超疏水表面液滴撞击行为的研究进展

夏磊, 陈发泽, 陈小康, 周建平

表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 47-63.

PDF(20489 KB)
PDF(20489 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (21) : 47-63. DOI: 10.16490/j.cnki.issn.1001-3660.2025.21.003
专题——超浸润多级表面结构的设计与应用

超疏水表面液滴撞击行为的研究进展

  • 夏磊1a,1b, 陈发泽2, 陈小康1a, 周建平1a,*
作者信息 +

Research Progress on Droplet Impact Behavior on Superhydrophobic Surfaces

  • XIA Lei1a,1b, CHEN Faze2, CHEN Xiaokang1a, ZHOU Jianping1a,*
Author information +
文章历史 +

摘要

液滴撞击固体表面是自然界与工业过程中的常见现象,也是流体机械、表界面力学等学科的基础问题。近年来,超疏水表面因其在冷凝传热、防结冰、抗腐蚀、流体减阻与自清洁等方面展现出巨大应用潜力,成为液滴撞击行为研究的热点方向。本文围绕液滴在超疏水表面上的动力学行为,综述了液滴撞击行为的研究进展。首先,回顾了液滴撞击过程中的铺展、回缩、溅射与反弹等基本动力学阶段,归纳了液滴尺寸、黏度、撞击速度、表面粗糙度与静态接触角等关键参数对撞击行为的影响规律。随后,分析了固液之间气膜的形成、稳定性及其失效机制,分析了液滴撞击表面的接触模式与动力学特征,基于润湿性转变机理,从撞击压力与能量耗散等角度探讨了液滴润湿状态转变的物理条件与内在机制,梳理了表面结构参数对液滴反弹行为与接触时间的调控规律。最后,阐述了液滴撞击过程中的一系列复杂现象,包括接触时间、气腔塌陷、高速射流、气泡捕获等,并指出当前研究中存在的问题与未来的发展方向,为相关基础研究与工程实践提供理论支撑与研究参考。

Abstract

The dynamic behavior of droplet impact on solid surfaces is a fundamental phenomenon that occurs widely in both nature and industrial applications. It plays a critical role in various engineering and scientific domains, including fluid mechanics, interfacial physics, and microscale heat and mass transfer. In recent years, bioinspired superhydrophobic surfaces, characterized by their extreme water-repellent properties due to micro- and nano-scale structures, have garnered increasing attention owing to their promising applications in condensation heat transfer, anti-icing, anti-corrosion, drag reduction, and self-cleaning technologies. Consequently, the study of droplet impact dynamics on superhydrophobic surfaces has become a research hotspot.
This review focuses on the recent advances in understanding the complex droplet impact behavior on superhydrophobic surfaces. Firstly, the fundamental impact phases including spreading, retraction, splashing, and rebound are systematically introduced. The effect of key impact parameters such as droplet diameter, viscosity, impact velocity, surface roughness, and static contact angle on the impact dynamics is discussed in detail. These parameters collectively determine the kinetic energy dissipation, wetting behavior, and ultimate rebound performance of the droplet.
Subsequently, the formation, evolution, and breakdown of the thin air film between the droplet and the substrate during the early stage of impact are analyzed, alongside current experimental techniques for visualizing nanoscale gas layers. The stability and rupture mechanisms of the air film are revealed to be crucial in determining whether the impact is non-wetting or results in liquid-solid contact. The contact modes of droplets on smooth and rough surfaces are further discussed, shedding light on the interplay between kinetic energy and surface energy during the impact process.
In terms of surface design and preparation, this review summarizes the typical fabrication strategies for superhydrophobic surfaces, including chemical etching, lithography, self-assembly, and low surface energy coating. Based on the wettability transition mechanism, the conditions for transitions from non-wetting (Cassie-Baxter state) to partial or full wetting (Wenzel state) are explored, considering factors such as impact-induced pressure and energy dissipation. The role of surface micro/nanostructures in controlling the contact time and bounce behaviors is emphasized. Particular attention is given to the mechanisms behind unconventional rebound phenomena, such as pancake bouncing and angular or toroidal bouncing, which offers novel possibilities for controlling droplet-surface interactions.
Moreover, the review highlights a series of complex secondary phenomena during droplet impact, including contact time minimization, air cavity collapse leading to upward jet formation, entrapped air bubble generation, and asymmetric rebounds induced by surface heterogeneity or inclination. The underlying mechanisms, associated dimensionless parameters (e.g., Weber number, Reynolds number, Ohnesorge number), and scaling laws governing these behaviors are critically reviewed.
Finally, current challenges and research gaps are outlined, including the lack of accurate models for multiphase interactions, limited understanding of impact dynamics under extreme environmental conditions (e.g., high temperature, low temperature, humidity, or low pressure), and insufficient exploration of real-world engineering integration. Future studies should aim to strengthen interdisciplinary collaboration, combine experimental, theoretical, and computational approaches, and accelerate the transition from laboratory research to practical applications.
This review aims to provide comprehensive theoretical insights and practical guidelines for researchers and engineers engaged in the study and application of droplet dynamics on superhydrophobic surfaces.

关键词

液滴撞击 / 超疏水表面 / 动力学行为 / 润湿性转变

Key words

droplet impact / superhydrophobic surface / dynamic behavior / wetting transition

引用本文

导出引用
夏磊, 陈发泽, 陈小康, 周建平. 超疏水表面液滴撞击行为的研究进展[J]. 表面技术. 2025, 54(21): 47-63 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.003
XIA Lei, CHEN Faze, CHEN Xiaokang, ZHOU Jianping. Research Progress on Droplet Impact Behavior on Superhydrophobic Surfaces[J]. Surface Technology. 2025, 54(21): 47-63 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.21.003
中图分类号: TB34   

参考文献

[1] SUN T P.Impact Force and Stress Distribution of Drop Impact[D]. Minnesota: University of Minnesota, 2021.
[2] 朱毅. 表面微观特征对液滴润湿状态及气液界面稳定性的影响[D]. 北京: 清华大学, 2017.
ZHU Y.Effect of Surface Micro-Characteristics on Droplet Wetting State and Gas-Liquid Interface Stability[D]. Beijing: Tsinghua University, 2017.
[3] BUCHANAN C, GARDNER L.Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges[J]. Engineering Structures, 2019, 180: 332-348.
[4] ASHOKA P, SINGH N K, SUNITHA N H, et al.Enhancing Agricultural Production with Digital Technologies: A Review[J]. International Journal of Environment and Climate Change, 2023, 13(9): 409-422.
[5] AG A.Audi Adopts "Overspray-Free Painting" in Series Production[J]. IST International Surface Technology, 2021, 14(1): 18-19.
[6] SCHICK B, PAULWEBER M.Model-Based Development Methods - What Can Chassis and Powertrain Development Learn from each Other?[C]// 6th International Munich Chassis Symposium 2015. Wiesbaden: Springer Fachmedien Wiesbaden, 2015: 35-36.
[7] YUAN Y J, ZHANG D W, JING X B, et al.Fabrication of Hierarchical Freeform Surfaces by 2D Compliant Vibration-Assisted Cutting[J]. International Journal of Mechanical Sciences, 2019, 152: 454-464.
[8] YANG Z, TIAN Y L, YANG C J, et al.Modification of Wetting Property of Inconel 718 Surface by Nanosecond Laser Texturing[J]. Applied Surface Science, 2017, 414: 313-324.
[9] CHEN F Z, WANG Y Q, TIAN Y L, et al.Robust and Durable Liquid-Repellent Surfaces[J]. Chemical Society Reviews, 2022, 51(20): 8476-8583.
[10] CHAO J Q, FENG J K, CHEN F Z, et al.Fabrication of Superamphiphobic Surfaces with Controllable Oil Adhesion in Air[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125708.
[11] CHEN F Z, LU Y, LIU X, et al.Table Salt as a Template to Prepare Reusable Porous PVDF-MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions[J]. Advanced Functional Materials, 2017, 27(41): 1702926.
[12] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京: 化学工业出版社, 2007.
JIANG L, FENG L.Bionic Intelligent Nano-Interface Material[M]. Beijing: Chemical Industry Press, 2007.
[13] 陈发泽. 油水分离用超浸润表面制备及其性能研究[D]. 大连: 大连理工大学, 2018.
CHEN F Z.Preparation and Properties of Super-Wetting Surface for Oil-Water Separation[D]. Dalian: Dalian University of Technology, 2018.
[14] WISDOM K M, WATSON J A, QU X P, et al.Self- Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 7992-7997.
[15] PERUMANATH S, PILLAI R, BORG M K.Contaminant Removal from Nature’s Self-Cleaning Surfaces[J]. Nano Letters, 2023, 23(10): 4234-4241.
[16] OH S, CHO J W, LEE J H, et al.A Scalable Haze-Free Antireflective Hierarchical Surface with Self-Cleaning Capability[J]. Advanced Science, 2022, 9(27): 2202781.
[17] FANG W, ZHANG K X, JIANG Q, et al.Drop Impact Dynamics on Solid Surfaces[J]. Applied Physics Letters, 2022, 121(21): 210501.
[18] DARMANIN T, GUITTARD F.Superhydrophobic and Superoleophobic Properties in Nature[J]. Materials Today, 2015, 18(5): 273-285.
[19] YANG Z, LIU X P, TIAN Y L.Fabrication of Super-Hydrophobic Nickel Film on Copper Substrate with Improved Corrosion Inhibition by Electrodeposition Process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 205-212.
[20] SHEN Y Z, TAO J, TAO H J, et al.Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20972-20978.
[21] PAN R, ZHANG H J, ZHONG M L.Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1743-1753.
[22] ANTONINI C, INNOCENTI M, HORN T, et al.Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing Systems[J]. Cold Regions Science and Technology, 2011, 67(1/2): 58-67.
[23] JIANG D Y, XU M Y, DONG M, et al.Water-Solid Triboelectric Nanogenerators: An Alternative Means for Harvesting Hydropower[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109366.
[24] LIN D Z, CHENG D G, LIN L, et al.Water-Solid Surface Contact Electrification and Its Use for Harvesting Liquid-Wave Energy[J]. Angewandte Chemie International Edition, 2013, 52(48): 12545-12549.
[25] XU W H, ZHENG H X, LIU Y, et al.A Droplet-Based Electricity Generator with High Instantaneous Power Density[J]. Nature, 2020, 578(7795): 392-396.
[26] 张楠. 基于体效应固液界面发电机的研究[D]. 上海: 华东师范大学, 2022.
ZHANG N.Research on Solid-Liquid Interface Generator Based on Body Effect[D]. Shanghai: East China Normal University, 2022.
[27] RIOBOO R, TROPEA C, MARENGO M.Outcomes from a Drop Impact on Solid Surfaces[J]. Atomization and Sprays, 2001, 11(2): 12.
[28] TSAI P, PACHECO S, PIRAT C, et al.Drop Impact Upon Micro- and Nanostructured Superhydrophobic Surfaces[J]. Langmuir, 2009, 25(20): 12293-12298.
[29] YARIN A L.DROP IMPACT DYNAMICS: Splashing, Spreading, Receding, Bouncing[J]. Annual Review of Fluid Mechanics, 2006, 38: 159-192.
[30] COOPER-WHITE J J, CROOKS R C, BOGER D V. A Drop Impact Study of Worm-Like Viscoelastic Surfactant Solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 210(1): 105-123.
[31] TURCHI M, KARCZ A P, ANDERSSON M P.First-Principles Prediction of Critical Micellar Concentrations for Ionic and Nonionic Surfactants[J]. Journal of Colloid and Interface Science, 2022, 606: 618-627.
[32] 禾丽菲. 助剂调节农药液滴在不同染白粉病阶段黄瓜叶面高效沉积的机制[D]. 泰安: 山东农业大学, 2022.
HE L F.Mechanism of Adjuvant Regulating Efficient Deposition of Pesticide Droplets on Cucumber Leaves at Different Stages of Powdery Mildew Infection[D]. Taian: Shandong Agricultural University, 2022.
[33] YU F F, RATSCHOW A D, TAO R, et al.Why Charged Drops Do Not Splash[J]. Physical Review Letters, 2025, 134(13): 134001.
[34] KOLINSKI J M, MAHADEVAN L, RUBINSTEIN S M.Lift-off Instability during the Impact of a Drop on a Solid Surface[J]. Physical Review Letters, 2014, 112(13): 134501.
[35] KOLINSKI J M, MAHADEVAN L, RUBINSTEIN S M.Drops Can Bounce from Perfectly Hydrophilic Surfaces[J]. EPL (Europhysics Letters), 2014, 108(2): 24001.
[36] KOLINSKI J M, RUBINSTEIN S M, MANDRE S, et al.Skating on a Film of Air: Drops Impacting on a Surface[J]. Physical Review Letters, 2012, 108(7): 074503.
[37] PACK M, HU H, KIM D, et al.Failure Mechanisms of Air Entrainment in Drop Impact on Lubricated Surfaces[J]. Soft Matter, 2017, 13(12): 2402-2409.
[38] CHUBYNSKY M V, BELOUSOV K I, LOCKERBY D A, et al.Bouncing off the Walls: The Influence of Gas-Kinetic and van Der Waals Effects in Drop Impact[J]. Physical Review Letters, 2020, 124(8): 084501.
[39] YU F F, YANG J L, TAO R, et al.Aerodynamic Super-Repellent Surfaces[J]. Research, 2023, 2023: 0111.
[40] DE RUITER J, VAN DEN ENDE D, MUGELE F. Air Cushioning in Droplet Impact. II. Experimental Characterization of the Air Film Evolution[J]. Physics of Fluids, 2015, 27: 012105.
[41] DE RUITER J, LAGRAAUW R, MUGELE F, et al.Bouncing on Thin Air: How Squeeze Forces in the Air Film during Non-Wetting Droplet Bouncing Lead to Momentum Transfer and Dissipation[J]. Journal of Fluid Mechanics, 2015, 776: 531-567.
[42] DE RUITER J, LAGRAAUW R, VAN DEN ENDE D, et al. Wettability-Independent Bouncing on Flat Surfaces Mediated by Thin Air Films[J]. Nature Physics, 2015, 11: 48-53.
[43] RICHARD D, QUÉRÉ D. Bouncing Water Drops[J]. Europhysics Letters (EPL), 2000, 50(6): 769-775.
[44] NISHINO T, MEGURO M, NAKAMAE K, et al.The Lowest Surface Free Energy Based on —CF3 Alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
[45] 王志远, 邢志国, 王海斗, 等. 液滴在固体织构化表面上的润湿行为研究现状[J]. 机械工程学报, 2022, 58(1): 124-144.
WANG Z Y, XING Z G, WANG H D, et al.Research Progress of Droplet Wetting Behavior on Solid Textured Surface[J]. Journal of Mechanical Engineering, 2022, 58(1): 124-144.
[46] LI H Z, FANG W, LI Y N, et al.Spontaneous Droplets Gyrating via Asymmetric Self-Splitting on Heterogeneous Surfaces[J]. Nature Communications, 2019, 10(1): 950.
[47] SHEN Y Z, TAO J, CHEN Z, et al.Rational Design of the Nanostructure Features on Superhydrophobic Surfaces for Enhanced Dynamic Water Repellency[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9958-9965.
[48] MERLEN A, BRUNET P.Impact of Drops on Non-Wetting Biomimetic Surfaces[J]. Journal of Bionic Engineering, 2009, 6(4): 330-334.
[49] PATIL N D, BHARDWAJ R, SHARMA A.Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces[J]. Experimental Thermal and Fluid Science, 2016, 74: 195-206.
[50] CHEN L Q, LI Z G.Bouncing Droplets on Nonsuperhydrophobic Surfaces[J]. Physical Review E, 2010, 82: 016308.
[51] 李西营. 液滴撞击固体壁面的实验及理论研究[D]. 大连: 大连理工大学, 2010.
LI X Y.Experimental and Theoretical Study on the Impact of Liquid Droplets on Solid Wall[D]. Dalian: Dalian University of Technology, 2010.
[52] PAPADOPOULOS P, MAMMEN L, DENG X, et al.How Superhydrophobicity Breaks down[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3254-3258.
[53] REYSSAT M, PÉPIN A, MARTY F, et al. Bouncing Transitions on Microtextured Materials[J]. Europhysics Letters (EPL), 2006, 74(2): 306-312.
[54] BARTOLO D, BOUAMRIRENE F, VERNEUIL, et al. Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces[J]. Europhysics Letters (EPL), 2006, 74(2): 299-305.
[55] JUNG Y C, BHUSHAN B.Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces[J]. Langmuir, 2008, 24(12): 6262-6269.
[56] DASH S, ALT M T, GARIMELLA S V.Hybrid Surface Design for Robust Superhydrophobicity[J]. Langmuir, 2012, 28(25): 9606-9615.
[57] DAE H K, SANG J L.Impact and Wetting Behaviors of Impinging Microdroplets on Superhydrophobic Textured Surfaces[J]. Applied Physics Letters, 2012, 100(17): 171601.
[58] DENG T, VARANASI K K, HSU M, et al.Nonwetting of Impinging Droplets on Textured Surfaces[J]. Applied Physics Letters, 2009, 94(13): 133109.
[59] WANG L Z, ZHOU A, ZHOU J Z, et al.Droplet Impact on Pillar-Arrayed Non-Wetting Surfaces[J]. Soft Matter, 2021, 17(24): 5932-5940.
[60] NOSONOVSKY M, BHUSHAN B.Patterned Nonadhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions[J]. Langmuir, 2008, 24(4): 1525-1533.
[61] 王德辉. 浸润性与机械稳定性拆分强化构筑超疏水表面及其应用研究[D]. 成都: 电子科技大学, 2020.
WANG D H.Study on the Construction of Superhydrophobic Surface by Separating Wettability and Mechanical Stability and Its Application[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[62] LI W B, CHAN C W, LI Z Y, et al.All-Perfluoropolymer, Nonlinear Stability-Assisted Monolithic Surface Combines Topology-Specific Superwettability with Ultradurability[J]. The Innovation, 2023, 4(2): 100389.
[63] LIU H H, ZHANG H Y, LI W.Thermodynamic Analysis on Wetting Behavior of Hierarchical Structured Superhydrophobic Surfaces[J]. Langmuir, 2011, 27(10): 6260-6267.
[64] ZHANG H Y, LI W, ZHANG X K, et al.Determination of the Second Step Microstructure for Superhydrophobic Surfaces[J]. Surface and Interface Analysis, 2013, 45(5): 919-929.
[65] MANUKYAN G, OH J M, VAN DEN ENDE D, et al. Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route towards Reversible Cassie-to-Wenzel Transitions[J]. Physical Review Letters, 2011, 106(1): 014501.
[66] LEI W, JIA Z H, HE J C, et al.Vibration-Induced Wenzel-Cassie Wetting Transition on Microstructured Hydrophobic Surfaces[J]. Applied Physics Letters, 2014, 104(18): 181601.
[67] CHENG Z J, LAI H, ZHANG N Q, et al.Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface[J]. The Journal of Physical Chemistry C, 2012, 116(35): 18796-18802.
[68] ZHANG B X, HE X, WANG S L, et al.Explosive Boiling of Argon Nanofilms in the Wenzel or Cassie State on High- Temperature Nanopillar-Arrayed Surfaces[J]. International Journal of Thermal Sciences, 2022, 172: 107282.
[69] LI Y S, QUÉRÉ D, LV C J, et al. Monostable Superrepellent Materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3387-3392.
[70] PRAKASH S, XI E T, PATEL A J.Spontaneous Recovery of Superhydrophobicity on Nanotextured Surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(20): 5508-5513.
[71] VERHO T, KORHONEN J T, SAINIEMI L, et al.Reversible Switching between Superhydrophobic States on a Hierarchically Structured Surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10210-10213.
[72] MARTINES E, SEUNARINE K, MORGAN H, et al.Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns[J]. Nano Letters, 2005, 5(10): 2097-2103.
[73] MCCARTHY M, GERASOPOULOS K, ENRIGHT R, et al.Biotemplated Hierarchical Surfaces and the Role of Dual Length Scales on the Repellency of Impacting Droplets[J]. Applied Physics Letters, 2012, 100(26): 263701.
[74] MAITRA T, ANTONINI C, TIWARI M K, et al.Supercooled Water Drops Impacting Superhydrophobic Textures[J]. Langmuir, 2014, 30(36): 10855-10861.
[75] MAITRA T, TIWARI M K, ANTONINI C, et al.On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature[J]. Nano Letters, 2014, 14(1): 172-182.
[76] SCHUTZIUS T M, JUNG S, MAITRA T, et al.Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity[J]. Langmuir, 2015, 31(17): 4807-4821.
[77] ZHAO S T, MA Z C, SONG M K, et al.Golden Section Criterion to Achieve Droplet Trampoline Effect on Metal-Based Superhydrophobic Surface[J]. Nature Communications, 2023, 14: 6572.
[78] SHI S L, LV C J, ZHENG Q S.Drop Impact on Two-Tier Monostable Superrepellent Surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43698-43707.
[79] MOEVIUS L, LIU Y H, WANG Z K, et al.Pancake Bouncing: Simulations and Theory and Experimental Verification[J]. Langmuir, 2014, 30(43): 13021-13032.
[80] LIU Y H, MOEVIUS L, XU X P, et al.Pancake Bouncing on Superhydrophobic Surfaces[J]. Nature Physics, 2014, 10(7): 515-519.
[81] LIU Y H, WHYMAN G, BORMASHENKO E, et al.Controlling Drop Bouncing Using Surfaces with Gradient Features[J]. Applied Physics Letters, 2015, 107(5): 051604.
[82] SONG J L, GAO M Q, ZHAO C L, et al.Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State[J]. ACS Nano, 2017, 11(9): 9259-9267.
[83] WU H P, JIANG K P, XU Z X, et al.Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets[J]. Langmuir, 2019, 35(52): 17000-17008.
[84] XIA L, YANG Z, CHEN F Z, et al.Droplet Impacting on Pillared Hydrophobic Surfaces with Different Solid Fractions[J]. Journal of Colloid and Interface Science, 2024, 658: 61-73.
[85] XIA L, YU H X, CHEN F Z, et al.Pillar Height Regulated Droplet Impact Dynamics on Pillared Superhydrophobic Surfaces[J]. International Journal of Mechanical Sciences, 2024, 276: 109386.
[86] YAO Y L, PENG Y, LV J, et al.The Heat Transfer Performance of the Superhydrophobic Surfaces with Wear Resistance[J]. International Journal of Heat and Mass Transfer, 2025, 239: 126554.
[87] XUE Y Q, VERDROSS P, LIANG W Y, et al.Breaking the Ice: Applications of Photothermal Superhydrophobic Materials for Efficient Deicing Strategies[J]. Advances in Colloid and Interface Science, 2025, 341: 103489.
[88] ZHANG P, BUKHARI M N, WANG P G, et al.Recent Advances in Fluorine-Free Superhydrophobic Materials for Corrosion Protection and Oil Capture Applications[J]. Progress in Organic Coatings, 2026, 210: 109723.
[89] MA H R, HU H B, GUO P Y, et al.Drag Reduction Performance of Grooved Superhydrophobic Surfaces[J]. Physics of Fluids, 2025, 37(5): 055127.
[90] LIANG J H, TANG X L, JIANG X W, et al.Bionic Multifunctional Copper Mesh for Self-Cleaning, Oil/Water Separation and Fog Collection[J]. Separation and Purification Technology, 2026, 380: 135324.
[91] CAI Z X, CHEN F Z, TIAN Y L, et al.Programmable Droplet Transport on Multi-Bioinspired Slippery Surface with Tridirectionally Anisotropic Wettability[J]. Chemical Engineering Journal, 2022, 449: 137831.
[92] RICHARD D, CLANET C, QUÉRÉ D. Contact Time of a Bouncing Drop[J]. Nature, 2002, 417(6891): 811.
[93] LV C J, HAO P F, ZHANG X W, et al.Drop Impact Upon Superhydrophobic Surfaces with Regular and Hierarchical Roughness[J]. Applied Physics Letters, 2016, 108(14): 141602.
[94] OKUMURA K, CHEVY F, RICHARD D, et al.Water Spring: A Model for Bouncing Drops[J]. Europhysics Letters (EPL), 2003, 62(2): 237-243.
[95] GOMAA H, TEMBELY M, ESMAIL N, et al.Bouncing of Cloud-Sized Microdroplets on Superhydrophobic Surfaces[J]. Physics of Fluids, 2020, 32(12): 122118.
[96] BIRD J C, DHIMAN R, KWON H M, et al.Reducing the Contact Time of a Bouncing Drop[J]. Nature, 2013, 503(7476): 385-388.
[97] GUO C F, SUN J X, SUN Y J, et al.Droplet Impact on Cross-Scale Cylindrical Superhydrophobic Surfaces[J]. Applied Physics Letters, 2018, 112(26): 263702.
[98] GAUTHIER A, SYMON S, CLANET C, et al.Water Impacting on Superhydrophobic Macrotextures[J]. Nature Communications, 2015, 6: 8001.
[99] SHEN Y, TAO J, TAO H, et al.Approaching the Theoretical Contact Time of a Bouncing Droplet on the Rational Macrostructured Superhydrophobic Surfaces[J]. Applied Physics Letters, 2015, 107(11): 111604.
[100] CHANTELOT P, MAZLOOMI MOQADDAM A, GAUTHIER A, et al.Water Ring-Bouncing on Repellent Singularities[J]. Soft Matter, 2018, 14(12): 2227-2233.
[101] XIA L, CHEN F Z, YANG Z, et al.Droplet Impact Dynamics on Superhydrophobic Surfaces with Convex Hemispherical Shapes[J]. International Journal of Mechanical Sciences, 2024, 264: 108824.
[102] ZHAN H Y, LU C G, LIU C, et al.Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics[J]. Physical Review Letters, 2021, 126(23): 234503.
[103] ZHANG R, HAO P F, HE F.Rapid Bouncing of High-Speed Drops on Hydrophobic Surfaces with Microcavities[J]. Langmuir, 2016, 32(39): 9967-9974.
[104] WANG Y T, XU B Z, CHEN Z, et al.Hovering Spreading Rebound on Porous Superhydrophobic Surface with Active Air Plastron for Rapid Drop Detachment[J]. Journal of Materials Chemistry A, 2022, 10(25): 13315-13324.
[105] HU Z F, CHU F Q, LIN Y K, et al.Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces[J]. Langmuir, 2022, 38(4): 1540-1549.
[106] CHEN L Q, XIAO Z Y, CHAN P C H, et al. A Comparative Study of Droplet Impact Dynamics on a Dual-Scaled Superhydrophobic Surface and Lotus Leaf[J]. Applied Surface Science, 2011, 257(21): 8857-8863.
[107] DU H R, ZHAO S T, MA Z C, et al.The Size Effect on Contact Angles and Dynamic Behaviors of Droplets on Microcolumn and Microstrip Array Surfaces[J]. Advanced Engineering Materials, 2022, 24(8): 2101568.
[108] BARTOLO D, JOSSERAND C, BONN D.Singular Jets and Bubbles in Drop Impact[J]. Physical Review Letters, 2006, 96(12): 124501.
[109] ZEFF B W, KLEBER B, FINEBERG J, et al.Singularity Dynamics in Curvature Collapse and Jet Eruption on a Fluid Surface[J]. Nature, 2000, 403(6768): 401-404.
[110] DUCHEMIN L, POPINET S, JOSSERAND C, et al.Jet Formation in Bubbles Bursting at a Free Surface[J]. Physics of Fluids, 2002, 14(9): 3000-3008.
[111] SARMA B, BASU D N, DALAL A.Jetting Dynamics of Viscous Droplets on Superhydrophobic Surfaces[J]. Langmuir, 2023, 39(39): 14040-14052.
[112] PENG X Y, WANG T Y, JIA F F, et al.Singular Jets during Droplet Impact on Superhydrophobic Surfaces[J]. Journal of Colloid and Interface Science, 2023, 651: 870-882.
[113] MITRA S, VO Q, TRAN T.Bouncing-to-Wetting Transition of Water Droplets Impacting Soft Solids[J]. Soft Matter, 2021, 17(24): 5969-5977.
[114] RENARDY Y, POPINET S, DUCHEMIN L, et al.Pyramidal and Toroidal Water Drops after Impact on a Solid Surface[J]. Journal of Fluid Mechanics, 2003, 484: 69-83.
[115] ZHANG B, SANJAY V, SHI S L, et al.Impact Forces of Water Drops Falling on Superhydrophobic Surfaces[J]. Physical Review Letters, 2022, 129(10): 104501.
[116] ZHANG B, LI J Y, GUO P H, et al.Experimental Studies on the Effect of Reynolds and Weber Numbers on the Impact Forces of Low-Speed Droplets Colliding with a Solid Surface[J]. Experiments in Fluids, 2017, 58(9): 125.
[117] GORDILLO L, SUN T P, CHENG X.Dynamics of Drop Impact on Solid Surfaces: Evolution of Impact Force and Self-Similar Spreading[J]. Journal of Fluid Mechanics, 2018, 840: 190-214.
[118] SOTO D, DE LARIVIÈRE A B, BOUTILLON X, et al. The Force of Impacting Rain[J]. Soft Matter, 2014, 10(27): 4929-4934.
[119] MITCHELL B R, KLEWICKI J C, KORKOLIS Y P, et al.The Transient Force Profile of Low-Speed Droplet Impact: Measurements and Model[J]. Journal of Fluid Mechanics, 2019, 867: 300-322.
[120] LEE S H, RUMP M, HARTH K, et al.Downward Jetting of a Dynamic Leidenfrost Drop[J]. Physical Review Fluids, 2020, 5(7): 074802.
[121] JOUNG Y S, BUIE C R.Aerosol Generation by Raindrop Impact on Soil[J]. Nature Communications, 2015, 6: 6083.
[122] 熊伟. 表面润湿性和凝固相变作用下液滴碰撞的介观数值模拟与实验研究[D]. 上海: 上海交通大学, 2020.
XIONG W.Mesoscopic Numerical Simulation and Experimental Study on Droplet Collision under the Action of Surface Wettability and Solidification Phase Transition [D]. Shanghai: Shanghai Jiao Tong University, 2020.
[123] CHEN L Q, BONACCURSO E, DENG P G, et al. Droplet Impact on Soft Viscoelastic Surfaces[J]. Physical Review E, 2016, 94(): 063117.
[124] CHEN L Q, WU J, LI Z G, et al.Evolution of Entrapped Air under Bouncing Droplets on Viscoelastic Surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1/2/3): 726-732.
[125] HUNG Y L, WANG M J, HUANG J W, et al.A Study on the Impact Velocity and Drop Size for the Occurrence of Entrapped Air Bubbles-Water on Parafilm[J]. Experimental Thermal and Fluid Science, 2013, 48: 102-109.
[126] PITTONI P G, LIN Y C, WANG R J, et al.Bubbles Entrapment for Drops Impinging on Polymer Surfaces: The Roughness Effect[J]. Experimental Thermal and Fluid Science, 2015, 62: 183-191.
[127] PITTONI P G, LIN Y C, LIN S Y.The Impalement of Water Drops Impinging Onto Hydrophobic/Superhydrophobic Graphite Surfaces: The Role of Dynamic Pressure, Hammer Pressure and Liquid Penetration Time[J]. Applied Surface Science, 2014, 301: 515-524.
[128] NGUYEN T V, ICHIKI M.Bubble Entrapment during the Recoil of an Impacting Droplet[J]. Microsystems & Nanoengineering, 2020, 6: 36.
[129] CHEN L Q, LI L, LI Z G, et al.Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces[J]. Langmuir, 2017, 33(29): 7225-7230.
[130] GUO J W, ZOU S, LIN S J, et al.Oblique Droplet Impact on Superhydrophobic Surfaces: Jets and Bubbles[J]. Physics of Fluids, 2020, 32(12): 122112.
[131] LIN S J, ZHAO B Y, ZOU S, et al.Impact of Viscous Droplets on Different Wettable Surfaces: Impact Phenomena, the Maximum Spreading Factor, Spreading Time and Post-Impact Oscillation[J]. Journal of Colloid and Interface Science, 2018, 516: 86-97.
[132] PITTONI P G, WANG R J, YU T S, et al.Occurrence and Formation Mechanisms of Bubbles Entrapped into Water Drops Impinging on Graphite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6): 3062-3068.

基金

新疆维吾尔自治区自然科学基金 (2025D01C251)

PDF(20489 KB)

Accesses

Citation

Detail

段落导航
相关文章

/