摩擦热驱动石蜡相变润滑及其织构表面摩擦特性研究

尹豪锋, 王谦之, 汪昌顺, 吴雪

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 251-262.

PDF(1167 KB)
PDF(1167 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 251-262. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.018
摩擦磨损与润滑

摩擦热驱动石蜡相变润滑及其织构表面摩擦特性研究

  • 尹豪锋a, 王谦之a,b*, 汪昌顺a, 吴雪a
作者信息 +

Lubrication of Phase Change of Paraffin Driven by Friction Heat and Its Tribological Properties on Texture Surface

  • YIN Haofenga, WANG Qianzhia,b,*, WANG Changshuna, WU Xuea
Author information +
文章历史 +

摘要

目的 为了将摩擦热的不利影响转变为有利条件,提出一种基于相变材料石蜡与表面织构协同作用的减摩润滑表面设计方法。方法 采用微细电火花成形法在TC4钛合金表面制备不同尺寸的菱形微观织构,通过超声脱气仪形成织构内嵌石蜡的复合表面。通过摩擦磨损试验研究织构表面与复合表面摩擦过程中的温度、摩擦因数、磨损量的动态变化规律,并采用扫描电镜(SEM)对磨损后的表面形貌进行表征。结果 石蜡吸收摩擦热,使得摩擦界面温度从41.8 ℃降至40.6 ℃。吸热熔化的石蜡在复合表面形成了润滑薄膜,与织构表面相比,复合表面均表现出更低的摩擦因数和磨损量。其中,菱形织构宽度为200 μm、深度为250 μm、面密度为10%的复合表面的平均摩擦因数为(0.251±0.06),相较于织构表面降低了约35.5%,其磨损量为(5.1±0.7) mg,相较于织构表面减少了约43.3%。表面形貌分析结果表明,织构表面表现为严重的磨粒磨损和黏着磨损,而复合表面仅表现为中度的磨粒磨损。结论 织构/石蜡复合表面在干摩擦条件下实现了温度、摩擦因数和磨损量的降低,为新型减摩润滑表面的设计提供了重要参考。通过选择织构宽度、深度、面密度,复合表面可实现优化的抗磨损性能。

Abstract

To transform the detrimental effects of frictional heat into tribologically advantageous conditions, the work aims to propose a friction-reducing surface design methodology based on the synergistic interaction between paraffin and surface textures. Diamond shaped microstructures of different dimensions were prepared on the surface of TC4 titanium alloy with micro-electrical discharge forming method. Paraffin was integrated into the texture through an ultrasonic degassing instrument for 20 minutes to form a composite surface. Friction and wear tests were conducted to evaluate the tribological properties of both texture and composite surfaces, as well as the effect of texture dimensions on the friction behavior of the composite surface. The following parameter settings were used in the experiment: load of 12 N, grinding speed of 0.2 m/s, and sliding distance of 700 m. To study the frictional properties of paraffin after phase transition, a heating lamp was used to preheat the sample to 32 ℃ before the friction test, and a handheld thermo-graphic camera was used to monitor the friction interface temperature in real time. The dynamic variations in temperature, friction coefficient, and wear amount of two surfaces during friction were compared, and the surface morphology after wear was characterized and analyzed through scanning electron microscopy (SEM). In addition, a numerical model of the composite surface was established with FLUENT software to reveal the friction-reduction mechanism from the perspective of fluid dynamic lubrication theory. The experimental results demonstrated that the paraffin embedded in the diamond shaped texture absorbed frictional heat, causing the friction interface temperature to decrease from 41.8 ℃ to 40.6 ℃. The paraffin melted by heat absorption formed a lubricating film on the composite surface, which exhibited lower friction coefficient and wear amount compared to the texture surface. Among them, the composite surface of diamond shaped texture with width of 200 μm, depth of 250 μm, and surface density of 10% presented an average friction coefficient of (0.251±0.06), which was 35.5% lower than that (0.389±0.05) of the corresponding texture surface. Its wear amount was (5.1±0.7) mg, which was 43.3% lower than that of the texture surface. Surface morphology analysis showed that the texture surface exhibited severe abrasive wear and adhesive wear, while the composite surface only showed moderate abrasive wear. The numerical simulation results revealed the fluid dynamic lubrication mechanism of the textures: paraffin generated a pressure of -216 Pa at the texture inlet due to diverging wedge-shaped gaps, and a pressure of 224 Pa at the outlet due to converging wedge-shaped gaps. Due to the outlet pressure gain being greater than the inlet loss, the overall oil film bearing capacity of the texture was improved, which was consistent with the wedge effect theory of fluid dynamic lubrication. Integrating experimental and simulation results, a synergistic lubrication mechanism for the textured/paraffin composite surfaces is established: the paraffin's solid-liquid phase transition not only absorbs frictional heat to reduce interface temperature, but also releases liquid lubricant to improve the friction conditions. Surface textures further optimize lubrication performance by increasing heat dissipation area and storing paraffin. The texture/paraffin composite surface developed in this work achieves a synergistic reduction in temperature, friction coefficient, and wear rate under dry friction conditions, providing an important reference for the design of new anti-friction lubrication surfaces. By selecting the appropriate texture width, depth, and surface density, the composite surface can achieve optimized wear resistance.

关键词

钛合金 / 表面织构 / 相变材料 / 石蜡 / 复合表面 / 磨损机制

Key words

titanium alloy / surface texture / phase change materials / paraffin / composite surface / wear mechanism

引用本文

导出引用
尹豪锋, 王谦之, 汪昌顺, 吴雪. 摩擦热驱动石蜡相变润滑及其织构表面摩擦特性研究[J]. 表面技术. 2025, 54(21): 251-262 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.018
YIN Haofeng, WANG Qianzhi, WANG Changshun, WU Xue. Lubrication of Phase Change of Paraffin Driven by Friction Heat and Its Tribological Properties on Texture Surface[J]. Surface Technology. 2025, 54(21): 251-262 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.018
中图分类号: TH117.1   

参考文献

[1] 张雪梅, 曹丹丹, 王鑫, 等. 中国省域能源消费二氧化碳排放状态分析与情景预测[J]. 生态经济, 2023, 39(12): 26-32.
ZHANG X M, CAO D D, WANG X, et al.Analysis on the Status and Scenario Forecast of Carbon Dioxide Emissions in China's Provincial Energy Consumption[J]. Ecological Economy, 2023, 39(12): 26-32.
[2] 杨春永, 高乃修, 耿青, 等. 我国“碳达峰·碳中和” 目标下工程机械绿色发展的技术路径探讨[J]. 润滑油, 2022, 37(1): 6-11.
YANG C Y, GAO N X, GENG Q, et al.Discussion on the Technical Path of Green Development of Construction Machinery in the Context of "Peak Carbon Emission and Carbon Neutrality" in China[J]. Lubricating Oil, 2022, 37(1): 6-11.
[3] 薛玉东. 国产润滑油行业向高质量奋进[J]. 中国质量万里行, 2023(5): 56-58.
XUE Y D.Domestic Lubricating Oil Industry Strives for High Quality[J]. China Quality Miles Tour, 2023(5): 56-58.
[4] 兰奕, 张妍, 王莉, 等. 中国基础油市场发展现状分析及展望[J]. 润滑油, 2024, 39(1): 1-4.
LAN Y, ZHANG Y, WANG L, et al.Analysis and Outlook of the Current Situation in the Chinese Base Oil Market[J]. Lubricating Oil, 2024, 39(1): 1-4.
[5] 黄志辉, 何卓识, 纪亮, 等. 中国工程机械二氧化碳和污染物排放现状评估[J]. 环境科学研究, 2023, 36(11): 2108-2117.
HUANG Z H, HE Z S, JI L, et al.Status Assessment of Carbon Dioxide and Pollutant Emissions of Construction Machineries in China[J]. Research of Environmental Sciences, 2023, 36(11): 2108-2117.
[6] 戴振东, 王珉, 薛群基. 摩擦体系热力学引论[M]. 北京: 国防工业出版社, 2002: 78-82.
DAI Z D, WANG M, XUE Q J.Introduction to Tribo- Thermodynamics[M]. Beijing: National Defense Industry Press, 2002: 78-82.
[7] 吕志甲, 贺志勇, 郑强, 等. 载荷和滑动速度对块体镁基非晶合金干摩擦性能的影响[J]. 表面技术, 2018, 47(1): 92-99.
LYU Z J, HE Z Y, ZHENG Q, et al.Effects of Load and Sliding Velocity on Dry Friction Properties of Mg-Based Bulk Metallic Glass[J]. Surface Technology, 2018, 47(1): 92-99.
[8] FERNANDES C M C G, ROCHA D M P, MARTINS R C, et al. Finite Element Method Model to Predict Bulk and Flash Temperatures on Polymer Gears[J]. Tribology International, 2018, 120: 255-268.
[9] YU J, ZHU S L, YUAN W, et al.Investigation on the Friction Heat Generation Rate of Ball Bearings at Ultra- High Rotation Speed[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(1): 57-79.
[10] 张志刚, 李佳雪, 张子阳, 等. 湿式离合器对偶钢片磨损机理研究[J]. 表面技术, 2021, 50(8): 295-300.
ZHANG Z G, LI J X, ZHANG Z Y, et al.Research on Wear Mechanism of Steel Disc of Wet Clutch[J]. Surface Technology, 2021, 50(8): 295-300.
[11] 罗兰, 路世盛, 胥卫奇, 等. Mo含量对激光熔覆CoCrW涂层摩擦磨损行为的影响[J]. 表面技术, 2025, 54(3): 90-100.
LUO L, LU S S, XU W Q, et al.Effect of Mo Content on the Friction and Wear Behavior of Laser Cladding CoCrW Coating[J]. Surface Technology, 2025, 54(3): 90-100.
[12] WANG Q Z, JIN X X, ZHOU F.Comparison of Mechanical and Tribological Properties of CrBN Coatings Modified by Ni or Cu Incorporation[J]. Friction, 2022, 10(4): 516-529.
[13] CONG S, LI N, ZHU Z, et al.A Comparative Study of Conventional, Dynamic Rotation and Heat-Assisted Friction Stir Welding of Ti-6Al-4V Plates to Reduce Welding Defects[J]. Journal of Materials Processing Technology, 2024, 323: 118217.
[14] 苟向锋, 祁常君, 陈代林. 考虑齿面接触温度的齿轮系统非线性动力学建模及分析[J]. 机械工程学报, 2015, 51(11): 71-77.
GOU X F, QI C J, CHEN D L.Nonlinear Dynamic Modelling and Analysis of Gear System with Tooth Contact Temperature[J]. Journal of Mechanical Engineering, 2015, 51(11): 71-77.
[15] GAO Q, FAN Y, WU Y G, et al.A Harmonic Balance-Based Method to Predict Nonlinear Forced Response and Temperature Rise of Dry Friction Systems Including Frictional Heat Transfer[J]. Nonlinear Dynamics, 2023, 111(15): 14263-14291.
[16] 孙丹, 李浩, 赵欢, 等. 刷式密封摩擦热效应数值与实验研究[J]. 航空学报, 2022, 43(12): 425973.
SUN D, LI H, ZHAO H, et al.Numerical and Experimental Study of Frictional Thermal Effects of Brush Seals[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 425973.
[17] UMAR M, AHMAD MUFTI R, KHURRAM M.Effect of Flash Temperature on Engine Valve Train Friction[J]. Tribology International, 2018, 118: 170-179.
[18] ZHAO J S, ZHAO B, DING W F, et al.Grinding Characteristics of MoS2-Coated Brazed CBN Grinding Wheels in Dry Grinding of Titanium Alloy[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 109.
[19] CHEN K, SONG Y, DING P F, et al.The MD Simulation of Friction Heat Dissipation and Generation in High- Speed Dry Sliding System[J]. Energy Reports, 2023, 9: 101-112.
[20] 成荣鑫. Al2O3/C/MoS2复合涂层的制备及其摩擦磨损性能研究[D]. 镇江: 江苏科技大学, 2022: 59-63.
CHENG R X.Preparation and Friction and Wear Properties of Al2O3/C/MoS2 Composite[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022: 59-63.
[21] 赵健. 滑动轴承摩擦副表面织构的摩擦学性能研究[D]. 兰州: 兰州交通大学, 2022: 40-45.
ZHAO J.Study on Tribological Properties of Surface Texture of Sliding Bearing Friction Pair[D]. Lanzhou: Lanzhou Jiatong University, 2022: 40-45.
[22] NI J, FENG K, ZHUANG K, et al.Combined Lubrication of Surface Texturing and Copper Covering for Broaching Tool[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5): 3617-3629.
[23] 张鸿磊, 陈阳, 林海波, 等. Sn-Al2O3固体润滑剂填充钨钢织构界面摩擦学性能[J]. 润滑与密封, 2023, 48(9): 115-123.
ZHANG H L, CHEN Y, LIN H B, et al.Tribological Properties of Tungsten Steel Texture Interface Filled with Sn-Al2O3 Solid Lubricant[J]. Lubrication Engineering, 2023, 48(9): 115-123.
[24] 熊光耀, 杨煜, 徐斌, 等. 摩擦热驱动界面纳米铜的生成及其减摩特性研究[J]. 材料保护, 2019, 52(7): 23-28.
XIONG G Y, YANG Y, XU B, et al.Study on the Generation of Nano-Copper Induced by Friction Heat Effect and Its Anti-Wearing and Friction Properties[J]. Materials Protection, 2019, 52(7): 23-28.
[25] DELGADO-SÁNCHEZ C, CORTÉS-TRIVIÑO E, TENORIO-ALFONSO A, et al. Innovative Stearic Acid- in-Silicone Oil (o/o) Phase Change Material Lubricating Emulsions (PCMLEs): Thermo-Rheological and Tribological Properties[J]. Journal of Molecular Liquids, 2024, 399: 124481.
[26] SUI X D, LIU J M, ZHAO G Q, et al.Ti3C2Tx MXene Modified Alkyl Imidazolium Ionic Liquid-Stearic Acid Composite Materials as a Potential Lubricant for Steel/ Steel Contact[J]. Wear, 2025, 578: 206151.
[27] GHEISARI R, VAZQUEZ M, TSIGKIS V, et al.Microencapsulated Paraffin as a Tribological Additive for Advanced Polymeric Coatings[J]. Friction, 2023, 11(10): 1939-1952.
[28] TSIGKIS V, SELLERS R, RAHMAN S, et al. Realizing Tunable Ultra-Low Friction up to 200 ℃ Using Microencapsulated Phase-Change Material as Additive for Advanced Polymers[J]. Wear, 2024, 538/539: 205212.
[29] 卞雯, 何观伟. DSC法测量蜡的熔点及相变焓[J]. 化学工程, 2014, 42(9): 40-41.
BIAN W, HE G W.Measuring Melting Point and Enthalpy of Wax by DSC Method[J]. Chemical Engineering (China), 2014, 42(9): 40-41.
[30] 郝佳丽, 郑清春, 张春秋, 等. 人工髋关节织构化表面摩擦学性能研究[J]. 润滑与密封, 2023, 48(12): 55-61.
HAO J L, ZHENG Q C, ZHANG C Q, et al.Study on Tribological Properties of Artificial Hip Textured Surfaces[J]. Lubrication Engineering, 2023, 48(12): 55-61.
[31] PETTERSSON U, JACOBSON S.Friction and Wear Properties of Micro Textured DLC Coated Surfaces in Boundary Lubricated Sliding[J]. Tribology Letters, 2004, 17(3): 553-559.
[32] 刘超, 钟涛, 张艳梅, 等. MWCNTs光热相变超滑表面的制备及防/除冰性能研究[J]. 表面技术, 2023, 52(11): 84-94.
LIU C, ZHONG T, ZHANG Y M, et al.Preparation and Anti-Icing/de-Icing Performance of MWCNTS Photothermal Phase-Change Slippery Surfaces[J]. Surface Technology, 2023, 52(11): 84-94.
[33] 张鹏. 基于油膜厚度最优化的滚柱包络环面蜗杆传动润滑状态研究[J]. 制造技术与机床, 2021(5): 58-62.
ZHANG P.Study on Lubrication State of Roller Enveloping Hourglass Worm Drive Based on Optimization of Oil Film Thickness[J]. Manufacturing Technology & Machine Tool, 2021(5): 58-62.
[34] HAMROCK B J, DOWSON D.Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part Ⅲ - Fully Flooded Results[J]. Journal of Lubrication Technology, 1977, 99(2): 264-275.
[35] HAJ-SHAFIEI S, WORKMAN B, TRIFKOVIC M, et al.In-Situ Monitoring of Paraffin Wax Crystal Formation and Growth[J]. Crystal Growth & Design, 2019, 19(5): 2830-2837.
[36] SIDDAIAH A, KASAR A K, MANOJ A, et al.Influence of Environmental Friendly Multiphase Lubricants on the Friction and Transfer Layer Formation during Sliding Against Textured Surfaces[J]. Journal of Cleaner Production, 2019, 209: 1245-1251.
[37] 王文安, 孙梦祯, 谢志铭. 基于金属变形的织构化表面二次润滑研究[J]. 液压气动与密封, 2024, 44(8): 33-38.
WANG W A, SUN M Z, XIE Z M.Study on Secondary Lubrication of Textured Surface Based on Metal Deformation[J]. Hydraulics Pneumatics & Seals, 2024, 44(8): 33-38.
[38] 汪国庆, 曹鑫鑫, 赵盖, 等. 铜表面纳尺度沟槽织构的摩擦学性能[J]. 表面技术, 2023, 52(3): 134-142.
WANG G Q, CAO X X, ZHAO G, et al.Effect of Groove on the Tribological Properties of Copper from a Nanoscale[J]. Surface Technology, 2023, 52(3): 134-142.
[39] 王洪涛, 李艳, 朱华. 具有分形特征的织构表面的润滑减摩性能研究[J]. 表面技术, 2016, 45(9): 182-187.
WANG H T, LI Y, ZHU H.Lubrication and Anti-Friction Properties of Textured Surfaces with Fractal Characteristics[J]. Surface Technology, 2016, 45(9): 182-187.
[40] ZHOU X Y, WANG J.Study on the Friction Reduction Characteristics of Surface Micro-Pit Weave under Fluid Lubrication Conditions[J]. Journal of Physics: Conference Series, 2023, 2566(1): 012101.
[41] 倪侃, 周元凯, 左雪. 微织构光固化填充h-BN的巴氏合金表面摩擦学性能[J]. 润滑与密封, 2024, 49(2): 123-130.
NI K, ZHOU Y K, ZUO X.Tribological Properties of Micro-Texture Babbitt Alloy Surface with Light Curing H-BN[J]. Lubrication Engineering, 2024, 49(2): 123-130.
[42] 张松岳. 激光织构化TC4钛合金摩擦磨损性能研究[D]. 大连: 大连海事大学, 2023: 58-61.
ZHANG S Y.Study on Friction and Wear Properties of Laser Textured TC4 Titanium Alloy[D]. Dalian: Dalian Maritime University, 2023: 58-61.

基金

中央高校基本科研业务费专项资金(NS2024029)

PDF(1167 KB)

Accesses

Citation

Detail

段落导航
相关文章

/