高熵陶瓷耐磨耐蚀一体化涂层发展现状

胡杰珍, 钟声昊, 邓培昌, 耿保玉, 李友炽, 吴方明

表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 1-15.

PDF(9354 KB)
PDF(9354 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (22) : 1-15. DOI: 10.16490/j.cnki.issn.1001-3660.2025.22.001
研究综述

高熵陶瓷耐磨耐蚀一体化涂层发展现状

  • 胡杰珍a,b, 钟声昊a,b, 邓培昌b,c, 耿保玉a,b*, 李友炽a,b, 吴方明a,b
作者信息 +

Development Status of High-entropy Ceramic Coatings with Integrated Wear and Corrosion Resistance

  • HU Jiezhena,b, ZHONG Shenghaoa,b, DENG Peichangb,c, GENG Baoyua,b*, LI Youchia,b, WU Fangminga,b
Author information +
文章历史 +

摘要

工程装备运动部件在腐蚀-摩擦协同作用下易发生加速失效,严重影响设备可靠性和服役寿命。高熵陶瓷凭借其高熵效应赋予的优异化学稳定性、耐蚀性以及高硬度,成为耐磨耐蚀一体化涂层的理想材料体系之一。本文系统综述了高熵陶瓷的内涵、种类、组元设计原则和涂层制备工艺进展。根据非金属元素组成,将高熵陶瓷分为氮化物、氧化物、碳化物和硼化物等体系,详细分析了各类高熵陶瓷的耐磨耐蚀性能特征,展现了高熵陶瓷在耐磨耐蚀一体化涂层的应用方面具有极高的潜力。研究表明,高熵陶瓷的组元配比通过影响混合熵和微观组织结构,进而调控其力学性能与耐蚀行为。当前研究主要采用半经验法和第一性原理计算等方法开展组元设计,通过优化单一金属或非金属元素的组分比例,探索高熵陶瓷涂层的最佳耐蚀耐磨性能。基于现有研究进展,指出高熵陶瓷涂层仍面临耐磨与耐蚀性能难以协同提升,涂层与基体界面结合强度不足等关键科学问题和技术挑战,并且展望了高通量计算与机器学习辅助组元设计,多尺度结构优化等未来发展方向。上述研究成果为高熵陶瓷耐磨耐蚀一体化涂层的开发与应用提供了系统的理论指导和技术参考。

Abstract

The moving components in engineering equipment are highly susceptible to significantly accelerated failure under the synergistic effects of corrosion and friction, severely impairing the reliability and service life of the equipment. In recent years, high-entropy ceramics (HECs) are characterized by multi-component single-phase solid solutions and benefit greatly from the high-entropy effect, which endows them with excellent chemical stability, corrosion resistance, and high hardness. Consequently, HECs have emerged as one of the most promising material systems for developing comprehensive wear-resistant and corrosion-resistant protective coatings. The work aims to summarize the concept, classification, composition design principles, and preparation techniques of HECs.
The basic concepts of HECs coatings are elaborated. Inspired by high entropy alloys (HEAs) and two-component ceramic coatings, Rost et al. successfully developed HECs (MgCoNiCuZn)O in 2015, confirming that configurational entropy could promote reversible transformation from multiphase to solid solution, which opened up a new direction for research on high-entropy ceramics. Unlike HEAs where metal bonds dominate, HECs form a unique solid solution structure through the synergistic action of multiple chemical bonds such as ionic and covalent bonds. Its typical feature is that multiple main elements occupy the same Wyckoff equivalent position in equal/near equal atomic ratios, forming a multi-component inorganic system with significant configurational entropy effect.
According to the types of non-metallic elements in HECs, high entropy alloys are divided into nitride high entropy ceramics (HENCs), oxide high entropy ceramics (HEOCs), carbide high entropy ceramics (HECCs), and boride noble ceramics (HEBCs). HENCs form dense crystal structures through metal-nitrogen covalent-ionic bonds, and exhibit significant lattice distortion and chemical disorder, which endows them with excellent wear resistance/corrosion resistance, making them the most studied for such coatings. Although there is limited research on the performance of HEOCs, existing studies indicate that they inherit the chemical stability of oxides in extreme acidic/alkaline environments. HECCs form a dense carbide network skeleton through covalent bonds between carbon and transition metals. At the same time, the solid solution of carbon gaps causes lattice distortion, hinders dislocation movement, and can effectively improve the hardness and wear resistance of coatings. HECCs passivation film is usually not as stable as HEN. Among all four types, HEB exhibits the best high-temperature hardness retention and resistance to environmental/molten metal corrosion, making it suitable for ultra-high temperature applications.
The elemental composition has a major impact on wear resistance and corrosion resistance. Currently, the composition design relies on semi-empirical and first-principles methods. Elemental ratios affect mixing entropy, altering microstructures that govern mechanical and corrosion behaviors. The prevailing research approach optimizes comprehensive performance by tuning individual metallic/non-metallic elements. Transition metals act as stabilizers, of which similar atomic radii and electronegativities promote stable single-phase solid solutions. Main group and rare earth elements serve as modifiers, regulating density, oxidation resistance, and amorphous-forming ability. Non-metals (N, O, C, B) critically determine crystal structures and wear and corrosion resistance performance. For HENCs coatings, an appropriate elevation in nitrogen content enhances corrosion and wear resistance, whereas nitrogen excess induces microstructural heterogeneity through phase segregation, consequently degrading performance. In HECCs coatings, incremental carbon content elevates hardness and wear resistance but concurrently diminishes corrosion resistance. Regarding HEOs coatings, although oxygen enrichment improves wear resistance, corrosion resistance first increases and then gradually decreases. In HEB system, boron promotes the formation of eutectic structure and increases hardness, but reduces corrosion resistance.
At present, these studies indicate that it is difficult to synergistically improve wear resistance and corrosion resistance, and the weak bonding strength between the coating/substrate interface has become the two key challenges faced by HECs coatings. Future research on corrosion-resistant and wear-resistant HECs coatings will exhibit multi-dimensional development trends. In terms of composition design, intelligent methods such as high-throughput computation and machine learning will gradually replace traditional trial-and-error approaches, enabling the precise design of coating materials. Regarding coating structure optimization, multi-layer or gradient designs will become effective pathways to enhance interfacial bonding strength and comprehensive performance. Concurrently, continuous innovation in novel preparation processes will further improve coating quality and properties. Particularly noteworthy is that establishing life prediction models under multi-physics field coupling conditions will become a key research direction. This will propel high-entropy ceramic coatings to make a substantial transition from fundamental research to engineering applications. As an important development direction in materials science, high-entropy ceramic coatings demonstrate immense potential in enhancing the service performance of materials and expanding novel application scenarios.

关键词

高熵陶瓷涂层 / 耐腐耐磨性能 / 组元设计 / 涂层制备工艺

Key words

high-entropy ceramic coating / corrosion and wear resistance / component design / coating preparation process

引用本文

导出引用
胡杰珍, 钟声昊, 邓培昌, 耿保玉, 李友炽, 吴方明. 高熵陶瓷耐磨耐蚀一体化涂层发展现状[J]. 表面技术. 2025, 54(22): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.001
HU Jiezhen, ZHONG Shenghao, DENG Peichang, GENG Baoyu, LI Youchi, WU Fangming. Development Status of High-entropy Ceramic Coatings with Integrated Wear and Corrosion Resistance[J]. Surface Technology. 2025, 54(22): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.22.001
中图分类号: TG174   

参考文献

[1] LANDOLT D, MISCHLER S, STEMP M.Electrochemical Methods in Tribocorrosion: A Critical Appraisal[J]. Electrochimica Acta, 2001, 46(24/25): 3913-3929.
[2] WOOD R J K. Marine Wear and Tribocorrosion[J]. Wear, 2017, 376/377: 893-910.
[3] CAI Z B, WANG Z, YANG W J, et al.Microstructure and Corrosion Behavior of AlCrTiV-X (X=Cu, Mo, CuMo) High-Entropy Alloy Films in 3.5 WT.% NaCl Solution[J]. Surfaces and Interfaces, 2021, 27: 101558.
[4] 夏进启, 闫龙, 詹华, 等. 旋耕刀表面铁基涂层摩擦磨损性能研究[J]. 表面技术, 2025, 54(7): 86-97.
XIA J Q, YAN L, ZHAN H, et al.Friction and Wear Properties of Iron-Based Coating on Surface of Rotary Blade[J]. Surface Technology, 2025, 54(7): 86-97.
[5] YANG X C, LI X M.Research on the Synergistic Damage Behavior of Tribocorrosion of CoCrFeNi-X (Ti, Mn, Mo, Al) High-Entropy Alloys[J]. Tribology International, 2025, 201: 110185.
[6] HAN S X, MA H, CHEN H, et al.The Wear, Corrosion and Antibacterial Behaviors of FeCrNiCuAlx High-Entropy Alloy Coatings Prepared by Laser Cladding for Marine Applications[J]. Journal of Materials Research and Technology, 2025, 35: 5034-5051.
[7] LANDOLT D, MISCHLER S.Tribocorrosion of Passive Metals and Coatings[M]. Cambridge: Woodhead Publishing Limited, 2011.
[8] HOLMBERG K, MATTHEWS A. Coatings Tribology-Properties, Techniques and Applications in Surface Engineering[M]. Amsterdam: Elsevier, 1994.
[9] 刘二勇, 曾志翔, 赵文杰. 海水环境中金属材料腐蚀磨损及耐磨防腐一体化技术的研究进展[J]. 表面技术, 2017, 46(11): 149-157.
LIU E Y, ZENG Z X, ZHAO W J.Corrosive Wear and Integrated Anti-Wear & Anti-Corrosion Technology Metallic Materials in Seawater[J]. Surface Technology, 2017, 46(11): 149-157.
[10] 南鹏娟, 贾均红, 焦小雨, 等. 微/纳结构Cr3C2-NiCr陶瓷涂层在3.5%NaCl溶液中的腐蚀磨损行为[J]. 表面技术, 2025, 54(1): 150-160.
NAN P J, JIA J H, JIAO X Y, et al.Corrosion Wear Properties of Micro/Nano-Structured Cr3C2-NiCr Ceramic Coatings in 3.5wt.%NaCl Solution[J]. Surface Technology, 2025, 54(1): 150-160.
BOGDAN M, PETER I.A Comprehensive Understanding of Thermal Barrier Coatings (TBCS): Applications, Materials, Coating Design and Failure Mechanisms[J]. Metals, 2024, 14(5): 575.
[12] ROST C M, SACHET E, BORMAN T, et al.Entropy-Stabilized Oxides[J]. Nature Communications, 2015, 6: 8485.
[13] XIANG H M, XING Y, DAI F Z, et al.High-Entropy Ceramics: Present Status, Challenges, and a Look Forward[J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441.
[14] WANG Z, LI Z T, ZHAO S J, et al.High-Entropy Carbide Ceramics: A Perspective Review[J]. Tungsten, 2021, 3(2): 131-142.
[15] LI Y H, DU Y, PEI X H, et al.High-Temperature Tribological Behavior and Mechanisms of a High Entropy Carbide Ceramic[J]. Journal of the European Ceramic Society, 2025, 45(6): 117170.
[16] CHEN Y H, CHAI Z H, CHEN S W, et al.Corrosion Performance of (ZrYTaAlCr)O Ceramic Coating Materials for Heated Surface Tubes[J]. Ceramics International, 2024, 50(24): 53329-53341.
[17] GUAN J Y, LI D X, YANG Z H, et al.Synthesis and Thermal Stability of Novel High-Entropy Metal Boron Carbonitride Ceramic Powders[J]. Ceramics International, 2020, 46(17): 26581-26589.
[18] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural Development in Equiatomic Multicomponent Alloys[J]. Materials Science and Engineering: A, 2004, 375/376/377: 213-218.
[19] YEH J W, CHEN S K, LIN S J, et al.Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[20] LI S, LI H Q, ZHAI Z H, et al.Corrosion Resistance and Tribological Behavior of FeCoCrNi@GO/Ni High Entropy Alloy-Based Composite Coatings Prepared by Electrodeposition[J]. Surface and Coatings Technology, 2024, 477: 130379.
[21] YU D T, WANG R, WU C L, et al.Wear, Corrosion and Cavitation Erosion Behavior of WC-Reinforced FeCrNiMnAl Ceramic-High Entropy Alloy Composite Coatings by Laser Cladding[J]. Ceramics International, 2024, 50(24): 55790-55800.
[22] MOHAN S, NAIR S S, AJAY A V, et al.Corrosion Behaviour of ZrO2-TiO2 Nano Composite Coating on Stainless Steel under Simulated Marine Environment[J]. Materials Today: Proceedings, 2020, 27: 2492-2497.
[23] 李瑞鑫, 吴重仲, 王一民, 等. 控压氮化工艺对42CrMo钢渗后组织和性能的影响[J]. 表面技术, 2025, 54(7): 180-188.
LI R X, WU C Z, WANG Y M, et al.Effect of Controlled Pressure Nitriding Process on the Microstructure and Properties of 42CrMo Steel[J]. Surface Technology, 2025, 54(7): 180-188.
[24] ZHANG Y F, LIN T G, HAN Y, et al.Influence of Bias Voltage on the Structural, Mechanical, and Corrosion Properties of (TiSiAlCrV)N Films Deposited by Three-Target High-Power Impulse Magnetron Co-Sputtering[J]. Surface and Coatings Technology, 2025, 503: 131987.
[25] SI Y X, WANG G G, WEN M, et al.Corrosion and Friction Resistance of TiVCrZrWNx High Entropy Ceramics Coatings Prepared by Magnetron Sputtering[J]. Ceramics International, 2022, 48(7): 9342-9352.
[26] BACHANI S K, WANG C J, LOU B S, et al.Fabrication of TiZrNbTaFeN High-Entropy Alloys Coatings by HiPIMS: Effect of Nitrogen Flow Rate on the Microstructural Development, Mechanical and Tribological Performance, Electrical Properties and Corrosion Characteristics[J]. Journal of Alloys and Compounds, 2021, 873: 159605.
[27] LOU B S, WANG C J, CHEN Y, et al.Phase, Mechanical Property and Corrosion Resistance Evaluation of W-Nb-Ta-Ti and W-Nb-Ta-Ti-N Medium Entropy Alloy Thin Films[J]. Surface and Coatings Technology, 2022, 442: 128339.
[28] LOU B S, LIN R Z, LI C L, et al.Fabrication of (TiZrNbSiMo)1-xNx High Entropy Alloy Coatings Using a High Power Impulse Magnetron Sputtering Technique: Effects of Nitrogen Addition[J]. Surface and Coatings Technology, 2024, 483: 130772.
[29] WANG B X, LI P, CAI Z B, et al.Microstructure and Property Evolution of Nitrogen Supersaturated (AlNbTiZr)Nx High-Entropy Ceramic Films: Effect of Nitrogen Ratios[J]. Ceramics International, 2025, 51(16): 21763-21775.
[30] LI J C, ZHAO Y M, SHI X W, et al.(AlCrMoTiNi)1-XNX High Entropy Ceramic with High Hardness and Toughness Prepared by Co-Filtered Cathodic Vacuum Arc Deposition[J]. Ceramics International, 2023, 49(24): 40382-40391.
[31] 黄中庆, 彭爽, 孙德恩, 等. 机器学习辅助设计高强韧(TiZrNbCrSi)N高熵氮化物涂层[J]. 表面技术, 2025, 54(1): 74-83.
HUANG Z Q, PENG S, SUN D E, et al.Machine Learning Assisted Design of High Hard yet Tough(TiZrNbCrSi)N High-Entropy Nitride Coatings[J]. Surface Technology, 2025, 54(1): 74-83.
[32] LIU S J, LIU C H, YANG Z M, et al.Microstructure, High-Temperature Corrosion Resistance and Oxidation Properties of (TiVZrCrAl)N High Entropy Nitride Coatings with Different N2/Ar Ratios[J]. Surface and Coatings Technology, 2024, 476: 130226.
[33] LEWIN E.Multi-Component and High-Entropy Nitride Coatings—A Promising Field in Need of a Novel Approach[J]. Journal of Applied Physics, 2020, 127(16): 160901.
[34] BERARDAN D, MEENA A K, FRANGER S, et al.Controlled Jahn-Teller Distortion in (MgCoNiCuZn)O-Based High Entropy Oxides[J]. Journal of Alloys and Compounds, 2017, 704: 693-700.
[35] WRIGHT A J, WANG Q Y, HUANG C Y, et al.From High-Entropy Ceramics to Compositionally-Complex Ceramics: A Case Study of Fluorite Oxides[J]. Journal of the European Ceramic Society, 2020, 40(5): 2120-2129.
[36] SARKAR A, DJENADIC R, WANG D, et al.Rare Earth and Transition Metal Based Entropy Stabilised Perovskite Type Oxides[J]. Journal of the European Ceramic Society, 2018, 38(5): 2318-2327.
[37] CHEN T K, WONG M S.Structure and Properties of Reactively-Sputtered Al x CoCrCuFeNi Oxide Films[J]. Thin Solid Films, 2007, 516(2/3/4): 141-146.
[38] LIU Z L, WEI C, DE Y Y, et al.Phase Structure of High-Entropy Pyrochlore Oxides: From Powder Synthesis to Ceramic Sintering[J]. Journal of the European Ceramic Society, 2023, 43(16): 7613-7622.
[39] ZHANG J J, YAN J Q, CALDER S, et al.Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide[J]. Chemistry of Materials, 2019, 31(10): 3705-3711.
[40] ZHAO Z F, CHEN H, XIANG H M, et al.(Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A Defective Fluorite Structured High Entropy Ceramic with Low Thermal Conductivity and Close Thermal Expansion Coefficient to Al2O3[J]. Journal of Materials Science & Technology, 2020, 39: 167-172.
[41] OKEJIRI F, ZHANG Z H, LIU J X, et al.Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method[J]. ChemSusChem, 2020, 13(1): 111-115.
[42] WANG D D, LIU Z J, DU S Q, et al.Low-Temperature Synthesis of Small-Sized High-Entropy Oxides for Water Oxidation[J]. Journal of Materials Chemistry A, 2019, 7(42): 24211-24216.
[43] LI F, ZHOU L, LIU J X, et al.High-Entropy Pyrochlores with Low Thermal Conductivity for Thermal Barrier Coating Materials[J]. Journal of Advanced Ceramics, 2019, 8(4): 576-582.
[44] 惠俊杰, 贾均红, 白甘雨, 等. (MgCoNiCuZn)O高熵氧化物陶瓷涂层的制备及性能[J]. 机械工程材料, 2023, 47(5): 41-46.
HUI J J, JIA J H, BAI G Y, et al.Preparation and Properties of(MgCoNiCuZn)O High Entropy Oxide Ceramic Coating[J]. Materials for Mechanical Engineering, 2023, 47(5): 41-46.
[45] LEI Y H, LIU H, ZHANG F, et al.Electrochemical Corrosion Behavior of Spinel-Like High-Entropy Oxide (CrMnFeCoNi)3O4 and (CrMnFeCoZr)3O4/Epoxy Coatings[J]. Materials Letters, 2024, 370: 136816.
[46] XIE Y J, JIANG W Y, XU K G, et al.Microhardness, Wear Resistance, and Corrosion Resistance of AlCoCrFeNi2.1+xCeO2 High-Entropy Alloy Coatings by Laser Cladding[J]. Materials Today Communications, 2025, 43: 111662.
[47] GU J, SUN Y N, CHENG W J, et al.Microstructure and Wear Resistance of Multi-Layer Graphene Doped AlCoCrFeNi2.1 High-Entropy Alloy Self-Lubricating Coating Prepared by Laser Cladding[J]. Intermetallics, 2025, 176: 108578.
[48] CHEN R Y, XIN J X, YANG Q, et al.New Insights into the High-Temperature Oxidation Behavior of (TiZrHfTaNb)C High-Entropy Carbide[J]. International Journal of Refractory Metals and Hard Materials, 2025, 128: 107018.
[49] JIANG S, SHAO L, FAN T W, et al.Elastic and Thermodynamic Properties of High Entropy Carbide (HfTaZrTi)C and (HfTaZrNb)C from Ab Initio Investigation[J]. Ceramics International, 2020, 46(10): 15104-15112.
[50] GILD J, ZHANG Y Y, HARRINGTON T, et al.High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics[J]. Scientific Reports, 2016, 6: 37946.
[51] RAHMADTULLOH I, WANG C J, LOU B S, et al.Unveiling the TiZrNbTaFeCx High Entropy Alloy Carbide Coatings Fabricated by Superimposed HiPIMS-MF Technique-Effect of Carbon Contents on the Microstructure, Mechanical Properties, and Corrosion Resistance[J]. Journal of Materials Research and Technology, 2025, 36: 661-679.
[52] GAO C Z, XU F, SHI X Q, et al.Enhanced Tribo-Corrosion Resistance of Biocompatible TiNbTaZrWC Coating through Intelligent Design Strategy[J]. Chemical Engineering Journal, 2025, 504: 158740.
[53] 梁玉伟, 王婕, 宋鹏, 等. FeCrMoSiB非晶涂层的耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
LIANG Y W, WANG J, SONG P, et al.Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. Journal of Chinese Society for Corrosion and Protection, 2025, 45(1): 191-200.
[54] GENG J Y, YANG X H, WANG G C, et al.Effect of TiB2 Content on the Microstructure, Corrosion Behavior, and Wear Resistance of (Fe50Mn30Co10Cr10)0.8-x (TiB2)x Mo0.2 High-Entropy Alloy Coatings by Laser Cladding[J]. Surface and Coatings Technology, 2025, 496: 131662.
[55] ZHANG Q, SI Y Q, HAN B, et al.Solidification Evolution and Corrosion Performance of CoCrFeNiBx Eutectic High Entropy Alloy Coatings[J]. Surface and Coatings Technology, 2024, 483: 130760.
[56] AKRAMI S, EDALATI P, FUJI M, et al.High-Entropy Ceramics: Review of Principles, Production and Applications[J]. Materials Science and Engineering: R: Reports, 2021, 146: 100644.
[57] 郭珉, 黄伟明, 赵博文, 等. 高熵合金主元元素的作用探讨[J]. 兵器材料科学与工程, 2024, 47(1): 112-121.
[58] GUO M, HUANG W M, ZHAO B W, et al.Discussion on Role of Principal Element in High Entropy Alloys[J]. Ordnance Material Science and Engineering, 2024, 47(1): 112-121.
[59] GUO S, LIU C T.Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase[J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446.
[60] REN M X, LI B S, FU H Z.Formation Condition of Solid Solution Type High-Entropy Alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 991-995.
[61] ZHANG Y, ZUO T T, TANG Z, et al.Microstructures and Properties of High-Entropy Alloys[J]. Progress in Materials Science, 2014, 61: 1-93.
[62] 杨甜, 黄伟明, 黄媛媛, 等. FeCrMnNiV0.1Mo0.05-xAl高熵合金的相结构演变与力学性能[J/OL]. 特种铸造及有色合金(2025-03-06). https://kns.cnki.net/KCMS/detail/ detail.aspx filename=TZZZ2025030400K&dbname=CJFD& dbcode=CJFQ.
YANG T, HUANG W M, HUANG Y Y, et al. Evolution of Phase Structure and Mechanical Properties of Fecrmnniv 0.1 Mo0.05-xAl High Entropy Alloy[J/OL]. Special Casting & Nonferrous Alloys, (2025-03-06). https:// kns.cnki.net/KCMS/detail/detail.aspx filename=TZZZ2025030400K&dbname=CJFD&dbcode=CJFQ.
[63] HARRINGTON T J, GILD J, SARKER P, et al.Phase Stability and Mechanical Properties of Novel High Entropy Transition Metal Carbides[J]. Acta Materialia, 2019, 166: 271-280.
[64] 严辉, 杨巍, 宋雪梅, 等. 第一原理方法在材料科学中的应用[J]. 北京工业大学学报, 2004, 30(2): 210-213.
YAN H, YANG W, SONG X M, et al.Application of First-Principles Method in Materials Science[J]. Journal of Beijing University of Technology, 2004, 30(2): 210-213.
[65] LIU S Y, CUI J, ZHANG C, et al.First-Principles Study on the Thermodynamic Miscibility and Mechanical Properties of High-Entropy Quaternary Metal Nitrides[J]. Materials Today Communications, 2025, 45: 112157.
[66] KANG H Y, YANG X H, SUN X Y, et al.Microstructure and Properties of CuCrNixTiZr High Entropy Alloys: Experiments and First Principles Calculations[J]. Journal of Alloys and Compounds, 2025, 1010: 177873.
[67] IVASHCHENKO V I, ONOPRIENKO A A, SKRYNSKYY P L, et al.Structure and Properties of (TiZrHfNbTa)B2 Films and First-Principles Models for High Entropy Diborides[J]. Thin Solid Films, 2024, 803: 140478.
[68] JIN H S, LV Z Y, ZHANG F Y, et al.Exploring the Electronic Structures and Mechanical Properties of (TiZrHfNbTa)C1-xNx High-Entropy Carbonitrides from First-Principles Calculations[J]. Solid State Communications, 2025, 399: 115890.
[69] TIAN F Y, VARGA L K, SHEN J, et al.Calculating Elastic Constants in High-Entropy Alloys Using the Coherent Potential Approximation: Current Issues and Errors[J]. Computational Materials Science, 2016, 111: 350-358.
[70] CHEN K J, ZHAO R K, ZHANG L, et al.Achieving Near-Zero Energy Loss in 0.85BaTiO3-0.15Bi(Mg0.2Hf0.2Ni0.2Zn0.2Ta0.2)O3 Ceramic through High-Entropy and Superparaelectric Engineering[J]. Ceramics International, 2025, 51(19): 29487-29498.
[71] 成伟琦, 崔洪芝, 周明昊, 等. Nb对激光熔覆NiCrMo/WC涂层组织和耐磨性能的影响[J]. 表面技术, 2025, 54(3): 71-79.
CHENG W Q, CUI H Z, ZHOU M H, et al.Effect of Nb on the Microstructure and Wear Resistance of Laser-Clad NiCrMo/WC Coatings[J]. Surface Technology, 2025, 54(3): 71-79.
[72] 张冬青, 刘艳梅, 王子铭, 等. Mo含量对AlCrMoSiN涂层微观结构和性能的影响[J]. 表面技术, 2025, 54(1): 32-41.
ZHANG D Q, LIU Y M, WANG Z M, et al.Effects of Mo Content on Microstructure and Properties of AlCrMoSiN Coatings[J]. Surface Technology, 2025, 54(1): 32-41.
[73] ZHANG X L, BAI Y, LIANG W C, et al.Thermophysical and Mechanical Properties of (La0.2Nd0.2Sm0.2Eu0.2Me0.2)2Zr2O7 (where Me=Gd, Y, Yb, Lu) High-Entropy Ceramics[J]. Ceramics International, 2025, 51(14): 19282-19292.
[74] LYU L L, YANG J, ZHOU M Y, et al.Microstructure, Mechanical Properties and Lead-Bismuth Eutectic Corrosion Behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO High Entropy Metal Sublattice Ceramic Coatings[J]. Vacuum, 2023, 209: 111774.
[75] XIA A, DEDONCKER R, GLUSHKO O, et al.Influence of the Nitrogen Content on the Structure and Properties of MoNbTaVW High Entropy Alloy Thin Films[J]. Journal of Alloys and Compounds, 2021, 850: 156740.
[76] SRINATH A, VON FIEANDT K, LINDBLAD R, et al.Influence of the Nitrogen Content on the Corrosion Resistances of Multicomponent AlCrNbYZrN Coatings[J]. Corrosion Science, 2021, 188: 109557.
[77] SUN W W, SUN D R, YANG Y, et al.High-Entropy Carbide (ZrNbTiCrV)C Ceramic Composite Coating Possessing Good Mechanical Properties and Wear Resistance[J]. Surface and Coatings Technology, 2024, 485: 130902.
[78] 王虎, 秦晓婷, 王智慧, 等. 等离子原位制备VC增强Al1.5CoCrFeNi高熵合金熔覆层的组织与力学性能[J]. 表面技术, 2025, 54(3): 110-117.
WANG H, QIN X T, WANG Z H, et al.Microstructure and Mechanical Properties of VC Enhanced Al1.5CoCrFeNi High-Entropy Alloy Cladding Layers by Plasma in Situ Synthesis Technique[J]. Surface Technology, 2025, 54(3): 110-117.
[79] 杨文迪, 赵连红, 沈明禄, 等. A100超高强度钢激光熔覆CoCrNiNb0.1+B4C高熵合金涂层在模拟海洋环境下腐蚀行为研究[J]. 表面技术, 2024, 53(24): 99-109.
YANG W D, ZHAO L H, SHEN M L, et al.Corrosion Behavior of CoCrNiNb0.1+B4C High Entropy Alloy Coating on A100 Ultra-High Strength Steel by Laser Cladding under Simulated Marine Environment[J]. Surface Technology, 2024, 53(24): 99-109.
[80] KHAN N A, AKHAVAN B, ZHENG Z, et al.Nanostructured AlCoCrCu0.5FeNi High Entropy Oxide (HEO) Thin Films Fabricated Using Reactive Magnetron Sputtering[J]. Applied Surface Science, 2021, 553: 149491.
[81] AWIN E W, PAPAKOLLU K, VAYYALA A, et al.Tailoring Crystal Structure of High-Entropy Carbides in Si-Based Ceramic Nanocomposites through Precursor Engineering[J]. Journal of the European Ceramic Society, 2024, 44(12): 6901-6910.
[82] LIANG T Y, BESSETTE S, GAUVIN R, et al.Influence of Nitrogen Addition on the Wear Performance of Lightweight (AlCoCrNiSiTi)100-xNx Thin Films Developed by Magnetron Sputtering[J]. Applied Surface Science, 2025, 691: 162698.
[83] LOFAJ F, HVIŠČOVÁ P, ROCH T, et al. Hysteresis-Free Reactive DC Magnetron Sputtered TiZrHfVNbTa-xN Coatings: Structure and Mechanical Properties[J]. International Journal of Refractory Metals and Hard Materials, 2025, 128: 107024.
[84] SUN W W, YANG Y, WANG Y W. High Entropy Carbide (ZrNbTiCr)C Ceramic Composite Coating with Fine Grains Fabricated by Plasma Spraying[J]. Surface and Coatings Technology, 2024, 478: 130459.
[85] YANG D S, SUN Q C, CHENG J, et al.Tribological Behaviors of D-Gun Sprayed CrFeNiAl0.3Ti0.3-Al-(HfMoNbTaTi)C High Entropy Wear-Resistant Coating over Wide Temperature[J]. Journal of Materials Research and Technology, 2025, 35: 5407-5420.
[86] WEI Z Y, MEI D C, WEI Z, et al.Microstructure and Mechanical Properties of the (Al1/6Cr1/6Nb1/6Ta1/6Ti1/3)O2 High-Entropy Ceramic Coating Prepared by Laser Cladding[J]. Journal of Alloys and Compounds, 2024, 995: 174850.
[87] ZHOU J L, CHENG Y H, HE B, et al.Enhancement of High-Entropy Alloy Coatings with Multi-Scale TiC Ceramic Particles via High-Speed Laser Cladding: Microstructure, Wear and Corrosion[J]. Applied Surface Science, 2025, 685: 162061.
[88] 张而耕, 付巧慧, 梁丹丹, 等. 硬质TiAlCN多层膜的微观结构设计与摩擦磨损性能研究[J]. 表面技术, 2024, 53(23): 143-152.
ZHANG E G, FU Q H, LIANG D D, et al.Microstructural Design and Tribological Properties of TiAlCN Multilayer Films[J]. Surface Technology, 2024, 53(23): 143-152.
[89] 陈栋, 党博, 杨凯, 等. 过渡金属氮化物PEMFC双极板涂层研究进展[J]. 表面技术, 2025, 54(3): 39-61.
CHEN D, DANG B, YANG K, et al.Research Progress of Transition Metal Nitride Coatings on PEMFC Metal Bipolar Plate[J]. Surface Technology, 2025, 54(3): 39-61.

基金

广东省自然科学基金(2021A1515012129); 广东省普通高校创新团队项目(2024KCXTD041); 湛江市科技发展专项(2022A01029)

PDF(9354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/