无氟超疏水珍珠岩的制备及其油水分离性能研究

欧佳玉, 于秩毅, 李婕, 钟梓豪, 赵春栋, 孙孝塬, 陈光浩, 刘子艾, 潘维浩

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 133-142.

PDF(7525 KB)
PDF(7525 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 133-142. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.010
专题——超浸润多级表面结构的设计与应用

无氟超疏水珍珠岩的制备及其油水分离性能研究

  • 欧佳玉1, 于秩毅1, 李婕1, 钟梓豪1, 赵春栋1, 孙孝塬1, 陈光浩2, 刘子艾3, 潘维浩1,*
作者信息 +

Preparation of Fluorine-free Superhydrophobic Perlite Powder and Its Oil/Water Separation Performance

  • OU Jiayu1, YU Zhiyi1, LI Jie1, ZHONG Zihao1, ZHAO Chundong1, SUN Xiaoyuan1, CHEN Guanghao2, LIU Ziai3, PAN Weihao1,*
Author information +
文章历史 +

摘要

目的 制备一种无氟超疏水/超亲油珍珠岩粉末材料,以实现油水混合物的高效分离,并可实现水包油乳化液的油水分离,为海洋溢油处理、工业含油废水净化等场景提供绿色高效的油水分离方案。方法 通过化学改性法对天然珍珠岩颗粒进行表面能改性,经研磨、硬脂酸-乙醇溶液修饰、高温烘干、二次研磨等工艺,制备出具有超疏水/超亲油性的珍珠岩粉末。系统表征了改性后材料的润湿性、微观结构和元素组成。进一步将超疏水/超亲油珍珠岩粉末置于无纺布过滤包中,通过吸附法油水分离和过滤法油水分离进行油水混合物的分离;采用强力搅拌破乳的方式实现水包油乳化液的油水分离。结果 改性珍珠岩粉末表现出优异的超疏水性与超亲油性,水在表面的接触角大于150°,且不含氟元素。该材料可高效分离多种油水混合物,对多种油水混合物的吸附/过滤分离效率均超过92%,并可在较为恶劣的条件(如强力搅拌、紫外照射、高温、酸碱盐溶液等环境)下实现油水分离,展现出较好的稳定性、耐用性和重复利用性。此外,对表面活性剂稳定的水包油乳化液仍可实现油水分离。结论 成功制备出超疏水/超亲油珍珠岩粉末,可实现复杂油水混合物及乳化液的高效分离,分离效率高且具有较高的分离纯度。该油水分离方法无需外加试剂或复杂设备,环境友好、成本低廉,在海上溢油应急处理、工业含油废水净化等领域具有广阔的应用前景。

Abstract

This study is dedicated to the development of a novel fluorine-free superhydrophobic and superoleophilic perlite powder designed for the high-efficiency separation of oil/water mixtures, including challenging oil-in-water emulsions. Its primary objective is to provide a green, cost-effective, and robust solution for critical environmental remediation scenarios such as marine oil spill recovery and the purification of industrial oily wastewater. The fabrication methodology involves a meticulous chemical modification process of natural perlite particles. This process commences with coarse grinding of the raw perlite, followed by a critical surface energy modification step using a stearic acid solution in ethanol. The treated powder is then subject to a controlled high-temperature drying process to ensure stable bonding of the hydrophobic agents, culminating in a final micronization step through secondary grinding to achieve a fine, functionalized powder. This synthesis strategy successfully constructs a hierarchical micro/nanostructure and grafts low-surface-energy groups onto the perlite, contributing to the achievement of the desired wettability. A comprehensive suite of characterization techniques, including scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), are employed to analyze the surface morphology and elemental composition. Wettability assessments confirm the excellent performance of the modified perlite powder, demonstrating a superhydrophobic state with a water contact angle exceeding 150° and a superoleophilic state with an oil contact angle close to 0°. Crucially, EDS analysis verifies the complete absence of fluorinated compounds, underscoring the environmentally friendly nature of the modification process. For practical application, the superhydrophobic perlite powder is packaged into non-woven fabric filters. Its separation performance is rigorously evaluated through two primary mechanisms: adsorption-driven oil/water separation and filtration-driven oil/water separation. The results are highly promising, showing separation efficiencies consistently above 92% for a diverse range of oil/water mixtures (heavy oil: dichloromethane, light oil: peanut oil, diesel, n-hexane). In addition, the separated water is extracted using carbon tetrachloride and the oil content in the water is tested by FTIR spectroscopy. It can be observed that the oil content in the water after separation from the four different oil/water mixtures is relatively low, indicating that the water obtained by this separation method has high purity. In addition, the separation efficiency is still larger than 90% after 20 times filiation oil/water separation, indicating good stability and reusability. Furthermore, the superhydrophobic/superoleophilic perlite powder exhibits remarkable stability and durability in harsh environmental tests. It maintains high separation efficiency after prolonged exposure to intense mechanical stirring, UV radiation (365 nm, 6 W), elevated temperature (up to 90 ℃), and highly corrosive acidic (pH=1), alkaline (pH=11), and sodium chloride aqueous solution (3.5wt.%). The results confirm its potential for use in real-world applications. A significant achievement of this study is the superhydrophobic/superoleophilic perlite powder's ability to effectively separate oil-in-water emulsions. By leveraging a vigorous stirring process that induces demulsification, the superhydrophobic powder successfully coalesces and captures the dispersed oil droplets. In conclusion, this research successfully fabricates a fluorine-free, superhydrophobic/superoleophilic perlite powder via a simple and scalable chemical modification method. The material exhibits outstanding efficiency, exceptional stability, and superior durability in separating both oil/water mixtures and oil-in-water emulsions. The developed material holds substantial promise for broad applications in emergency marine oil spill response and the treatment of industrial effluents, offering a practical pathway for mitigating water pollution.

关键词

超疏水表面 / 微/纳结构 / 低表面能 / 油水分离 / 水包油乳化液

Key words

superhydrophobic surface / micro/nanostructure / low surface energy / oil/water separation / oil-in-water emulsion

引用本文

导出引用
欧佳玉, 于秩毅, 李婕, 钟梓豪, 赵春栋, 孙孝塬, 陈光浩, 刘子艾, 潘维浩. 无氟超疏水珍珠岩的制备及其油水分离性能研究[J]. 表面技术. 2025, 54(21): 133-142 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.010
OU Jiayu, YU Zhiyi, LI Jie, ZHONG Zihao, ZHAO Chundong, SUN Xiaoyuan, CHEN Guanghao, LIU Ziai, PAN Weihao. Preparation of Fluorine-free Superhydrophobic Perlite Powder and Its Oil/Water Separation Performance[J]. Surface Technology. 2025, 54(21): 133-142 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.010
中图分类号: TB34    TB17   

参考文献

[1] 刘磊, 陈浩然, 王思佳, 等. KGM/CNF-不锈钢网油水分离材料的制备及其油水分离性能研究[J]. 表面技术, 2024, 53(14): 199-206.
LIU L, CHEN H R, WANG S J, et al.Preparation and Application of KGM/CNF-Stainless Steel Mesh Material in Oil-Water Separation[J]. Surface Technology, 2024, 53(14): 199-206.
[2] 蔡鑫宇, 李莉, 王金杰, 等. 超亲水-超疏油无机膜材料的制备及在油水分离中的应用[J]. 表面技术, 2023, 52(12): 289-297.
CAI X Y, LI L, WANG J J, et al.Preparation and Application of Superhydrophilic-Superoleophobic Inorganic Membrane Materials in Oil-Water Separation[J]. Surface Technology, 2023, 52(12): 289-297.
[3] 付锦绣, 翟凤瑞, 李双. 低温烧结碳化硅陶瓷分离膜的制备及其油水分离性能[J]. 硅酸盐学报, 2022, 50(6): 1572-1581.
FU J X, ZHAI F R, LI S.Low-Temperature Preparation of Silicon Carbide Ceramic Membrane for Oil-in-Water Separation[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1572-1581.
[4] HE Y X, HUANG J X, GUO Z G, et al.Hydrogels: A Review on Their Versatile Applications for Efficient and Stable Oil-Water Separation[J]. Journal of Materials Chemistry A, 2025, 13(10): 6919-6953.
[5] SU Y, FAN T T, CUI W Y, et al.Advanced Electrospun Nanofibrous Materials for Efficient Oil/Water Separation[J]. Advanced Fiber Materials, 2022, 4(5): 938-958.
[6] HAN X T, GUO Z G.Graphene and Its Derivative Composite Materials with Special Wettability: Potential Application in Oil-Water Separation[J]. Carbon, 2021, 172: 647-681.
[7] 元成龙, 陈旭, 端木令鑫, 等. 木质素基超疏水复合材料制备与应用研究进展[J/OL]. 复合材料学报, 2025: 1-17. (2025-07-04). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20250702001&dbname=CJFD&dbcode=CJFQ.
YUAN C L, CHEN X, DUANMU L X, et al. Research Progress on the Fabrication and Application of Lignin- Based Superhydrophobic Composites[J/OL]. China Industrial Economics, 2025: 1-17. (2025-07-04). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20250702001&dbname=CJFD&dbcode=CJFQ.
[8] 吴迪, 彭明国, 谷宇, 等. 磁性纳米破乳剂的制备及其稠油乳状液破乳性能[J]. 化工进展, 2025, 44(1): 436-444.
WU D, PENG M G, GU Y, et al.Preparation of Magnetic Nano-Demulsifier and Its Demulsification Performance on Heavy Oil Emulsion[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 436-444.
[9] WANG D, YANG D L, HUANG C, et al.Stabilization Mechanism and Chemical Demulsification of Water-in- Oil and Oil-in-Water Emulsions in Petroleum Industry: A Review[J]. Fuel, 2021, 286: 119390.
[10] WANG S Y, LIANG Z, HONG Q, et al.Green Route to Prepare Robust and Multifunctional Superhydrophobic Coatings[J]. Ceramics International, 2024, 50(3): 5857-5867.
[11] ZHANG Z, ZHANG P Y, GAO Y L, et al.Fabrication of Superhydrophobic Copper Meshes via Simply Soaking for Oil/Water Separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642: 128648.
[12] LIU Y J, LIN Z D, LUO Y, et al.Superhydrophobic MOF Based Materials and Their Applications for Oil-Water Separation[J]. Journal of Cleaner Production, 2023, 420: 138347.
[13] 于德宇, 闫馨梅, 邹海鹏, 等. 超疏水三聚氰胺海绵制备及油水分离和光热除冰性能[J/OL]. 精细化工, 2025: 1-10. (2025-05-13). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXHG20250512005&dbname=CJFD&dbcode=CJFQ.
YU D Y, YAN X M, ZOU H P, et al. Preparation of Superhydrophobic Melamine Sponge and Its Performance on Oil-water Separation and Photothermal Deicing[J/OL]. China Industrial Economics, 2025: 1-10. (2025-05-13). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXHG20250512005&dbname=CJFD&dbcode=CJFQ.
[14] 景境, 刘战剑, 张曦光, 等. 超浸润油水分离膜及其研究进展[J]. 表面技术, 2023, 52(2): 172-182.
JING J, LIU Z J, ZHANG X G, et al.Research Progress of Superwetting Oil-Water Separation Membrane[J]. Surface Technology, 2023, 52(2): 172-182.
[15] PAN J, YU L L, HUANG W H, et al.Preparation of Superhydrophobic Copper Mesh for Highly Efficient Oil- Water Separation[J]. International Journal of Electrochemical Science, 2024, 19(1): 100417.
[16] CAO H J.TEPA-SiO2@PDA Composite as a Highly Stable Underwater Oleophobic Coating on Copper Mesh for Oil-Water Separation with High Flux[J]. Progress in Organic Coatings, 2023, 177: 107446.
[17] WANG Y Y, YANG S K, ZHANG J W, et al.Scalable and Switchable CO2-Responsive Membranes with High Wettability for Separation of Various Oil/Water Systems[J]. Nature Communications, 2023, 14(1): 1108.
[18] HUANG L, ZHANG L L, SONG J L, et al.Superhydrophobic Nickel-Electroplated Carbon Fibers for Versatile Oil/Water Separation with Excellent Reusability and High Environmental Stability[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24390-24402.
[19] ZHANG Y X, WANG P F, ZHANG T, et al.Improved Superhydrophobicity of Magnetic Melamine Sponge by Aminosilane for Batch and Continuous Oil-Water Separation[J]. Chemical Engineering Science, 2025, 303: 120996.
[20] YIN C J, QI X J, ZHAO S H, et al.Natural Silk Fibers Incorporated Aramid Nanofibers Sponges for Efficient Oil/Water Separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129323.
[21] LV Y M, CHU Z M, ZHANG Z G, et al.Multifunctional Superhydrophobic Conductive Sponge for Real-Time Monitoring of Oil-Water Separation and Amphibious Human Activity[J]. Surfaces and Interfaces, 2025, 58: 105875.
[22] CAI L, DAI Y M, LI Y Q, et al.Preparation of Temperature-Responsive Smart Sponge and Its Application in Oil-Water Separation and Dye Adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 705: 135628.
[23] 金亦辉, 潘维浩, 周瑜阳, 等. 超疏水不锈钢网双面复合电刷镀制备法及其油水分离应用[J]. 表面技术, 2022, 51(5): 363-373.
JIN Y H, PAN W H, ZHOU Y Y, et al.Superhydrophobic Stainless Steel Mesh Prepared by Double-Sided Composite Electroplating and Its Application in Oil-Water Separation[J]. Surface Technology, 2022, 51(5): 363-373.
[24] PAN Y L, WEI P C, LI F R, et al.Liquid-Assisted Strategy for Dual-Purpose Oil-Water Separation with Super- Omniphobic Mesh[J]. Chemical Engineering Journal, 2023, 475: 146094.
[25] LIU J Y, CHEN Y, ZHANG B Z, et al.Superhydrophobic Straw Felt for Oil Absorption[J]. Results in Engineering, 2022, 13: 100370.
[26] YANG S L, LI J Z, ZHEN C, et al.Graphene-Based Melamine Sponges with Reverse Wettability for Oil/ Water Separation through Absorption and Filtration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107543.
[27] ZUO J H, LIU Z H, ZHOU C L, et al.A Durable Superwetting Clusters-Inlayed Mesh with High Efficiency and Flux for Emulsion Separation[J]. Journal of Hazardous Materials, 2021, 403: 123620.
[28] YANG Y, GUO Z G, LIU W M.Special Superwetting Materials from Bioinspired to Intelligent Surface for On- Demand Oil/Water Separation: A Comprehensive Review[J]. Small, 2022, 18(48): 2204624.
[29] CHEN C L, WENG D, MAHMOOD A, et al.Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 11006-11027.
[30] TANG L, WANG G, ZENG Z X, et al.Three-Dimensional Adsorbent with pH Induced Superhydrophobic and Superhydrophilic Transformation for Oil Recycle and Adsorbent Regeneration[J]. Journal of Colloid and Interface Science, 2020, 575: 231-244.
[31] ZHANG Z M, GAN Z Q, BAO R Y, et al.Green and Robust Superhydrophilic Electrospun Stereocomplex Polylactide Membranes: Multifunctional Oil/Water Separation and Self-Cleaning[J]. Journal of Membrane Science, 2020, 593: 117420.
[32] YANG Y, REN Z Y, ZHOU C H, et al.3D-Printed Robust Dual Superlyophobic Ti-Based Porous Structure for Switchable Oil/Water Emulsion Separations[J]. Advanced Functional Materials, 2023, 33(15): 2212262.
[33] GU J C, XIAO P, CHEN J, et al.Janus Polymer/Carbon Nanotube Hybrid Membranes for Oil/Water Separation[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16204-16209.
[34] GIARMA C, KAMPRAGKOU P, STEFANIDOU M.Hygrothermal Properties of Mortars Containing Perlite By- Products[J]. Construction and Building Materials, 2024, 416: 135065.
[35] ABDELAAL A, ELKATATNY S, ABDEL FATTAH A M. Perlite Incorporation for Sedimentation Reduction and Improved Properties of High-Density Geopolymer Cement for Oil Well Cementing[J]. Scientific Reports, 2024, 14: 9707.
[36] LUO J, GUO Z G.Recent Advances in Biomimetic Superhydrophobic Surfaces: Focusing on Abrasion Resistance, Self-Healing and Anti-Icing[J]. Nanoscale, 2024, 16(35): 16404-16419.
[37] CHEN F Z, WANG Y Q, TIAN Y L, et al.Robust and Durable Liquid-Repellent Surfaces[J]. Chemical Society Reviews, 2022, 51(20): 8476-8583.

基金

山东省自然科学基金(ZR2025QC1172,ZR2024QE379)

PDF(7525 KB)

Accesses

Citation

Detail

段落导航
相关文章

/