用于电磁屏蔽和渗透能量捕获的仿生MXene基薄膜

李泽群, 滕超, 曹墨源, 马晓燕

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 113-123.

PDF(2863 KB)
PDF(2863 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 113-123. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.008
专题——超浸润多级表面结构的设计与应用

用于电磁屏蔽和渗透能量捕获的仿生MXene基薄膜

  • 李泽群1a, 滕超1a,*, 曹墨源2, 马晓燕1b,*
作者信息 +

Biomimetic MXene-based Films for Electromagnetic Shielding and Permeation Energy Trapping

  • LI Zequn1a, TENG Chao1a,*, CAO Moyuan2, MA Xiaoyan1b,*
Author information +
文章历史 +

摘要

目的 二维导电MXene纳米片在与高强度芳纶纳米纤维(ANF)进行层级复合后,实现了力学性能的提高,同时展现出优异的电磁屏蔽性能和多功能性。方法 利用氟化锂LiF与盐酸HCl对MAX相进行化学刻蚀,成功制备出多层MXene。随后,通过离心和超声处理获得MXene水分散液,并进一步利用二甲基亚砜DMSO进行溶剂置换,得到稳定的MXene/DMSO分散体系。同时,借助氢氧化钾(KOH)在DMSO中对芳纶纤维进行去质子化处理,实现纤维剥离,制得ANF/DMSO分散液。最后,采用真空辅助交替抽滤,并结合热压工艺,制备具有三明治结构的MXene/ANF/MXene纳米复合薄膜。结果 MXene与ANF复合后,形成了具有三明治结构的MXene/ANF/MXene纳米复合薄膜。得益于ANF自身优异的力学性能,该复合薄膜展现出显著增强的力学强度,其拉伸强度达到69.2 MPa,相较于纯MXene薄膜提升了163%。同时,高导电MXene的层状结构赋予了复合薄膜良好的电磁屏蔽性能,在X波段(8.2~ 12.4 GHz)的电磁干扰屏蔽效能达到23.77 dB。该薄膜在50倍NaCl浓度梯度条件下表现出优异的渗透能转换能力,功率密度达到4.66 W/m²。结论 MXene/ANF/MXene纳米复合薄膜的制备工艺简单,同时具备电磁屏蔽性能和盐差转换性能,在电磁防护和蓝色能源捕获等领域展现出广阔的应用前景。

Abstract

With the rapid advancement of electronic devices toward miniaturization, high integration, and multifunctionality, conventional electromagnetic interference (EMI) shielding materials are increasingly inadequate to meet the growing demands for high performance and adaptability. Two-dimensional MXene nanosheets, as a class of emerging transition metal carbides/ nitrides, have demonstrated exceptional potential in EMI shielding due to their outstanding electrical conductivity, tunable surface chemistry, and mechanical flexibility. However, the intrinsic brittleness and poor mechanical strength of pure MXene films significantly restrict their practical application in durable and flexible electronics. To overcome this limitation, this study proposes a novel material design strategy, which incorporates high-strength aramid nanofibers (ANFs) as a reinforcing phase and engineering a well-defined sandwich architecture to achieve synergistic enhancement in mechanical and functional properties.
First, multilayer MXene was synthesized by chemically etching MAX powder using in situ-generated hydrofluoric acid HF from the reaction between lithium fluoride LiF and hydrochloric acid HCl. The product was then subject to centrifugation and ultrasonication to obtain a homogeneous aqueous MXene dispersion, which was further solvent-exchanged with dimethyl sulfoxide DMSO to improve stability and processability. In parallel, ANF was dispersed in DMSO via deprotonation treatment using potassium hydroxide KOH, resulting in a stable and homogeneous ANF/DMSO colloidal suspension. The MXene/ANF/MXene sandwich-structured nanocomposite films were fabricated through a vacuum-assisted alternating filtration technique, which enabled precise control over layer stacking and interfacial properties, followed by a hot-pressing process to enhance layer integration and mechanical robustness.
Scanning electron microscopy (SEM) confirmed its distinct sandwich structure, with the outer layer enriched in MXene and the core layer dominated by ANF. The composite film exhibited a tensile strength of 69.2 MPa as measured by an electronic universal testing machine, representing a 163% increase over pure MXene films. This enhancement is attributed to ANF's effective load-bearing capacity and the strong interfacial bonding formed during the hot-pressing process. Electromagnetic shielding performance measured with a vector network analyser in the X-band (8.2-12.4 GHz) achieved a shielding effectiveness value of 23.77 dB, demonstrating exceptional electromagnetic wave attenuation capability. Furthermore, this composite film exhibited significant potential in permeation energy conversion. Tested using a Keithley 2 450 source measurement unit under a 50-fold NaCl concentration gradient, the film achieved a power density of 4.66 W/m², demonstrating sustainable energy harvesting capability.
The outer MXene layer formed a continuous conductive network for efficient electromagnetic shielding, while the inner ANF layer not only enhanced mechanical strength but also facilitated selective ion transport through its nanofluidic channels and functional groups. This combination of properties endowed the material with high mechanical durability, outstanding EMI shielding performance, and efficient permeation energy conversion capability.
In summary, this study proposes a scalable and highly efficient fabrication scheme for high-performance MXene/ ANF/MXene nanocomposite films based on vacuum-assisted filtration and hot-pressing processes. The proposed sandwich structure successfully overcomes the mechanical limitations of MXene while integrating multiple functionalities within a single material platform. With its exceptional combination of strength, electromagnetic shielding efficiency, and energy conversion capabilities, the MXene/ANF/MXene nanocomposite film demonstrates broad application prospects in next-generation electromagnetic protection, flexible wearable electronics, and blue energy harvesting systems.

关键词

MXene / 芳纶纳米纤维 / 三明治结构 / 电磁干扰屏蔽 / 多功能性

Key words

MXene / aramid nanofibres / sandwich structure / electromagnetic interference shielding / multifunctionality

引用本文

导出引用
李泽群, 滕超, 曹墨源, 马晓燕. 用于电磁屏蔽和渗透能量捕获的仿生MXene基薄膜[J]. 表面技术. 2025, 54(21): 113-123 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.008
LI Zequn, TENG Chao, CAO Moyuan, MA Xiaoyan. Biomimetic MXene-based Films for Electromagnetic Shielding and Permeation Energy Trapping[J]. Surface Technology. 2025, 54(21): 113-123 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.008
中图分类号: TK79   

参考文献

[1] JIANG F, CUI S Q, SONG N, et al.Hydrogen Bond- Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide- Imide Composites[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16812-16821.
[2] PAN G R, YAO Y M, ZENG X L, et al.Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33001-33010.
[3] LI L, UNIVERSITY S J, ZENG Z H, et al.High Thermally Conductive and Mechanically Strong Aramid Nanofiber Composite Film by a Single-Walled Carbon Nanotube and Ti3C2Tx MXene for Electromagnetic Shielding and Thermal Management[J]. ACS Applied Engineering Materials, 2025, 3(2): 302-313.
[4] CHOI Y S, YOO Y H, KIM J G, et al.A Comparison of the Corrosion Resistance of Cu-Ni-Stainless Steel Multilayers Used for EMI Shielding[J]. Surface and Coatings Technology, 2006, 201(6): 3775-3782.
[5] GEETHA S, SATHEESH KUMAR K K, RAO C R K, et al. EMI Shielding: Methods and Materials - A Review[J]. Journal of Applied Polymer Science, 2009, 112(4): 2073-2086.
[6] IQBAL A, SAMBYAL P, KOO C M.2D MXenes for Electromagnetic Shielding: A Review[J]. Advanced Functional Materials, 2020, 30(47): 2000883.
[7] LUO X C, CHUNG D D L. Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites[J]. Composites Part B: Engineering, 1999, 30(3): 227-231.
[8] SHEN B, LI Y, ZHAI W T, et al.Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8050-8057.
[9] LU D W, MO Z C, LIANG B H, et al.Flexible, Lightweight Carbon Nanotube Sponges and Composites for High-Performance Electromagnetic Interference Shielding[J]. Carbon, 2018, 133: 457-463.
[10] ZHOU J, YU J S, BAI D Y, et al.Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Performance Electromagnetic Interference Shielding and Thermal Insulation[J]. Nanomaterials, 2021, 11(11): 3041.
[11] 王希晰, 曹茂盛. 特色研究报告: 低维电磁功能材料研究进展[J]. 表面技术, 2020, 49(2): 18-28.
WANG X X, CAO M S.Low-Dimensional Electromagnetic Functional Materials[J]. Surface Technology, 2020, 49(2): 18-28.
[12] SHU JINCHENG, MAOSHENG C.Graphene-based Electromagnetic Functional Materials[J]. Surface Technology, 2020, 49(2): 29-40.
[13] LI H, YUAN D, LI P C, et al.High Conductive and Mechanical Robust Carbon Nanotubes/Waterborne Polyurethane Composite Films for Efficient Electromagnetic Interference Shielding[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 411-417.
[14] HANTANASIRISAKUL K, GOGOTSI Y.Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)[J]. Advanced Materials, 2018, 30(52): 1804779.
[15] SHAHZAD F, ALHABEB M, HATTER C B, et al.Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.
[16] XIANG C, GUO R H, LIN S J, et al.Lightweight and Ultrathin TiO2-Ti3C2Tx/Graphene Film with Electromagnetic Interference Shielding[J]. Chemical Engineering Journal, 2019, 360: 1158-1166.
[17] DING D L, XIAO D, LU Z, et al.Oppositely Charged Ti3C2Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting[J]. Angewandte Chemie International Edition, 2020, 59(22): 8720-8726.
[18] WANG J, MA X Y, ZHOU J L, et al.Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance[J]. ACS Nano, 2022, 16(4): 6700-6711.
[19] WANG J E, MING W, CHEN L F, et al.MoS2 Lubricate- Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2024, 17(1): 36.
[20] CHENG Z, CAO Y S, WANG R F, et al.Multifunctional MXene-Based Composite Films with Simultaneous Terahertz/Gigahertz Wave Shielding Performance for Future 6G Communication[J]. Journal of Materials Chemistry A, 2023, 11(11): 5593-5605.
[21] GONG K J, PENG Y M, LIU A, et al.Ultrathin Carbon Layer Coated MXene/PBO Nanofiber Films for Excellent Electromagnetic Interference Shielding and Thermal Stability[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107857.
[22] WAN S J, LI X, CHEN Y, et al.High-Strength Scalable MXene Films through Bridging-Induced Densification[J]. Science, 2021, 374(6563): 96-99.
[23] 李智鹏, 扈艳红, 杜磊, 等. 国产芳纶上浆剂对聚三唑复合材料力学性能的影响[J]. 表面技术, 2014, 43(4): 17-23.
LI Z P, HU Y H, DU L, et al.Effect of Domestic Aramid Fiber Sizing Agents on Mechanical Properties of Polytriazole Composites[J]. Surface Technology, 2014, 43(4): 17-23.
[24] YANG M, CAO K Q, SUI L, et al.Dispersions of Aramid Nanofibers: A New Nanoscale Building Block[J]. ACS Nano, 2011, 5(9): 6945-6954.
[25] YANG B, WANG L, ZHANG M Y, et al.Timesaving, High-Efficiency Approaches to Fabricate Aramid Nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
[26] YANG B, WANG L, ZHANG M Y, et al.Fabrication, Applications, and Prospects of Aramid Nanofiber[J]. Advanced Functional Materials, 2020, 30(22): 2000186.
[27] DING L, XIAO D, ZHAO Z H, et al.Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion[J]. Advanced Science, 2022, 9(25): 2202869.
[28] LEI C X, ZHANG Y Z, LIU D Y, et al.Metal-Level Robust, Folding Endurance, and Highly Temperature- Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26485-26495.
[29] LIU C X, MA Y N, XIE Y M, et al.Enhanced Electromagnetic Shielding and Thermal Management Properties in MXene/Aramid Nanofiber Films Fabricated by Intermittent Filtration[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4516-4526.
[30] WANG C, XIE X L, CHEN Z, et al.Bioinspired Chitin/ Gelatin Composites with Enhanced Mechanical Property[J]. Journal of Applied Polymer Science, 2024, 141(31): e55737.
[31] ZENG G D, ALADEJANA J T, LI K, et al.A Tough Bio-Adhesive Inspired by Pearl Layer and Arthropod Cuticle Structure with Desirable Water Resistance, Flame- Retardancy, and Antibacterial Property[J]. International Journal of Biological Macromolecules, 2023, 253: 127669.
[32] FERNANDEZ J G, INGBER D E.Unexpected Strength and Toughness in Chitosan-Fibroin Laminates Inspired by Insect Cuticle[J]. Advanced Materials, 2012, 24(4): 480-484.
[33] PENG M Y, QIN F X.Clarification of Basic Concepts for Electromagnetic Interference Shielding Effectiveness[J]. Journal of Applied Physics, 2021, 130(22): 225108.
[34] LIU R T, MIAO M, LI Y H, et al.Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44787-44795.
[35] CAO W T, CHEN F F, ZHU Y J, et al.Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties[J]. ACS Nano, 2018, 12(5): 4583-4593.
[36] WANG W, YUEN A C Y, LONG H, et al. Random Nano-Structuring of PVA/MXene Membranes for Outstanding Flammability Resistance and Electromagnetic Interference Shielding Performances[J]. Composites Part B: Engineering, 2021, 224: 109174.
[37] SUN K, WANG F, YANG W K, et al.Flexible Conductive Polyimide Fiber/MXene Composite Film for Electromagnetic Interference Shielding and Joule Heating with Excellent Harsh Environment Tolerance[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50368-50380.
[38] ZHU M, YAN X X, XU H L, et al.Highly Conductive and Flexible Bilayered MXene/Cellulose Paper Sheet for Efficient Electromagnetic Interference Shielding Applications[J]. Ceramics International, 2021, 47(12): 17234-17244.
[39] ZHOU B, LI Y L, LI Z Y, et al.Fire/Heat-Resistant, Anti-Corrosion and Folding Ti2C3Tx MXene/Single- Walled Carbon Nanotube Films for Extreme-Environmental EMI Shielding and Solar-Thermal Conversion Applications[J]. Journal of Materials Chemistry C, 2021, 9(32): 10425-10434.
[40] CRESPO M, GONZÁLEZ M, ELÍAS A L, et al. Ultra-Light Carbon Nanotube Sponge as an Efficient Electromagnetic Shielding Material in the GHz Range[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2014, 8(8): 698-704.
[41] CHEN Z P, XU C, MA C Q, et al.Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.
[42] ZHANG H B, YAN Q, ZHENG W G, et al.Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 918-924.
[43] LING J Q, ZHAI W T, FENG W W, et al.Facile Preparation of Lightweight Microcellular Polyetherimide/ Graphene Composite Foams for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2677-2684.
[44] XU H L, YIN X W, LI X L, et al.Lightweight Ti2CTx MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10198-10207.

基金

国家自然科学基金(22405153)

PDF(2863 KB)

Accesses

Citation

Detail

段落导航
相关文章

/