MgZnSc镁合金二次复合微弧氧化低吸收热控涂层性能研究

王景润, 白晶莹, 李思振, 赵阔, 郝亚楠, 陈先华, 文陈, 程德, 宋宝伟, 关宏伟, 杨铁山, 赫艳龙, 姚雪征, 王旭光, 郑姣潭

表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 291-301.

PDF(1767 KB)
PDF(1767 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 291-301. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.022
表面功能化

MgZnSc镁合金二次复合微弧氧化低吸收热控涂层性能研究

  • 王景润1,*, 白晶莹1,2, 李思振1, 赵阔1, 郝亚楠1, 陈先华2, 文陈1, 程德1, 宋宝伟1, 关宏伟1, 杨铁山1, 赫艳龙1, 姚雪征1, 王旭光1, 郑姣潭1
作者信息 +

Performance of Low Absorption Thermal Control Coatings Prepared by Secondary Composite Micro-arc Oxidation for MgZnSc Magnesium Alloy

  • WANG Jingrun1,*, BAI Jingying1,2, LI Sizhen1, ZHAO Kuo1, HAO Yanan1, CHEN Xianhua2, WEN Chen1, CHENG De1, SONG Baowei1, GUAN Hongwei1, YANG Tieshan1, HE Yanlong1, YAO Xuezheng1, WANG Xuguang1, ZHENG Jiaotan1
Author information +
文章历史 +

摘要

目的 航天器框架结构零件采用MgZnSc镁合金,但存在镁合金耐蚀性和热控性能不足的问题,需通过功能化处理解决。方法 采用硅盐和锆盐体系进行二次复合微弧氧化,在MgZnSc镁合金表面制备了具有低太阳吸收比和高半球发射率的白色微弧氧化热控涂层,并对涂层的热控性能、微观形貌等进行了分析。采用PE lambda 950太阳吸收比测试仪和AE-1辐射计测试试样的太阳吸收比和半球发射率。采用ZEISS SUPER 55VP扫描电子显微镜(SEM)和X射线能量色散谱(EDS)观察表面微观形貌和化学成分。采用Bruker-AXS X射线衍射仪进行X射线衍射(XRD)物相分析。结果 涂层微观结构呈微纳雪花状结构,在紫外、可见光、近红外波段具有较低的吸收比,太阳吸收比最低为0.26,半球发射率最高为0.90。锆盐微弧氧化的涂层厚度增长较慢,氧化15 min时氧化厚度不足20 μm,而二次复合氧化的涂层厚度增长较快,氧化15 min后厚度可达35.4 μm,可以快速加厚涂层厚度,避免由于锆盐反应初期涂层增长较慢造成的氧化涂层不稳定现象。氧、硅和锆含量的变化结果表明,当二次复合氧化时间超过30 min时,表面化学成分趋于稳定。结论 经过硅盐和锆盐体系二次复合氧化,MgZnSc镁合金表面形成了具备低太阳吸收比、高半球发射率热控性能的微弧氧化涂层。主要成分为具有反光效应的白色微弧氧化物,有利于反射太阳辐射等热量,降低镁合金表面对太阳光谱能量的吸收比。镁合金表面从金属变成了金属氧化物,通过高发射率氧化物的掺杂以及厚度的提高,其发射率进一步提升。

Abstract

The structural components of spacecraft frames are made of MgZnSc magnesium alloy, but there are issues such as insufficient corrosion resistance and thermal control performance of the magnesium alloy, which need to be addressed through functionalization treatment. However, the hemispherical emissivity of the micro-arc oxidation coating formed by single oxidation of silicon salt micro-arc oxidation is generally below 0.85, which is difficult to meet the usage requirements. Simply using zirconium salt for micro-arc oxidation has problems such as difficulty in starting the arc in the early reaction and easy roughness of the oxidation coating after prolonged oxidation time.
This article focuses on the surface thermal control application requirements of spacecraft products, taking magnesium alloy materials as the research object. A low absorption white thermal control coating was successfully prepared on the surface of MgZnSc magnesium alloy by silicon zirconium salt secondary micro-arc oxidation, and the thermal control performance and microstructure of the coating were analyzed. A white micro-arc oxidation thermal control coating with low solar absorption ratio and high hemispherical emissivity was prepared on the surface of MgZnSc magnesium alloy by secondary composite micro-arc oxidation using a silicon salt and zirconium salt system. The thermal control performance and microstructure of the coating were analyzed. A PE lambda 950 solar absorption ratio tester and an AE-1 radiometer were used to test the solar absorption ratio and hemispherical emissivity of the sample. The surface microstructure and chemical composition were observed with a ZEISS SUPER 55VP scanning electron microscope (SEM) and an X-ray energy dispersive spectroscopy (EDS). A Bruker AXS X-ray diffractometer was used for X-ray diffraction (XRD) phase analysis.
The microstructure of the coating presents a micro nano snowflake like structure, with low absorption ratios in the ultraviolet, visible, and near-infrared bands. The lowest solar absorption ratio is 0.26, and the highest hemispherical emissivity is 0.90. The coating thickness of zirconium salt micro-arc oxidation increases slowly, with an oxidation thickness of less than 20 μm after 15 minutes of oxidation. However, the coating thickness of secondary composite oxidation increases rapidly, with a thickness of up to 35.4 μm after 15 minutes of oxidation. This can quickly increase the coating thickness and avoid the instability of the oxidation coating caused by the slow growth of the coating in the early zirconium salt reaction. The changes in oxygen, silicon, and zirconium content indicate that when the secondary composite oxidation time exceeds 30 minutes, the surface chemical composition tends to stabilize. The XRD test structure shows that when magnesium alloy is only subject to silicate micro-arc oxidation, the main component of the micro-arc oxidation film formed on the surface of the magnesium alloy is MgSiO3. In the initial stage of secondary oxidation in zirconium salt, the micro-arc oxidation film layer of magnesium fluoride formed on the surface gradually increases with the extension of oxidation time in zirconium salt. The diffraction peaks of zirconium compounds such as ZrO2 and Zr(PO4)3 gradually increase, while the diffraction peaks of MgSiO3 and MgF gradually decrease. At this time, the surface of magnesium alloy is mainly composed of zirconium oxide. After thermal shock test and thermal cycle test, the appearance of the secondary composite micro-arc oxidation coating is uniform and consistent, without cracking, peeling, blistering and other phenomena. The coating has good adhesion and can withstand the complex environment of high and low temperature alternating cycles in the space environment.
After secondary composite oxidation of silicon salt and zirconium salt system, a micro-arc oxidation coating with low solar absorption ratio and high hemispherical emissivity thermal control performance is formed on the surface of MgZnSc magnesium alloy. The main component is white micro-arc oxide with reflective effect, which is beneficial for reflecting solar radiation and other heat, reducing the absorption ratio of magnesium alloy surface to solar spectral energy. The surface of magnesium alloy has changed from metal to metal oxide, and its emissivity is further improved by doping with high emissivity oxide and increasing its thickness.

关键词

镁合金 / 微弧氧化 / 太阳吸收比 / 热控涂层 / 半球发射率

Key words

magnesium alloy / micro-arc oxidation / solar absorptance / thermal control coating / hemispheric emissivity

引用本文

导出引用
王景润, 白晶莹, 李思振, 赵阔, 郝亚楠, 陈先华, 文陈, 程德, 宋宝伟, 关宏伟, 杨铁山, 赫艳龙, 姚雪征, 王旭光, 郑姣潭. MgZnSc镁合金二次复合微弧氧化低吸收热控涂层性能研究[J]. 表面技术. 2025, 54(20): 291-301 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.022
WANG Jingrun, BAI Jingying, LI Sizhen, ZHAO Kuo, HAO Yanan, CHEN Xianhua, WEN Chen, CHENG De, SONG Baowei, GUAN Hongwei, YANG Tieshan, HE Yanlong, YAO Xuezheng, WANG Xuguang, ZHENG Jiaotan. Performance of Low Absorption Thermal Control Coatings Prepared by Secondary Composite Micro-arc Oxidation for MgZnSc Magnesium Alloy[J]. Surface Technology. 2025, 54(20): 291-301 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.022
中图分类号: TG146.2   

参考文献

[1] SEDELINKOV A, NIKOLAEVA A, SERDAKOVA V, et al.Technologies for Increasing the Control Efficiency of Small Spacecraft with Solar Panels by Taking into Account Temperature Shock[J]. Technologies, 2024, 12(10): 207.
[2] 侯增祺, 胡金刚. 航天器热控制技术: 原理及其应用[M]. 北京: 中国科学技术出版社, 2007.
HOU Z Q, HU J G.Thermal Control Technology of Spacecraft: Principle and Application[M]. Beijing: China Science and Technology Press, 2007.
[3] 韦汉刚, 翟载腾, 付鑫, 等. 高导热石墨薄膜真空环境下导热性能测试验证[J]. 航天器环境工程, 2024, 41(4): 516-520.
WEI H G, ZHAI Z T, FU X, et al.Thermal Conductivity Test and Verification of High Thermal Conductive Graphite Film under Vacuum Environment[J]. Spacecraft Environment Engineering, 2024, 41(4): 516-520.
[4] MIKHAILOV M M, LAPIN A N, YURYEV S A, et al.On the Possibility of Obtaining Thermal Control Coatings for Spacecraft by Printing[J]. Materials Chemistry and Physics, 2023, 310: 128472.
[5] JOHNSON R E, WOODSON A K, TIAN L, et al.Temperature Extraction from Spacecraft Density Profiles in the Presence of Wave Activity[J]. Icarus, 2021, 357: 114257.
[6] 蔺鹏婷, 靳宇, 孟腾, 等. 无机防静电热控涂层制备及性能研究[J]. 宇航材料工艺, 2024, 54(4): 75-80.
LIN P T, JIN Y, MENG T, et al.Preparation and Properties Study of Inorganic Antistatic Thermal Control Coatings[J]. Aerospace Materials & Technology, 2024, 54(4): 75-80.
[7] 张源博, 黄健, 孔林, 等. 面向批产化遥感卫星的热控系统研制优化与实践[J]. 航天返回与遥感, 2024, 45(5): 31-42.
ZHANG Y B, HUANG J, KONG L, et al.Optimization and Practice of the Thermal Control System for Batch Production of Remote Sensing Satellites[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(5): 31-42.
[8] 王建超, 柏添, 孔林, 等. TDI-CMOS焦面组件传热路径优化设计[J]. 航天返回与遥感, 2024, 45(2): 92-101.
WANG J C, BAI T, KONG L, et al.Optimization Design of the Heat Transfer Path for a TDI-CMOS Focal Plane Assembly[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 92-101.
[9] 孔林, 姜峰, 王建超, 等. 微小卫星高分辨率相机 CCD 焦面组件热控制[J]. 航天返回与遥感, 2023, 44(3): 62-68.
KONG L, JIANG F, WANG J C, et al.Thermal Control of the CCD Focal Plane of High Resolution Cameras for Microsatellite[J]. Aerospace Return and Remote Sensing, 2023, 44(3): 62-68
[10] HEYDARI V, BAHREINI Z.Synthesis of Silica- Supported ZnO Pigments for Thermal Control Coatings and Analysis of Their Reflection Model[J]. Journal of Coatings Technology and Research, 2018, 15(1): 223-230.
[11] XU H, LIN S, MA E, et al.Technologies for Parallel Vacuum Thermal Test of Twin MEO Satellites[J]. Spacecraft Environmental Engineering, 2021, 38(2): 153-159.
[12] BAI J Y, YANG Y, WEN C, et al.Applications of Magnesium Alloys for Aerospace: A Review[J]. Journal of Magnesium and Alloys, 2023, 11(10): 3609-3619.
[13] SWANSON T D, BIRUR G C.NASA Thermal Control Technologies for Robotic Spacecraft[J]. Applied Thermal Engineering, 2003, 23(9): 1055-1065.
[14] KIM S, PARK J, LEE S.Analysis of Thermal Environment and Thermal Control Design for a Small Satellite in Sun - synchronous Orbit[J]. Journal of Spacecraft Technology, 2021, 31(4): 353-362.
[15] TACHIKAWA S, NAGANO H, OHNISHI A, et al.Advanced Passive Thermal Control Materials and Devices for Spacecraft: A Review[J]. International Journal of Thermophysics, 2022, 43(6): 91.
[16] ZHANG L, WANG J, KONG L, et al.Research on Thermal Control of Magnesium Alloy Components in Spacecraft[J]. Aerospace Engineering and Technology, 2024, 33(3): 189-196.
[17] WANG H M, CHEN Z H, LI L L.Corrosion Resistance and Microstructure Characteristics of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy[J]. Surface Engineering, 2010, 26(5): 385-391.
[18] MOHEDANO M, BLAWERT C, ZHELUDKEVICH M L.Cerium-Based Sealing of PEO Coated AM50 Magnesium Alloy[J]. Surface and Coatings Technology, 2015, 269: 145-154.
[19] 巩锐, 侯步逸, 陈彤, 等. 镁合金微弧氧化表面处理技术研究进展及展望[J]. 金属世界, 2021(4): 8-18.
GONG R, HOU B Y, CHEN T, et al.Research Progress and Prospect of Micro Arc Oxidation Surface Treatment Technology for Magnesium Alloys[J]. Metal World, 2021(4): 8-18.
[20] 王吉会, 杨静. 镁合金在硅酸盐体系中微弧氧化膜层的性能研究[J]. 材料热处理学报, 2006, 27(3): 95-99.
WANG J H, YANG J.Properties of Microarc Oxidation Coating of Magnesium Alloy Oxidized in Silicate System[J]. Transactions of Materials and Heat Treatment, 2006, 27(3): 95-99.
[21] 马跃宇, 何德山, 涂思京, 等. 稀土对镁合金微弧氧化层的作用综述[J]. 稀有金属, 2017, 41(6): 709-713.
MA Y Y, HE D S, TU S J, et al.Effects of Rare Earths on Micro-Arc Oxidation of Magnesium Alloys: A Review[J]. Chinese Journal of Rare Metals, 2017, 41(6): 709-713.
[22] 冯宴荣, 周亮, 贾宏耀, 等. 医用镁合金微弧氧化工艺研究进展[J]. 表面技术, 2023, 52(7): 11-24.
FENG Y R, ZHOU L, JIA H Y, et al.Research Progress on Micro-Arc Oxidation of Medical Magnesium Alloy[J]. Surface Technology, 2023, 52(7): 11-24.
[23] 张祥, 周亮, 贾宏耀, 等. 镁合金微弧氧化膜层性能优化研究进展[J]. 表面技术, 2023, 52(3): 122-133.
ZHANG X, ZHOU L, JIA H Y, et al.Research Progress on Performance Optimization of Micro-Arc Oxidation Films on Magnesium Alloys[J]. Surface Technology, 2023, 52(3): 122-133.
[24] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
CHEN Z N, YONG X Y, CHEN X C.Micro-Defects in Micro-Arc Oxidation Coatings on Mg-Alloys[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1): 1-8.
[25] 张睿峰, 马颖, 孙乐, 等. 频率、占空比及其交互作用对镁合金微弧氧化膜层结构和耐蚀性的影响[J]. 表面技术, 2021, 50(1): 375-382.
ZHANG R F, MA Y, SUN L, et al.Effect of Frequency, Duty Ratio and Their Interaction on Structure and Corrosion Resistance of Micro-Arc Oxidation Coatings Formed on Magnesium Alloys[J]. Surface Technology, 2021, 50(1): 375-382.
[26] 庄俊杰, 宋仁国, 项南, 等. 氟锆酸钾对AZ31镁合金微弧氧化膜层的影响[J]. 材料热处理学报, 2016, 37(9): 157-164.
ZHUANG J J, SONG R G, XIANG N, et al.Effect of K2ZrF6 on Coatings of AZ31 Magnesium Alloy Prepared by Micro-Arc Oxidation[J]. Transactions of Materials and Heat Treatment, 2016, 37(9): 157-164.
[27] 张文涛, 辛世刚, 李伟, 等. 氧化时间对LAZ933镁锂合金微弧氧化热控涂层的结构与性能的影响[J]. 材料保护, 2024, 57(5): 165-171.
ZHANG W T, XIN S G, LI W, et al.Effect of Oxidation Time on the Structure and Properties of LAZ933 Magnesium-Lithium Alloy Micro-Arc Oxidation Thermal Control Coating[J]. Materials Protection, 2024, 57(5): 165-171.
[28] 邹琛, 周凡, 周根树. Ti纳米颗粒浓度对AZ91D镁合金表面微弧氧化膜层耐蚀性的影响[J]. 金属热处理, 2025, 50(3): 263-269.
ZOU C, ZHOU F, ZHOU G S.Effect of Ti Nanoparticle Concentration on Corrosion Resistance of Micro-Arc Oxidation Film on AZ91D Magnesium Alloy[J]. Heat Treatment of Metals, 2025, 50(3): 263-269.
[29] 白晶莹, 李思振, 郑大江, 等. 黑色微弧氧化膜的制备及其表征[J]. 物理化学学报, 2016, 32(9): 2271-2279.
BAI J Y, LI S Z, ZHENG D J, et al.Preparation and Characterization of Black Micro-Arc Oxidation Films[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2271-2279.
[30] 王成成. 基于两步法对微弧氧化陶瓷膜生长过程的研究[D]. 西安: 长安大学, 2021.
WANG C C.Study on the Growth Process of Micro-arc Oxidation Ceramic Membrane Based on Two-step Method[D]. Xi’an: Changan University, 2021.
[31] ZHANG K, HAO L, DU M, et al.A Review on Thermal Stability and High Temperature Induced Ageing Mechanisms of Solar Absorber Coatings[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1282-1299.
[32] 王旭东, 李春东, 何世禹, 等. 电子与质子综合辐照下ZnO白漆的光学性能退化研究[J]. 航天器环境工程, 2010, 27(5): 581-584.
WANG X D, LI C D, HE S Y, et al.The Optical Degradation of ZnO-Pigmented White Paint Induced by the Combined Electron-Plus-Proton Irradiations[J]. Spacecraft Environment Engineering, 2010, 27(5): 581-584.
[33] YAO Z P, SHEN Q X, NIU A X, et al.Preparation of High Emissivity and Low Absorbance Thermal Control Coatings on Ti Alloys by Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology, 2014, 242: 146-151.
[34] 陈明. 镁合金微弧氧化微区电弧放电机理及电源特性的研究[D]. 兰州: 兰州理工大学, 2010.
CHEN M.Study on Micro-arc Discharge Mechanism and Power Supply Characteristics of Magnesium Alloy by Micro-arc Oxidation[D]. Lanzhou: Lanzhou University of Technology, 2010.
[35] 陈宏, 崔晓, 郝建民, 等. AZ91D镁合金微弧氧化膜微观形貌及形成过程研究[J]. 稀有金属材料与工程, 2015, 44(10): 2435-2439.
CHEN H, CUI X, HAO J M, et al.Microstructure and Formation of Micro-Arc Oxidation Coatings of AZ91D Magnesium Alloys[J]. Rare Metal Materials and Engineering, 2015, 44(10): 2435-2439.

PDF(1767 KB)

Accesses

Citation

Detail

段落导航
相关文章

/