金属血管支架表面功能处理研究进展

潘晨, 李璐涵, 范志芳, 曹晶晶, 李河宗

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 185-198.

PDF(871 KB)
PDF(871 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 185-198. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.013
研究综述

金属血管支架表面功能处理研究进展

  • 潘晨1,2,3, 李璐涵1, 范志芳4, 曹晶晶1,2,3, 李河宗1,2,3,*
作者信息 +

Advanced Progress in Surface Function Treatment of Metallic Vascular Stents

  • PAN Chen1,2,3, LI Luhan1, FAN Zhifang4, CAO Jingjing1,2,3, LI Hezong1,2,3,*
Author information +
文章历史 +

摘要

对金属血管支架表面功能处理方法进行综述分析。金属血管支架主要用于治疗堵塞的心脑血管疾病,使血液正常流通。首先介绍血管支架所用金属材料及其优缺点,包括不锈钢、钴铬合金、镍钛合金,以及可降解的镁、铁、锌合金等。经临床反馈可知,金属血管支架被植入人体后,普遍存在支架内再狭窄,易诱发血栓等并发症、力学性能不足等严重的应用痛点。表面功能处理是改善金属血管支架生物相容性、降低血栓发生率和提高力学性能的关键技术,有利于加强临床治疗效果。随着材料科学和表面工程的发展,针对金属支架的表面改性研究取得了显著进展。重点介绍涂层技术、表层改性、表面织构等3种技术,从细胞内皮化、促进血管再生、降低支架内再狭窄和血栓等生物性能方面,以及耐用性、疲劳强度等力学性能方面,分析这些先进方法对金属支架性能的影响。最后,结合新材料、新技术与个性化医疗,对金属血管支架的未来研究方向进行展望,旨在为相关领域的研究提供参考,推动金属血管支架的进一步发展与应用。

Abstract

As the earliest precision medical device used in the clinical treatment of blocked cardiovascular and cerebrovascular diseases, metal vascular stents have decades of development history. They have gone through the first generation of bare metal stents, the second generation of drug-eluting stents, and the third generation of degradable stents. Metal materials have also run through the research and development process of the three generations of stents, including stainless steel, cobalt-chromium alloy, nickel-titanium alloy, and degradable magnesium, iron, and zinc alloys. However, clinical feedback has found that after metal vascular stents are implanted in the human body, there are serious application pain points such as in-stent restenosis, induced thrombosis and other complications, and insufficient mechanical properties. Therefore, surface functional processing is a key technology for improving the biocompatibility of metal vascular stents, reducing the incidence of thrombosis, and enhancing mechanical properties, which is beneficial for improving the clinical treatment outcome. With the development of materials science and surface engineering, research on surface modification of metal stents has made significant progress.
This paper reviews and analyzes the surface functional treatment methods of metal vascular stents. The review first introduces the metal materials used in vascular stents. Stainless steel, as the earliest material used in vascular stents, has high fatigue strength and corrosion resistance, but can induce complications such as in-stent restenosis and thrombosis. Cobalt-chromium alloy is corrosion-resistant and wear-resistant, yet its biocompatibility limits its application. Although nitinol alloy is a self-expanding vascular stent material with good mechanical properties, while its processing is difficult. Degradable metals are currently promising materials that can be completely degraded in the human body, but there are still difficulties in corrosion resistance and degradation.
Importantly, this review introduces three technologies: coating technology, surface modification, and surface texturing. These research methods have gradually matured and are widely used to improve the surface properties of metal stents. Coating technology uses spraying, impregnation, electrochemical deposition, plasma sputtering and other methods to effectively solve the restenosis in stents and reduce the risk of thrombosis and inflammation. Surface modification uses plasma treatment, oxidation, nitridation, electrochemical polishing and other methods to significantly improve the biocompatibility of stents, promote the interaction between stents and the surrounding biological tissues, reduce the body's immune response and inflammatory response, and reduce postoperative complications. Surface texturing uses mechanical treatment methods such as lasers to promote the attachment and growth of vascular endothelial cells and other cells, reduce blood flow turbulence and disturbance, and improve hemodynamics.
Finally, combining new materials, new technologies and personalized medicine, the research direction of metal vascular stents is prospected, and it is believed that the future surface functional treatment of metal vascular stents tends to develop new materials and new technologies. In addition, 3D bioprinting technology, with its process flexibility, can produce complex geometric shapes, optimize the structure and function of stents, and improve the clinical functionality of stents. This article aims to provide a reference for the research on the surface treatment of metal vascular stents and promote the further development and application of metal vascular stents.

关键词

金属血管支架 / 金属材料 / 涂层技术 / 表层改性 / 表面织构 / 表面功能

Key words

metal vascular stent / metal materials / coating technology / surface modification / surface texturing / surface function

引用本文

导出引用
潘晨, 李璐涵, 范志芳, 曹晶晶, 李河宗. 金属血管支架表面功能处理研究进展[J]. 表面技术. 2025, 54(21): 185-198 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.013
PAN Chen, LI Luhan, FAN Zhifang, CAO Jingjing, LI Hezong. Advanced Progress in Surface Function Treatment of Metallic Vascular Stents[J]. Surface Technology. 2025, 54(21): 185-198 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.013
中图分类号: TB306    TG335.86    R318.08   

参考文献

[1] 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》概要(心血管疾病流行及介入诊疗状况)[J]. 中国介入心脏病学杂志, 2024, 32(10): 541-550.
LIU M B, HE X Y, YANG X H, et al.Interpretation of Report on Cardiovascular Health and Diseases in China 2023[J]. Chinese Journal of Interventional Cardiology, 2024, 32(10): 541-550.
[2] PAN C, HAN Y F, LU J P.Structural Design of Vascular Stents: A Review[J]. Micromachines, 2021, 12(7): 770.
[3] SCAFA UDRI\U0219TE A, NICULESCU A G, GRUMEZESCU A M, et al. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices[J]. Materials, 2021, 14(10): 2498.
[4] IM S H, IM D H, PARK S J, et al.Current Status and Future Direction of Metallic and Polymeric Materials for Advanced Vascular Stents[J]. Progress in Materials Science, 2022, 126: 100922.
[5] KOREI N, SOLOUK A, HAGHBIN NAZARPAK M, et al.A Review on Design Characteristics and Fabrication Methods of Metallic Cardiovascular Stents[J]. Materials Today Communications, 2022, 31: 103467.
[6] PRAVEEN KUMAR G, JAFARY-ZADEH M, TAVAKOLI R, et al.Feasibility of Using Bulk Metallic Glass for Self- Expandable Stent Applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(7): 1874-1882.
[7] WU T, CHEN X, FAN D Z, et al.Development and Application of Metal Materials in Terms of Vascular Stents[J]. Bio-Medical Materials and Engineering, 2015, 25(4): 435-441.
[8] SIGWART U, PUEL J, MIRKOVITCH V, et al.Intravascular Stents to Prevent Occlusion and Re-Stenosis after Transluminal Angioplasty[J]. New England Journal of Medicine, 1987, 316(12): 701-706.
[9] PALMAZ J C, RICHTER G M, NOELDGE G, et al.Intraluminal Stents in Atherosclerotic Iliac Artery Stenosis: Preliminary Report of a Multicenter Study[J]. Radiology, 1988, 168(3): 727-731.
[10] VANAEI S, HASHEMI M, SOLOUK A, et al.Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review[J]. Bioengineering, 2024, 11(10): 983.
[11] 刘强, 程晓农, 徐红星, 等. 316L不锈钢和NiTi合金血管支架的血液相容性[J]. 中国组织工程研究与临床康复, 2008, 12(4): 735-738.
LIU Q, CHENG X N, XU H X, et al.Blood Compatibility of 316L Stainless Steel and NiTi Alloy Vascular Stent[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(4): 735-738.
[12] SAINI J S, DOWLING L, TRIMBLE D, et al.Mechanical Properties of Selective Laser Melted CoCr Alloys: A Review[J]. Journal of Materials Engineering and Performance, 2021, 30(12): 8700-8714.
[13] LI Y G, SHI Y X, LU Y C, et al.Additive Manufacturing of Vascular Stents[J]. Acta Biomaterialia, 2023, 167: 16-37.
[14] VON BIRGELEN C, ZOCCA P, BUITEN R A, et al.Thin Composite Wire Strut, Durable Polymer-Coated (Resolute Onyx) Versus Ultrathin Cobalt-Chromium Strut, Bioresorbable Polymer-Coated (Orsiro) Drug-Eluting Stents in Allcomers with Coronary Artery Disease (BIONYX): An International, Single-Blind, Randomised Non-Inferiority Trial[J]. Lancet, 2018, 392(10154): 1235-1245.
[15] NAKAJIMA T, ITO Y, UEKI K, et al.Co-Cr-W-Pt Alloys with High X-Ray Visibility for Next-Generation Balloon- Expandable Stents[J]. Materials Science and Engineering: A, 2025, 931: 148216.
[16] CHAUDHARI R, VORA J J, PARIKH D M.A Review on Applications of Nitinol Shape Memory Alloy[M]// Recent Advances in Mechanical Infrastructure. Singapore: Springer Singapore, 2021: 123-132.
[17] GAO S M, FENG Y C, WANG J J, et al.Molten Pool Characteristics of a Nickel-Titanium Shape Memory Alloy for Directed Energy Deposition[J]. Optics & Laser Technology, 2021, 142: 107215.
[18] LI D Y, WANG J W, DU C H, et al.Technical Explorations for Manufacturing of NiTi Unibody Vascular Stents through Metal Injection Molding: Materials Performance, Fatigue Properties and Biocompatibility[J]. Materials & Design, 2025, 250: 113624.
[19] VELASCO-IBÁÑEZ R, LARA-CARRILLO E, MORALES- LUCKIE R A, et al. Evaluation of the Release of Nickel and Titanium under Orthodontic Treatment[J]. Scientific Reports, 2020, 10(1): 22280.
[20] BAKER H L.The Development and Processing of Nickel Titanium Shape Memory Alloys Containing Palladium Using Selective Laser Melting[D]. Birmingham, West Midlands, UK: University of Birmingham, 2019.
[21] LIU Y, ZHENG Y F, CHEN X H, et al.Fundamental Theory of Biodegradable Metals-Definition, Criteria, and Design[J]. Advanced Functional Materials, 2019, 29(18): 1805402.
[22] BANACH M, SERBAN M C, SAHEBKAR A, et al.Comparison of Clinical Outcomes between Bioresorbable Vascular Stents Versus Conventional Drug-Eluting and Metallic Stents: A Systematic Review and Meta- Analysis[J]. EuroIntervention, 2016, 12(2): e175-89.
[23] BRANCATI M F, BURZOTTA F, TRANI C, et al.Coronary Stents and Vascular Response to Implantation: Literature Review[J]. Pragmatic and Observational Research, 2017, 8: 137-148.
[24] ANG H Y, BULLUCK H, WONG P, et al.Bioresorbable Stents: Current and Upcoming Bioresorbable Technologies[J]. International Journal of Cardiology, 2017, 228: 931-939.
[25] 杨炎, 张针锋, 王俊伟, 等. 可降解金属血管支架的研发进展[J]. 中南大学学报(医学版), 2024, 49(11): 1861-1868.
YANG Y, ZHANG Z F, WANG J W, et al.Research and Development Progress of Biodegradable Metal Vascular Stents[J]. Journal of Central South University (Medical Science Edition), 2024, 49(11): 1861-1868.
[26] ZHENG Y F, GU X N, WITTE F.Biodegradable Metals[J]. Materials Science and Engineering: R: Reports, 2014, 77: 1-34.
[27] HAUDE M, INCE H, ABIZAID A, et al.Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients with De-Novo Coronary Artery Lesions (BIOSOLVE-Ⅱ): 6 Month Results of a Prospective, Multicentre, Non-Randomised, First- in-Man Trial[J]. The Lancet, 2016, 387(10013): 31-39.
[28] ERBEL R, DI MARIO C, BARTUNEK J, et al.Temporary Scaffolding of Coronary Arteries with Bioabsorbable Magnesium Stents: A Prospective, Non-Randomised Multicentre Trial[J]. The Lancet, 2007, 369(9576): 1869-1875.
[29] HAUDE M, ERBEL R, ERNE P, et al.Safety and Performance of the Drug-Eluting Absorbable Metal Scaffold (DREAMS) in Patients with De-Novo Coronary Lesions: 12 Month Results of the Prospective, Multicentre, First-in- Man BIOSOLVE-I Trial[J]. The Lancet, 2013, 381(9869): 836-844.
[30] WANG K B, SHANG T D, ZHANG L, et al.Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35431-35443.
[31] QIN L, ZHANG G, SUN L, et al. A Novel Iron Bioresorbable Scaffold: A Potential Strategy for Pulmonary Artery Stenosis[J]. Regenerative Biomaterials, 2025, 12: rbaf041.
[32] ZHANG X L, ZHU L, WEI Z H, et al.Comparative Efficacy and Safety of Everolimus-Eluting Bioresorbable Scaffold Versus Everolimus-Eluting Metallic Stents: A Systematic Review and Meta-Analysis[J]. Annals of Internal Medicine, 2016, 164(11): 752-763.
[33] ZHENG J F, XI Z W, LI Y, et al.Long-Term Safety and Absorption Assessment of a Novel Bioresorbable Nitrided Iron Scaffold in Porcine Coronary Artery[J]. Bioactive Materials, 2022, 17: 496-505.
[34] YANG H T, WANG C, LIU C Q, et al.Evolution of the Degradation Mechanism of Pure Zinc Stent in the One- Year Study of Rabbit Abdominal Aorta Model[J]. Biomaterials, 2017, 145: 92-105.
[35] SEZER N, EVIS Z, KAYHAN S M, et al.Review of Magnesium-Based Biomaterials and Their Applications[J]. Journal of Magnesium and Alloys, 2018, 6(1): 23-43.
[36] ZHAO D W, WITTE F, LU F Q, et al.Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review from Clinical Translational Perspective[J]. Biomaterials, 2017, 112: 287-302.
[37] NIU J L, HUANG H, PEI J, et al.Research and Development Strategy for Biodegradable Magnesium-Based Vascular Stents: A Review[J]. Biomaterials Translational, 2021, 2(3): 236-247.
[38] ECHEVERRY-RENDON M, ALLAIN J P, ROBLEDO S M, et al.Coatings for Biodegradable Magnesium-Based Supports for Therapy of Vascular Disease: A General View[J]. Materials Science and Engineering: C, 2019, 102: 150-163.
[39] 尹林, 黄华, 袁广银, 等. 可降解镁合金临床应用的最新研究进展[J]. 中国材料进展, 2019, 38(2): 126-137.
YIN L, HUANG H, YUAN G Y, et al.Latest Research Progress of Biodegradable Magnesium Alloys in Clinical Applications[J]. Materials China, 2019, 38(2): 126-137.
[40] FRANCIS A, YANG Y, VIRTANEN S, et al.Iron and Iron-Based Alloys for Temporary Cardiovascular Applications[J]. Journal of Materials Science Materials in Medicine, 2015, 26(3): 138.
[41] AMANI S, FARAJI G.Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review[J]. Metals and Materials International, 2019, 25(5): 1341-1359.
[42] 许雅南, 王伟强, 杨帅康, 等. 铁基材料在生物可降解血管支架领域的研究进展[J]. 钢铁钒钛, 2023, 44(4): 158-166.
XU Y N, WANG W Q, YANG S K, et al.Research Progress of Biodegradable Iron-Based Materials for Vascular Stents[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 158-166.
[43] HERMAWAN H.Updates on the Research and Development of Absorbable Metals for Biomedical Applications[J]. Progress in Biomaterials, 2018, 7(2): 93-110.
[44] PEUSTER M, HESSE C, SCHLOO T, et al.Long-Term Biocompatibility of a Corrodible Peripheral Iron Stent in the Porcine Descending Aorta[J]. Biomaterials, 2006, 27(28): 4955-4962.
[45] WAKSMAN R, PAKALA R, BAFFOUR R, et al.Short- Term Effects of Biocorrodible Iron Stents in Porcine Coronary Arteries[J]. Journal of Interventional Cardiology, 2008, 21(1): 15-20.
[46] BOWEN P K, DRELICH J, GOLDMAN J.Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents[J]. Advanced Materials, 2013, 25(18): 2577-2582.
[47] KABIR H, MUNIR K, WEN C E, et al.Recent Research and Progress of Biodegradable Zinc Alloys and Composites for Biomedical Applications: Biomechanical and Biocorrosion Perspectives[J]. Bioactive Materials, 2021, 6(3): 836-879.
[48] LI G N, YANG H T, ZHENG Y F, et al.Challenges in the Use of Zinc and Its Alloys as Biodegradable Metals: Perspective from Biomechanical Compatibility[J]. Acta Biomaterialia, 2019, 97: 23-45.
[49] MOSTAED E, SIKORA-JASINSKA M, DRELICH J W, et al.Zinc-Based Alloys for Degradable Vascular Stent Applications[J]. Acta Biomaterialia, 2018, 71: 1-23.
[50] ZHOU C, LI H F, YIN Y X, et al.Long-Term in Vivo Study of Biodegradable Zn-Cu Stent: A 2-Year Implantation Evaluation in Porcine Coronary Artery[J]. Acta Biomaterialia, 2019, 97: 657-670.
[51] 逯赟, 顾雪楠, 樊瑜波. 应力对可降解金属血管支架降解的影响研究[J]. 中国组织工程研究, 2019, 23(2): 291-297.
LU Y, GU X N, FAN Y B.Effects of Stress on Degradation of Biodegradable Metal for Vascular Stent Application: A Review[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(2): 291-297.
[52] 王禹贺, 李燕, 蒙奎霖, 等. 心血管植介入体表面抗凝涂层近十年进展[J]. 摩擦学学报, 2023, 43(4): 446-468.
WANG Y H, LI Y, MENG K L, et al.A Critical Review on Anticoagulant Coatings on Cardiovascular Implants in the Past 10 Years[J]. Tribology, 2023, 43(4): 446-468.
[53] 易红, 黄杰, 顾兴中, 等. 制备血管支架表面涂层超声波喷涂工艺研究[J]. 中国科学: 技术科学, 2012, 42(2): 160-173.
YI H, HUANG J, GU X Z, et al.Study on Ultrasonic Spraying Technology for Preparing Surface Coating of Vascular Stent[J]. Scientia Sinica (Technologica), 2012, 42(2): 160-173.
[54] 柯佑, 黄楠, 熊开琴, 等. 具有病灶治愈功能的淫羊藿苷洗脱涂层修饰血管支架[J]. 表面技术, 2024, 53(18): 219-230.
KE Y, HUANG N, XIONG K Q, et al.Icariin-Eluting Coating Modified Vascular Stent with Lesion Healing Function[J]. Surface Technology, 2024, 53(18): 219-230.
[55] 周楠, 李梦茹, 黄楠, 等. 具有抗炎促内皮细胞生长的多功能药物洗脱支架的制备及表征[J]. 表面技术, 2024, 53(24): 216-227.
ZHOU N, LI M R, HUANG N, et al.Preparation and Characterization of a Multifunctional Drug-Eluting Stent with Anti-Inflammatory and Endothelial Cell Growth- Promoting[J]. Surface Technology, 2024, 53(24): 216-227.
[56] 魏嘉佳, 孟昊天, 李鹏程, 等. 贻贝仿生聚酚胺涂层固定REDV短肽促内皮化探究[J]. 材料导报, 2024, 38(13): 263-269.
WEI J J, MENG H T, LI P C, et al.Exploration of Mussel Biomimetic Poly (Phenol-Amine) Coating to Immobilize REDV Peptide for Endothelial Promotion[J]. Materials Reports, 2024, 38(13): 263-269.
[57] SHI L Q, CHEN S S, ZHENG F, et al.Corrosion Resistance Evaluation of Biodegradable Magnesium Alloy Vascular Stents Optimized by Mechanical Adapted Polymer Coating Strategy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130664.
[58] 侯树森, 郭贵中, 王广龙, 等. 血管支架镁合金表面氟化镁涂层的制备与性能[J]. 特种铸造及有色合金, 2020, 40(8): 832-836.
HOU S S, GUO G Z, WANG G L, et al.Preparation and Performance of Magnesium Fluoride Coating on Magnesium Alloy for Stent Application[J]. Special Casting & Nonferrous Alloys, 2020, 40(8): 832-836.
[59] PHAN T, JONES J E, LIAO Y X, et al.The Mechanical and Electrochemical Stability of Trimethysilane Plasma Nanocoatings Deposited Onto Cobalt Chromium Cardiovascular Stents[J]. Materials, 2024, 17(15): 3699.
[60] PHAN T, JONES J E, CHEN M, et al.In Vitro Biological Responses of Plasma Nanocoatings for Coronary Stent Applications[J]. Journal of Biomedical Materials Research Part A, 2023, 111(11): 1768-1780.
[61] PHAN T, JONES J E, CHEN M, et al.A Biocompatibility Study of Plasma Nanocoatings Onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications[J]. Materials, 2022, 15(17): 5968.
[62] INUZUKA N, SHOBAYASHI Y, TATESHIMA S, et al.Stable and Thin-Polymer-Based Modification of Neurovascular Stents with 2-Methacryloyloxyethyl Phosphorylcholine Polymer for Antithrombogenicity[J]. Bioengineering, 2024, 11(8): 833.
[63] ZHANG Z Q, YANG Y X, LI J G, et al.Advances in Coatings on Magnesium Alloys for Cardiovascular Stents-a Review[J]. Bioactive Materials, 2021, 6(12): 4729-4757.
[64] WANG L T, XU R T, MENG L J, et al.A Fucoidan- Loaded Hydrogel Coating for Enhancing Corrosion Resistance, Hemocompatibility and Endothelial Cell Growth of Magnesium Alloy for Cardiovascular Stents[J]. Biomaterials Advances, 2024, 163: 213960.
[65] MA Y, LI J G, ZHOU Y F.Construction and Biocompatibility Evaluation of CS-FA/VA Composite Coating on the Surface of ZE21B Vascular Stent[J]. Applied Surface Science, 2025, 681: 161413.
[66] WANG Y H, ZHAO Y, WANG X Y, et al.Fucoidan/ Collagen Composite Coating on Magnesium Alloy for Better Corrosion Resistance and Pro-Endothelialization Potential[J]. International Journal of Biological Macromolecules, 2024, 255: 128044.
[67] HONG S J, HONG M K.Drug-Eluting Stents for the Treatment of Coronary Artery Disease: A Review of Recent Advances[J]. Expert Opinion on Drug Delivery, 2022, 19(3): 269-280.
[68] LIU J, ZHENG B, WANG P, et al.Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 17842-17858.
[69] HOU R X, WU L G, WANG J, et al.Surface-Degradable Drug-Eluting Stent with Anticoagulation, Antiproliferation, and Endothelialization Functions[J]. Biomolecules, 2019, 9(2): 69.
[70] WANG P, LIU J, LUO X J, et al.A Tannic Acid-Modified Fluoride Pre-Treated Mg-Zn-Y-Nd Alloy with Antioxidant and Platelet-Repellent Functionalities for Vascular Stent Application[J]. Journal of Materials Chemistry B, 2019, 7(46): 7314-7325.
[71] SANDELL M, ERICSSON A, AL-SAADI J, et al.A Novel Noble Metal Stent Coating Reduces in Vitro Platelet Activation and Acute in Vivo Thrombosis Formation: A Blinded Study[J]. Scientific Reports, 2023, 13(1): 17225.
[72] LIU K P, CHENG A Y, YOU J L, et al.Biocompatibility and Corrosion Resistance of Drug Coatings with Different Polymers for Magnesium Alloy Cardiovascular Stents[J]. Colloids and Surfaces B: Biointerfaces, 2025, 245: 114202.
[73] SUN X J, LI H, QI L J, et al.Construction and Biocompatibility Evaluation of MOF/S-HA Composite Coating on the Surface of Magnesium Alloy Vascular Stent[J]. Progress in Organic Coatings, 2024, 187: 108177.
[74] SURYALAKSHMI P, SUNDARAPANDIAN A, MERCYJAYAPRIYA J, et al.Genetically Encoded Biocompatible Anti-Coagulant Protein-Coated Coronary Artery Stents Drive Endothelialization[J]. Colloids and Surfaces B: Biointerfaces, 2024, 238: 113908.
[75] DUAN X J, YANG Y M, ZHANG T J, et al.Research Progress of Metal Biomaterials with Potential Applications as Cardiovascular Stents and Their Surface Treatment Methods to Improve Biocompatibility[J]. Heliyon, 2024, 10(4): e25515.
[76] DE ANDRADE L M, PATERNOSTER C, CHEVALLIER P, et al. Electropolishing Fe-Based Biodegradable Metals for Vascular Applications: Impact on Surface Properties, Corrosion and Cell Viability[J]. RSC Applied Interfaces, 2025, 2(2): 420-438.
[77] BENČINA M, RAWAT N, LAKOTA K, et al. Bio- Performance of Hydrothermally and Plasma-Treated Titanium: The New Generation of Vascular Stents[J]. International Journal of Molecular Sciences, 2021, 22(21): 11858.
[78] SHIM J W, BAE I H, PARK D S, et al.Hydrophilic Surface Modification of Coronary Stent Using an Atmospheric Pressure Plasma Jet for Endothelialization[J]. Journal of Biomaterials Applications, 2018, 32(8): 1083-1089.
[79] BRAZ J K F S, MARTINS G M, SABINO V, et al. Plasma Nitriding under Low Temperature Improves the Endothelial Cell Biocompatibility of 316L Stainless Steel[J]. Biotechnology Letters, 2019, 41(4/5): 503-510.
[80] CAMPEOL D A, FONTOURA C P, RODRIGUES M M, et al.Assessment of Mechanical and Corrosion Properties of Plasma Oxidized Medical Grade NiTi Wire[J]. Vacuum, 2020, 171: 109013.
[81] WANG P, LIU J, SHEN S, et al.In Vitro and in Vivo Studies on Two-Step Alkali-Fluoride-Treated Mg-Zn-Y- Nd Alloy for Vascular Stent Application: Enhancement in Corrosion Resistance and Biocompatibility[J]. ACS Biomaterials Science & Engineering, 2019, 5(7): 3279-3292.
[82] YELKARASI C, RECEK N, KAZMANLI K, et al.Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents[J]. International Journal of Molecular Sciences, 2022, 23(9): 4595.
[83] MOUSAVIZADEH S M, HE Z L, WANG X Y, et al.Surface Modification of WE43 Magnesium Alloy via Alkali/Stearic Acid Treatment for Biodegradable Drug- Eluting Stent Applications[J]. Materials Chemistry and Physics, 2023, 308: 128249.
[84] KAKINOKI S, TAKASAKI K, MAHARA A, et al.Direct Surface Modification of Metallic Biomaterials via Tyrosine Oxidation Aiming to Accelerate the re-Endothelialization of Vascular Stents[J]. Journal of Biomedical Materials Research Part A, 2018, 106(2): 491-499.
[85] CONTRERAS-ALMENGOR O, ORDOÑO J, LI M, et al. Effect of Surface Modification Methods on 3D-Printed NiTi Alloys for Cardiovascular Applications[J]. Biomaterials Advances, 2025, 173: 214281.
[86] 陈志昂, 苗京涛, 汪琪龙, 等. 三维打印316L不锈钢血管支架的电解抛光及力学性能[J]. 生物医学工程学杂志, 2023, 40(3): 552-558.
CHEN Z A, MIAO J T, WANG Q L, et al.Three- Dimensional Printed 316L Stainless Steel Cardiovascular Stent’s Electrolytic Polishing and Its Mechanical Properties[J]. Journal of Biomedical Engineering, 2023, 40(3): 552-558.
[87] ZHANG W, LI Z Y, XU C, et al.Surface Characteristics of NiTi Cardiovascular Stents by Selective Laser Melting and Electrochemical Polishing[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(1): 623-634.
[88] ZHOU Y Z, CHAI M X, YAN F J, et al.Effects of Electrochemical Polishing on the Surface Properties of Laser-Cut Ni-Ti Alloy Cardiovascular Stents[J]. International Journal of Electrochemical Science, 2025, 20(9): 101101.
[89] ZHANG J, YU W Y, LI G Q, et al.Robust and Regular Micronano Binary Texture on the Complex Curved Surface for Enhanced Reendothelialization and Antithrombotic Performance[J]. ACS Nano, 2025, 19(3): 3676-3693.
[90] KHAN M A, KHAN N, ULLAH M, et al.3D Printing Technology and Its Revolutionary Role in Stent Implementation in Cardiovascular Disease[J]. Current Problems in Cardiology, 2024, 49(6): 102568.
[91] TAN C H, MUHAMAD N, ABDULLAH M B.Surface Topographical Modification of Coronary Stent: A Review[J]. IOP Conference Series: Materials Science and Engineering, 2017, 209: 012031.
[92] PALMAZ J C, BENSON A, SPRAGUE E A.Influence of Surface Topography on Endothelialization of Intravascular Metallic Material[J]. Journal of Vascular and Interventional Radiology, 1999, 10(4): 439-444.
[93] WANG J N, LI Y L, GAO L Y, et al.Preparation of the Micro/Nano Structures of the Biomimetic Coating Stent for Loading MiRNA126 by Four-Beam Laser Interference[J]. Optik, 2017, 128: 247-252.
[94] DONG J.Laser Surface Texturing of Stent Materials for Cardiovascular Applications[D]. London: Loughborough University, 2024: 97-103.
[95] 郑凯瑞, 杨发展, 赵国栋, 等. 血管支架内表面正六边形微织构对血液流动特性的影响[J]. 表面技术, 2022, 51(9): 280-287.
ZHENG K R, YANG F Z, ZHAO G D, et al.Effect of Hexagonal Micro Texture on Blood Flow Characteristics of Vascular Stent[J]. Surface Technology, 2022, 51(9): 280-287.
[96] 郑凯瑞, 杨发展, 赵国栋, 等. 血管支架内壁微织构参数对近壁面血流特性的影响[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 185-195.
ZHENG K R, YANG F Z, ZHAO G D, et al.Effect of Micro-Texture Parameters on Blood Flow Characteristics near the Wall of Vascular Stent[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(6): 185-195.
[97] 黄珂, 杨发展, 潘明章, 等. 血管支架内壁面圆形凹坑微织构对血流动力学影响仿真[J]. 哈尔滨理工大学学报, 2023, 28(2): 59-66.
HUANG K, YANG F Z, PAN M Z, et al.Simulation of the Effect of Circular Pit Micro Texture on Hemodynamics on the Inner Wall of Vascular Stent[J]. Journal of Harbin University of Science and Technology, 2023, 28(2): 59-66.
[98] 蔡芸, 朱诗文, 傅连东. 仿生表面织构参数对血管支架内血流动力学特性影响的仿真分析[J]. 机械设计与制造, 2020(8): 117-120.
CAI Y, ZHU S W, FU L D.Simulation Analysis of the Influence of Bionic Surface Texture Parameters on Hemodynamic Characteristics in Vascular Stent[J]. Machinery Design & Manufacture, 2020(8): 117-120.
[99] SPRAGUE E A, TIO F, AHMED S H, et al.Impact of Parallel Micro-Engineered Stent Grooves on Endothelial Cell Migration, Proliferation, and Function[J]. Circulation: Cardiovascular Interventions, 2012, 5(4): 499-507.
[100] FRANCO-MARTÍNEZ F, SOLÓRZANO-REQUEJO W, DE BLAS-DE MIGUEL A, et al. Design and Manufacturing of Microtextured Patient-Specific Coronary Stent[C]// Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies. Lisbon: SCITEPRESS - Science and Technology Publications, 2023: 142-149.
[101] SAQIB M, BESHCHASNA N, PELACCIA R, et al.Tailoring Surface Properties, Biocompatibility and Corrosion Behavior of Stainless Steel by Laser Induced Periodic Surface Treatment towards Developing Biomimetic Stents[J]. Surfaces and Interfaces, 2022, 34: 102365.
[102] MIRHOSSEINI N, LI L, LIU Z, et al.A Comparison of Endothelial Cell Growth on Commercial Coronary Stents with and without Laser Surface Texturing[J]. Heliyon, 2024, 10(5): e26425.
[103] JUN I, CHOI H, KIM H, et al.Exploring the Potential of Laser-Textured Metal Alloys: Fine-Tuning Vascular Cells Responses through in Vitro and Ex Vivo Analysis[J]. Bioactive Materials, 2025, 43: 181-194.
[104] IBRAHIM M S, SERESHT H B, KUM C H, et al.Novel Laser-Textured Grooves Extended to the Sidewall Edges of CoCr Surfaces for Rapid and Selective Endothelialization Following Coronary Artery Stenting[J]. Biomaterials, 2025, 321: 123299.

基金

河北省燕赵黄金台聚才计划骨干人才项目(B2024002); 河北省教育厅产学研合作专项(CXY2024053); 河北工程大学博士专项基金(SJ2401002201)

PDF(871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/