Interfaces, 2016, 3(15): 1600164.
[34] WANG N, YANG G, WANG H X, et al.A Universal Method for Large-Yield and High-Concentration Exfoliation of Two-Dimensional Hexagonal Boron Nitride Nanosheets[J]. Materials Today, 2019, 27: 33-42.
[35] QIU S H, YU Y, CHANG Y H, et al.Nonconductive Layered Hexagonal Boron Nitride Preparation via a Co-Exfoliation Strategy and Nanohybrid Coating Construction for Corrosion Protection[J]. Progress in Organic Coatings, 2024, 186: 108052.
[36] WANG Y, MAYORGA-MARTINEZ C C, CHIA X, et al. Nonconductive Layered Hexagonal Boron Nitride Exfoliation by Bipolar Electrochemistry[J]. Nanoscale, 2018, 10(15): 7298-7303.
[37] JIANG H, LI J D, XIE Y H, et al.Rapid Exfoliation and Surface Hydroxylation of High-Quality Boron Nitride Nanosheets Enabling Waterborne Polyurethane with High Thermal Conductivity and Flame Retardancy[J]. Advanced Composites and Hybrid Materials, 2024, 7(1): 8.
[38] CHEN C F, SHAO C K, WANG A D.Chemical Exfoliating of Boron Nitride into Edge-Hydroxylated Nanosheets[J]. Journal of Materials Science, 2023, 58(10): 4416-4427.
[39] WANG K, LI F Y, SUN X Y, et al.Transparent Chitosan/Hexagonal Boron Nitride Nanosheets Composite Films with Enhanced UV Shielding and Gas Barrier Properties[J]. International Journal of Biological Macromolecules, 2023, 251: 126308.
[40] SELAMBAKKANNU S, OTHMAN N A F, ISHAK N L, et al. Electron Beam-Assisted Exfoliation of Boron Nitride and Covalent Functionalization[J]. Radiation Physics and Chemistry, 2024, 222: 111784.
[41] WOOD G E, MARSDEN A J, MUDD J J, et al.Van Der Waals Epitaxy of Monolayer Hexagonal Boron Nitride on Copper Foil: Growth, Crystallography and Electronic Band Structure[J]. 2D Materials, 2015, 2(2): 025003.
[42] KIM G, JANG A R, YOUNG J, et al.Growth of High-Crystalline, Single-Layer Hexagonal Boron Nitride on Recyclable Platinum Foil[J]. Nano Letters, 2013, 13(4): 1834-1839.
[43] LIU Z, GONG Y J, ZHOU W, et al.Ultrathin High-Temperature Oxidation-Resistant Coatings of Hexagonal Boron Nitride[J]. Nature Communications, 2013, 4: 2541.
[44] ARIAS P, EBNONNASIR A, CIOBANU C V, et al.Growth Kinetics of Two-Dimensional Hexagonal Boron Nitride Layers on Pd(111)[J]. Nano Letters, 2020, 20(4): 2886-2891.
[45] LEE J S, CHOI S H, YUN S J, et al.Wafer-Scale Single-Crystal Hexagonal Boron Nitride Film via Self-Collimated Grain Formation[J]. Science, 2018, 362(6416): 817-821.
[46] CHEN C, WANG Q, ZHANG Z Y, et al.Facile Growth of H-BN Films by Using Surface-Activated H-BN Powders as Precursors[J]. Small Methods, 2025, 9(4): 2401422.
[47] DONG J C, ZHANG L N, DAI X Y, et al.The Epitaxy of 2D Materials Growth[J]. Nature Communications, 2020, 11: 5862.
[48] PARK H J, CHA J, CHOI M, et al. One-Dimensional Hexagonal Boron Nitride Conducting Channel[J]. Science Advances, 2020, 6(10): eaay4958.
[49] JUNG J H, ZHAO C, YANG S J, et al.Step-Directed Epitaxy of Unidirectional Hexagonal Boron Nitride on Vicinal Ge(110)[J]. Small Structures, 2024, 5(12): 2400297.
[50] LI J Z, SAMAD A, YUAN Y, et al.Single-Crystal hBN Monolayers from Aligned Hexagonal Islands[J]. Nature Communications, 2024, 15: 8589.
[51] JACQUEMIN M, REMIGY A, MENACER B, et al.Amorphous and Hexagonal Boron Nitride Growth Using Bromide Chemistry[J]. MRS Communications, 2024, 14(1): 63-68.
[52] WANG H L, ZHANG X W, MENG J H, et al.Controlled Growth of Few-Layer Hexagonal Boron Nitride on Copper Foils Using Ion Beam Sputtering Deposition[J]. Small, 2015, 11(13): 1542-1547.
[53] STEWART D M, LAD R J.Enhanced Crystallinity of H-BN Films Induced by Substrate Bias during Magnetron Sputtering[J]. Physica Status Solidi (b), 2018, 255(3): 1700458.
[54] OKS E, ANDERS A, NIKOLAEV A, et al.Sputtering of Pure Boron Using a Magnetron without a Radio-Frequency Supply[J]. Review of Scientific Instruments, 2017, 88(4): 043506.
[55] STANKUS V, VASILIAUSKAS A, GUOBIENĖ A, et al.Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering[J]. Molecules, 2024, 29(22): 5247.
[56] CHNG S S, ZHU M M, WU J, et al.Nitrogen-Mediated Aligned Growth of Hexagonal BN Films for Reliable High-Performance InSe Transistors[J]. Journal of Materials Chemistry C, 2020, 8(13): 4421-4431.
[57] ARIANPOUYA M, NEMATOLLAHI M, ARIANPOUYA N, et al.Novel Properties of a Conductive Polymeric Coating with an Insulating Nanoadditive[J]. Progress in Organic Coatings, 2016, 90: 369-379.
[58] LIANG J, SRINIVASAN P B, BLAWERT C, et al.Comparison of Electrochemical Corrosion Behaviour of MgO and ZrO2 Coatings on AM50 Magnesium Alloy Formed by Plasma Electrolytic Oxidation[J]. Corrosion Science, 2009, 51(10): 2483-2492.
[59] KHUN N W, LIU E, ZENG X T.Corrosion Behavior of Nitrogen Doped Diamond-Like Carbon Thin Films in NaCl Solutions[J]. Corrosion Science, 2009, 51(9): 2158-2164.
[60] BEHZADNASAB M, MIRABEDINI S M, ESFANDEH M.Corrosion Protection of Steel by Epoxy Nanocomposite Coatings Containing Various Combinations of Clay and Nanoparticulate Zirconia[J]. Corrosion Science, 2013, 75: 134-141.
[61] DUAN H L, JI J W, CAO C C, et al.Enhanced Anti-Corrosion Performance of Carbon Steels via CeO2@BNNSs/Epoxy Resin Composite Coatings[J]. Macromolecular Chemistry and Physics, 2023, 224(11): 2300006.
[62] LIU T, ZHANG D W, MA L W, et al.Smart Protective Coatings with Self‐Sensing and Active Corrosion Protection Dual Functionality from pH-Sensitive Calcium Carbonate Microcontainers[J]. Corrosion Science, 2022, 200: 110254.
[63] 林潼, 杜蓉, 郑晓军, 等. Fe3O4-MoS2协同改性环氧树脂涂层的制备及耐磨防腐性能研究[J]. 表面技术, 2024, 53(20): 102-117.
LIN T, DU R, ZHENG X J, et al.Fe3O4-MoS2 Nanohybrid for Enhancing Wear Resistance and Anticorrosion Performance of Epoxy Coatings[J]. Surface Technology, 2024, 53(20): 102-117.
[64] 杨康, 杨留洋, 范海明. 壳聚糖改性石墨相氮化碳/环氧树脂复合涂层的制备及防腐性能研究[J]. 表面技术, 2024, 53(12): 102-113.
YANG K, YANG L Y, FAN H M.Preparation and Corrosion Resistance of Modified Graphite-Phase Carbon Nitride/Chitosan Epoxy Resin Composite Coating[J]. Surface Technology, 2024, 53(12): 102-113.
[65] BARTOLI M, GIORCELLI M, ROSSO C, et al.Influence of Commercial Biochar Fillers on Brittleness/Ductility of Epoxy Resin Composites[J]. Applied Sciences, 2019, 9(15): 3109.
[66] 隋晓东, 熊舒, 朱亮, 等. 国产T800级碳纤维/环氧树脂复合材料湿热性能[J]. 航空材料学报, 2019, 39(3): 88-93.
SUI X D, XIONG S, ZHU L, et al.Hygrothermal Properties of Domestic T800 Carbonfiber/Epoxy Composites[J]. Journal of Aeronautical Materials, 2019, 39(3): 88-93.
[67] YU R C, YUAN X.Rising of Boron Nitride: A Review on Boron Nitride Nanosheets Enhanced Anti-Corrosion Coatings[J]. Progress in Organic Coatings, 2024, 186: 107990.
[68] GE X, LIANG W J, GE J F, et al.Hexagonal Boron Nitride/Microfibril Cellulose/Poly(vinyl alcohol) Ternary Composite Film with Thermal Conductivity and Flexibility[J]. Materials, 2019, 12(1): 104.
[69] WANG J H, ZHAO D, ZOU X, et al.The Exfoliation and Functionalization of Boron Nitride Nanosheets and Their Utilization in Silicone Composites with Improved Thermal Conductivity[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(17): 12984-12994.
[70] CHEN X Y, WU Y M, MEI S X, et al.Octadecylamine-Functionalized Hexagonal Boron Nitride Nanosheets Toward Highly Anti-Corrosive Epoxy Composite Coatings[J]. Progress in Organic Coatings, 2024, 188: 108233.
[71] SHI N Q, LI H Y, LI X, et al.ZIF-8 and Benzimidazole Co-Modified H-BN for Enhancing Anti-Corrosion Performance of Epoxy Coatings[J]. Progress in Organic Coatings, 2023, 183: 107808.
[72] YU C J, SALZANO DE LUNA M, RUSSO A, et al. Role of Diisocyanate Structure on Self-Healing and Anticorrosion Properties of Waterborne Polyurethane Coatings[J]. Advanced Materials Interfaces, 2021, 8(10): 2100117.
[73] DEYAB M A.Anticorrosion Properties of Nanocomposites Coatings: A Critical Review[J]. Journal of Molecular Liquids, 2020, 313: 113533.
[74] 殷锦捷, 周华利. 有机硅和环氧树脂复合改性聚氨酯涂料的研制[J]. 表面技术, 2010, 39(6): 93-96.
YIN J J, ZHOU H L.Preparation of Organosilicon and Epoxy Resin Modified Polyurethane Coating[J]. Surface Technology, 2010, 39(6): 93-96.
[75] 蔡光义, 王浩伟, 赵苇杭, 等. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
CAI G Y, WANG H W, ZHAO W H, et al.Effect of Nano-CeO2 on Anticorrosion Performance for Polyurethane Coating[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(5): 411-420.
[76] LUO X Y, LI X J, LI M M, et al.A Bi-Layer Superhydrophobic Coating with Long-Term Anti-Corrosion Enabled by Functionalized Hexagonal Boron Nitride and PDMS-Based Polyurethane on Mg Alloy[J]. Polymer, 2024, 315: 127816.
[77] VINODHINI S P, XAVIER J R, GANESAN R.A High-Performance Boron Nitride Nanocomposite Coating with Enhanced Anticorrosion and Flame Retardant Properties for Aerospace Applications[J]. FlatChem, 2024, 48: 100771.
[78] NGUYEN T V, NGUYEN TRI P, NGUYEN T D, et al.Accelerated Degradation of Water Borne Acrylic Nanocomposites Used in Outdoor Protective Coatings[J]. Polymer Degradation and Stability, 2016, 128: 65-76.
[79] LI H Q, WANG J H, YANG J X, et al.Large CeO2 Nanoflakes Modified by Graphene as Barriers in Waterborne Acrylic Coatings and the Improved Anticorrosion Performance[J]. Progress in Organic Coatings, 2020, 143: 105607.
[80] ZOU B J, CHANG X J, YANG J X, et al.Plasma Treated H-BN Nanoflakes as Barriers to Enhance Anticorrosion of Acrylic Coating on Steel[J]. Progress in Organic Coatings, 2019, 133: 139-144.

基金

内蒙古自治区自然科学基金项目(2024QN05003); 内蒙古自治区科技计划项目(2025KYPT0027); 内蒙古自治区一流学科科研专项项目(YLXKZX-NGD-040)

PDF(8442 KB)

Accesses

Citation

Detail

段落导航
相关文章

/