多级分层结构仿生超滑表面的制备与耐久性影响研究

张曦光, 陶霖, 王晓容, 岳蒿旸, 包迪, 刘战剑

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 101-112.

PDF(11111 KB)
PDF(11111 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 101-112. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.007
专题——超浸润多级表面结构的设计与应用

多级分层结构仿生超滑表面的制备与耐久性影响研究

  • 张曦光1,a, 陶霖1,a, 王晓容2, 岳蒿旸1,b, 包迪3, 刘战剑1,b*
作者信息 +

Fabrication and Durability Performance of Bio-inspired Slippery Surfaces with Multilevel Hierarchical Structures

  • ZHANG Xiguang1,a, TAO Lin1,a, WANG Xiaorong2, YUE Haoyang1,b, BAO Di3, LIU Zhanjian1,b, *
Author information +
文章历史 +

摘要

目的 受猪笼草启发制备的人工超滑表面存在工艺复杂、使用寿命短等问题,亟须探索简单、高效的制备方法,以提高其表面耐久性。方法 通过阳极氧化工艺,在铝板表面制备表层纤维-底层阵列多孔的复合多级结构(AAO),结合SiO2溶胶凝胶(Solgel)和1H,1H,2H,2H-全氟辛基三氯硅烷改性,使得表面具有稳定的超疏水亲油特性。通过真空浸渍法将羟基氟硅油注入复合多级结构中,制备具有长效耐久性的AAO-SiO2超滑表面。结果 根据表面形貌分析结果,确定最佳制备电压为30 V,TEOS用量(用质量分数表示)为16.6%,经氟化改性和注入羟基氟硅油,AAO-SiO2-SLIPS超滑表面的水滑动角低至2.7°。与常规注入二甲基硅油的超滑表面相比,AAO-SiO2-SLIPS表面在匀胶机剪切力作用下仍能保持良好的滑动性,其滑动角低于至21.2°。这主要是由于羟基氟硅油与AAO-SiO2表面间的氢键及静电作用力,使得油层稳定性显著提升。在摩擦实验中,样品负载100 g砝码在1000目砂纸摩擦下往复测试180个循环,超滑表面的滑动角仅轻微上升,仍保持了良好的超滑特性。此外,阻垢测试结果表明,制备的超滑表面具有良好的抗垢黏附性能,表面沉积钙元素的含量最低,其原子数分数仅为2.3%。结论 通过阳极氧化法构筑表层纤维-底层阵列多孔复合多级结构,结合溶胶凝胶、氟化改性及活性润滑油注入,能够显著提升超滑表面的油膜稳定性、机械耐久性和抗污垢黏附性能,在工业领域具有广阔的应用前景。

Abstract

Artificial super-slippery surfaces inspired by the insect-trapping mechanism of pitcher plants have demonstrated immense application potential in fields such as anti-icing, anti-fouling, drag reduction, and anti-scaling. However, the traditional slippery liquid-infused porous surface (SLIPS) suffers from inherent limitations, including complex fabrication processes, and short service lifespans. These drawbacks necessitate the development of simpler and more efficient preparation methods to enhance surface durability. Herein, a hierarchical structure featuring surface fibers and underlying arrayed pores was fabricated on aluminum plates via anodic oxidation (AAO). Combined with SiO2 sol-gel modification and 1H,1H,2H,2H -perfluorooctyltrichlorosilane functionalization, the surface exhibited stable superhydrophobic oleophilic properties. By employing a vacuum impregnation method under 80 kPa pressure to infuse hydroxy-fluorosilicone oil into the composite hierarchical structure, a long-lasting super-slippery surface (AAO-SiO2-SLIPS) was successfully prepared. Surface morphology was analyzed through scanning electron microscopy (SEM), while surface wettability was evaluated via contact angle goniometry. The optimal preparation parameters were determined as follows: anodization voltage of 30 V and tetraethyl orthosilicate (TEOS) content of 16.6%. Following fluorination modification and hydroxy-fluorosilicone oil infusion, the AAO-SiO2-SLIPS surface exhibited an exceptionally low water sliding angle of 2.7°. Compared to conventional super-slippery surfaces infused with polydimethylsiloxane (PDMS) oil (AAO-SiO2-PDMS), the AAO-SiO2-SLIPS surface maintained superior sliding performance under shear stress generated by a spin coater at 1 500 r/min, with a sliding angle remaining 21.2°. This enhanced stability was primarily attributed to hydrogen bonding and electrostatic interactions between the hydroxy- fluorosilicone oil and the AAO-SiO2-SHC surface, which significantly improved the adhesion and stability of the oil layer. In friction tests, samples were subject to a 100 g load and reciprocated over 180 cycles on 1000-grit sandpaper. The AAO-SiO2- PDMS surface experienced a dramatic increase in sliding angle to 11.2°, losing its super-slippery properties. In contrast, the AAO-SiO2-SLIPS surface showed only a slight increase to 7.1°, retaining excellent super-slippery characteristics and oil film stability. Wear resistance was further evaluated by measuring mass loss after friction testing. The AAO-SiO2-SHC surface exhibited a wear mass loss of 15.5 mg, while the AAO-SiO2-PDMS surface demonstrated a reduced wear mass loss of 9 mg. Notably, the AAO-SiO2-SLIPS surface achieved the lowest wear mass loss of 5.6 mg after 180 cycles, indicating exceptional mechanical durability. Anti-scaling performance was assessed by quantifying calcium deposition on the surfaces. The unmodified AAO-SiO2 sample showed a calcium deposition of 24%, while the hydrophobic-modified AAO-SiO2-SHC sample exhibited reduced deposition at 15.5%. Remarkably, the AAO-SiO2-SLIPS super-slippery surface demonstrated a calcium deposition of only 2.3%, highlighting its superior anti-scaling properties and significant reduction in scale adherence. In summary, this study demonstrates that constructing a composite hierarchical structure with a fibrous top layer and a porous array bottom layer via anodic oxidation, combined with SiO2 sol-gel treatment, PFTS hydrophobic modification, and infusion of reactive lubricating oil, can substantially enhance the oil film stability, mechanical durability, and anti-fouling performance of super-slippery surfaces. The proposed AAO-SiO2-SLIPS surface demonstrates exceptional long-term oil film stability under shear stress, friction, and scaling conditions. This performance makes it a highly promising solution for industrial applications demanding robust anti-fouling, drag reduction, and anti-scaling capability.

关键词

阳极氧化铝 / 超滑表面 / 羟基氟硅油 / 耐磨性 / 油膜稳定性 / 阻垢

Key words

anodic aluminum oxide / slippery liquid-infused porous surface / hydroxy-fluorosilicone oil / wear resistance / oil film stability / anti-scaling capability

引用本文

导出引用
张曦光, 陶霖, 王晓容, 岳蒿旸, 包迪, 刘战剑. 多级分层结构仿生超滑表面的制备与耐久性影响研究[J]. 表面技术. 2025, 54(21): 101-112 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.007
ZHANG Xiguang, TAO Lin, WANG Xiaorong, YUE Haoyang, BAO Di, LIU Zhanjian. Fabrication and Durability Performance of Bio-inspired Slippery Surfaces with Multilevel Hierarchical Structures[J]. Surface Technology. 2025, 54(21): 101-112 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.007
中图分类号: TB34   

参考文献

[1] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity[J]. Nature, 2011, 477(7365): 443-447.
[2] COADY M J, WOOD M, WALLACE G Q, et al.Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2890-2896.
[3] CUI W J, PAKKANEN T A.Icephobic Performance of One-Step Silicone-Oil-Infused Slippery Coatings: Effects of Surface Energy, Oil and Nanoparticle Contents[J]. Journal of Colloid and Interface Science, 2020, 558: 251-258.
[4] LI H, DUAN Y J, GONG C T, et al.Underwater Self- Healing Solid Slippery Surface with Ultrastable Anti-Scaling Performance[J]. Advanced Functional Materials, 2025: 2503554.
[5] ZHANG H Y, XIE S Z, ZHANG W H, et al.Ultraslippery Surface for Efficient Fog Harvesting and Anti-Icing/ Fouling[J]. Small, 2024, 20(49): 2405875.
[6] ZANG R H, CHEN Z J, YANG H, et al.Scalable and Robust Bio-Inspired Organogel Coating by Spraying Method towards Dynamic Anti-Scaling[J]. Chemical Research in Chinese Universities, 2023, 39(1): 127-132.
[7] TONG Z M, GUO H Y, DI Z G, et al.P. Pavoninus- Inspired Smart Slips Marine Antifouling Coating Based on Coumarin: Antifouling Durability and Adaptive Adjustability of Lubrication[J]. Advanced Functional Materials, 2024, 34(8): 2310702.
[8] TONG Z M, GAO F, CHEN S F, et al.Slippery Porous- Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes[J]. Advanced Materials, 2024, 36(9): 2308972.
[9] WANG Z Y, CAO Y Y, ZHANG L Y, et al.Robust Non- Sticky/Sticky Antifouling Coating Capable of Temporal Evolution[J]. Applied Materials Today, 2025, 42: 102611.
[10] HOWELL C, VU T L, JOHNSON C P, et al.Stability of Surface-Immobilized Lubricant Interfaces under Flow[J]. Chemistry of Materials, 2015, 27(5): 1792-1800.
[11] DENG R, SHEN T, CHEN H L, et al.Slippery Liquid- Infused Porous Surfaces (SLIPSs): A Perfect Solution to both Marine Fouling and Corrosion?[J]. Journal of Materials Chemistry A, 2020, 8(16): 7536-7547.
[12] YUE D Z, JIANG X Z, YU H Y, et al.In-Situ Fabricated Hierarchical Nanostructure on Titanium Alloy as Highly Stable and Durable Super-Lubricated Surface for Anti- Biofouling in Marine Engineering[J]. Chemical Engineering Journal, 2023, 463: 142389.
[13] 李展望夏志林等制备工艺对多孔氧化铝膜结构的影响[J]. 中国激光, 2010, 37: 325-329.
LI Z W, XIA Z L, et al.Effects of Fabrication Methods on Structure of Porous Anodic Aluminum Oxide Films[J]. Chinese Journal of Lasers, 2010, 37: 325-329.
[14] LEE J, SHIN S, JIANG Y H, et al.Oil-Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-Healing[J]. Advanced Functional Materials, 2017, 27(15): 1606040.
[15] SONG T T, LIU Q, LIU J Y, et al.Fabrication of Super Slippery Sheet-Layered and Porous Anodic Aluminium Oxide Surfaces and Its Anticorrosion Property[J]. Applied Surface Science, 2015, 355: 495-501.
[16] LU T, CHEN F W.Multiwfn: A Multifunctional Wavefunction Analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[17] LU T, CHEN F W.Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm[J]. Journal of Molecular Graphics and Modelling, 2012, 38: 314-323.
[18] LU T, CHEN F W.Calculation of Molecular Orbital Composition[J] Acta Chim Simica 2011, 69: 2393-2406
[19] HUMPHREY W, DALKE A, SCHULTEN K.VMD: Visual Molecular Dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[20] DOKHALE P A, SALI N D, KUMAR P M, et al.Enhanced Surface Activity in Nanocrystalline Alumina as Studied by Neutron Activation Analysis, X-Ray Photoelectron and Infrared Spectroscopy[J]. Materials Science and Engineering: B, 1997, 49(1): 18-26.
[1] SI Z H, LI J F, MA L, et al.The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet-Induced Polymerization[J]. Angewandte Chemie International Edition, 2019, 58(48): 17175-17179.
[21] ZHAO Z Y, KONG L C, SUN J X, et al.Fluorinated Polymer-Derived Microporous Carbon Spheres for CFx Cathodes with High Energy Density[J]. Giant, 2024, 18: 100273.
[22] TAO D C, YANG C G, CHEN C, et al.Highly Flexible and Ultralight PVA-Co-PE-AgNW/MXene Composite Film with Low Filling for Multistage Electromagnetic Interference Shielding[J]. Small, 2025, 21(7): 2411752.
[23] DANKERT D F, VON HÄNISCH P β C. Siloxane Coordination Revisited: Si-O Bond Character, Reactivity and Magnificent Molecular Shapes[J]. European Journal of Inorganic Chemistry, 2021, 2021(29): 2907-2927.
[24] LAI S T, CUI Y J, CHEN Z, et al.Impact of Electrostatic Interaction on Vertical Morphology and Energy Loss in Efficient Pseudo-Planar Heterojunction Organic Solar Cells[J]. Advanced Materials, 2024, 36(18): 2313105.
[25] CUI Y J, ZHU P P, HU H W, et al.Impact of Electrostatic Interaction on Non-Radiative Recombination Energy Losses in Organic Solar Cells Based on Asymmetric Acceptors[J]. Angewandte Chemie (International Ed), 2023, 62(35): e202304931.

基金

国家自然科学基金(52203136, 52303102); 黑龙江省自然科学基金优秀青年基金(YQ2024E007); 中国博士后科学基金(2024MD753912); 黑龙江省博士后基金(LBH-Z24107); 东北石油大学“国家基金”培育基金(2023GPL-04); 东北石油大学科研启动基金(2021KQ05)

PDF(11111 KB)

Accesses

Citation

Detail

段落导航
相关文章

/