面向航空航天合金复杂结构的等离子电解抛光技术研究现状及展望

周传强, 钱宁, 丁文锋, 傅玉灿, 苏宏华

表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 155-181.

PDF(41698 KB)
PDF(41698 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 155-181. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.012
精密与超精密加工

面向航空航天合金复杂结构的等离子电解抛光技术研究现状及展望

  • 周传强1,2, 钱宁2,*, 丁文锋2, 傅玉灿2, 苏宏华2
作者信息 +

Research Status and Prospects of Plasma Electrolytic Polishing Technology for Complex Aerospace Alloy Structures

  • ZHOU Chuanqiang1,2, QIAN Ning2,*, DING Wenfeng2, FU Yucan2, SU Honghua2
Author information +
文章历史 +

摘要

随着航空航天领域对零件表面质量和结构复杂度要求的不断提高,复杂结构合金表面高效精密抛光技术的发展受到广泛关注。系统综述了当前复杂结构表面抛光技术的研究进展,涵盖了传统机械抛光、磨粒流抛光、磁流变抛光、激光束与电子束等能量束抛光,以及电化学抛光等典型方法,分析了各类技术在加工效率、适应性及表面质量方面的优势与局限性。随后,重点分析了等离子电解抛光的材料去除及表面平滑机制。结合近年来的研究进展,归纳了等离子电解抛光的新方法;总结了关键工艺参数及其对表面质量的影响规律;介绍了等离子电解抛光技术在不同合金材料及复杂结构件表面抛光中的应用效果。最后,对合金复杂结构表面抛光技术进行了总结。特别地,指出当前等离子电解抛光为代表的高效精密抛光技术在复杂结构加工中的发展瓶颈,提出未来研究应聚焦于多物理场耦合机制解析、智能化装备开发及绿色可控工艺构建,以推动该技术在航空航天乃至生物医疗和精密模具等领域的工程化应用。

Abstract

With increasing demands for surface quality, dimensional accuracy, and structural complexity of components in the aerospace sector, efficient and precision polishing technology for complex-structured alloy surfaces has gradually become a key step in manufacturing processes. This review outlines current research progress in polishing technologies for complex surfaces of aerospace alloys. While traditional polishing techniques offer advantages such as process simplicity and wide applicability, they still face common challenges when balancing the dual objectives of "high efficiency" and "high precision”. Based on a comprehensive evaluation on the strengths and limitations of various methods, special emphasis is placed on Plasma Electrolytic Polishing (PEP), an emerging metal surface polishing technology.
PEP is recognized as an efficient, environmentally friendly, and cost-effective metal surface polishing process, which is particularly suitable for polishing workpieces with complex structures, where it demonstrates unique advantages. Drawing on domestic and international research, the material removal mechanisms of PEP are elaborated, and strategies for achieving efficient and precision polishing are summarized. Regarding process parameters, the influence of key factors such as voltage, current density, electrolyte composition, temperature, and time on surface quality is systematically reviewed. Finally, the development of polishing technologies for complex-structured alloy surfaces is summarized, with particular attention to the remaining bottlenecks in the engineering application of efficient and precision polishing methods represented by PEP.
In terms of the polishing mechanism, PEP operates through the formation of a plasma discharge layer within the vapour gaseous envelope, where synergistic effects of electrochemical removal and physical impact lead to efficient elimination of surface asperities, thereby achieving surface smoothing. The material removal mechanism involves not only anodic dissolution and formation-removal of oxide films but also bubble dynamics, localized plasma micro-discharges, and transient micro-scale erosion under high temperature and pressure. Recent studies further reveal the decisive role of dynamic vapor envelope oscillations in polishing uniformity and surface quality, providing new theoretical support for mechanistic investigations.
Regarding polishing strategies, spray-type PEP combines directional electrolyte flushing with plasma discharge, reducing power supply requirements and enabling controlled polishing of localized areas. This approach expands its application to additive-manufactured components and complex structural parts. Methods such as vibration-assisted polishing can enhance material removal rate and surface consistency by regulating electrolyte flow and bubble dynamics. The introduction of pulsed power waveforms significantly alleviates the conflict between removal rate and surface quality, achieving integrated processing that combines high efficiency with superior surface integrity.
Process parameters including electrolyte composition, concentration, temperature, voltage, and polishing duration have direct and critical effects on the final polishing outcome. Different metal materials require tailored electrolyte formulations, while variations in concentration and temperature directly influence discharge stability and result in different surface quality.
As fundamental research continues to deepen and improve, PEP technology has made progress in understanding polishing mechanisms, developing process methods, and optimizing parameters. However, key technical challenges remain in areas such as micro-discharge mechanisms, electrolyte system optimization, process parameter stability, and equipment integration. Future research should focus on elucidating microscopic mechanisms, developing advanced electrolyte systems, innovating equipment and methods, and optimizing process parameters, so as to promote the application of this technology in polishing complex aerospace structures.

关键词

航空航天合金 / 复杂结构表面 / 表面抛光 / 等离子电解抛光 / 抛光机理 / 工艺参数

Key words

aerospace alloys / complex structure surfaces / surface polishing / plasma electrolytic polishing / polishing mechanisms / process parameters

引用本文

导出引用
周传强, 钱宁, 丁文锋, 傅玉灿, 苏宏华. 面向航空航天合金复杂结构的等离子电解抛光技术研究现状及展望[J]. 表面技术. 2025, 54(20): 155-181 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.012
ZHOU Chuanqiang, QIAN Ning, DING Wenfeng, FU Yucan, SU Honghua. Research Status and Prospects of Plasma Electrolytic Polishing Technology for Complex Aerospace Alloy Structures[J]. Surface Technology. 2025, 54(20): 155-181 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.012
中图分类号: TH161   

参考文献

[1] GU D D, SHI X Y, POPRAWE R, et al. Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing[J]. Science, 2021, 372(6545): eabg1487.
[2] 韩嘉茹, 蒋淼锦, 陈倚, 等. 镍及其合金超精密抛光技术研究进展[J]. 表面技术, 2025, 54(1): 97-109.
HAN J R, JIANG M J, CHEN Y, et al.Research Progress in Ultra-Precision Polishing Techniques of Nickel and Its Alloys[J]. Surface Technology, 2025, 54(1): 97-109.
[3] MANI G, PORTER D, GROVE K, et al.Surface Finishing of Nitinol for Implantable Medical Devices: A Review[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2022, 110(12): 2763-2778.
[4] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9): 14-22.
GAO H, PENG C, WANG X P.Research Progress on Surface Finishing Technology of Aeronautical Complex Structural Parts Manufactured by Additive Manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(9): 14-22.
[5] ALQALLAF J, TEIXEIRA J A.Blade Roughness Effects on Compressor and Engine Performance—A CFD and Thermodynamic Study[J]. Aerospace, 2021, 8(11): 330.
[6] OMARI M A, MOUSA H M, AL-OQLA F M, et al. Enhancing the Surface Hardness and Roughness of Engine Blades Using the Shot Peening Process[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 999-1004.
[7] 聂祥樊, 李应红, 何卫锋, 等. 航空发动机部件激光冲击强化研究进展与展望[J]. 机械工程学报, 2021, 57(16): 293-305.
NIE X F, LI Y H, HE W F, et al.Research Progress and Prospect of Laser Shock Peening Technology in Aero- Engine Components[J]. Journal of Mechanical Engineering, 2021, 57(16): 293-305.
[8] HUANG Y, JIAHUA S L, XIAO G J, et al.Study on the Surface Topography of the Vibration-Assisted Belt Grinding of the Pump Gear[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1): 719-729.
[9] 吕海卿, 王琦舜, 李明川, 等. 选区激光熔化制备IN738LC流道的电化学抛光工艺[J]. 表面技术, 2024, 53(20): 134-142.
LYU H Q, WANG Q S, LI M C, et al.Electrochemical Polishing Process of IN738LC Channels Fabricated by Selective Laser Melting[J]. Surface Technology, 2024, 53(20): 134-142.
[10] 吕可鑫. 复杂光学元件飞秒激光精密抛光研究[D]. 天津: 天津大学, 2020: 9-14.
LYU K X.Study on Femtosecond Laser Precision Polishing of Complex Optical Elements[D]. Tianjin: Tianjin University, 2020: 9-14.
[11] 董志国. 磨料流加工的切削机理及加工工艺的研究[D]. 太原: 太原理工大学, 2012: 2-8.
DONG Z G.Study on Cutting Mechanism and Processing Technology of Abrasive Flow Machining[D]. Taiyuan: Taiyuan University of Technology, 2012: 2-8.
[12] ZHOU K, CHEN Y, DU Z W, et al.Surface Integrity of Titanium Part by Ultrasonic Magnetic Abrasive Finishing[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 997-1005.
[13] 姚燕生, 周瑞根, 张成林, 等. 增材制造复杂金属构件表面抛光技术[J]. 航空学报, 2022, 43(4): 525202.
YAO Y S, ZHOU R G, ZHANG C L, et al.Surface Polishing Technology for Additive Manufacturing of Complex Metal Components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525202.
[14] NG Y, TAN X Y, MENG T L, et al.Material Removal and Surface Finishing of Additively Manufactured Ti-6Al-4V Coupons by Cyclic Process of Plasma Electrolytic Polishing[J]. Surface and Coatings Technology, 2025, 498: 131872.
[15] BELKIN P N, KUSMANOV S A, PARFENOV E V.Mechanism and Technological Opportunity of Plasma Electrolytic Polishing of Metals and Alloys Surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[16] ZEIDLER H, BÖTTGER-HILLER F. Plasma-Electrolytic Polishing as a Post-Processing Technology for Additively Manufactured Parts[J]. Chemie Ingenieur Technik, 2022, 94(7): 1024-1029.
[17] HUANG Y, WANG C Y, DING F, et al.Principle, Process, and Application of Metal Plasma Electrolytic Polishing: A Review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 1893-1912.
[18] ZHOU C Q, QIAN N, SU H H, et al.Effect of Energy Distribution on the Machining Efficiency and Surface Morphology of Inconel 718 Nickel-Based Superalloy Using Plasma Electrolytic Polishing[J]. Surface and Coatings Technology, 2022, 441: 128506.
[19] DUAN H D, SUN H W, JI G Q, et al.Biological Corrosion Resistance and Osteoblast Response of 316LVM Polished Using Electrolytic Plasma[J]. Coatings, 2022, 12(11): 1672.
[20] LIU D K, ZONG X W, XUE P S, et al.Effects of Plasma Electrolytic Polishing Treatment on the Surface Morphology, Microstructure and Corrosion Resistance of Additively Manufactured TC4 Titanium Alloy[J]. Journal of Materials Research and Technology, 2025, 35: 7008-7017.
[21] JAMAL M, MORGAN M N, PEAVOY D.A Digital Process Optimization, Process Design and Process Informatics System for High-Energy Abrasive Mass Finishing[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 303-319.
[22] 付征宇, 刘青松, 邓明明, 等. 航空齿轮主轴式滚磨光整表面完整性试验研究[J]. 机械传动, 2023, 47(6): 88-93.
FU Z Y, LIU Q S, DENG M M, et al.Experimental Study on the Surface Integrity of Aircraft Gears in Spindle Barrel Finishing[J]. Journal of Mechanical Transmission, 2023, 47(6): 88-93.
[23] 杨胜强, 李文辉, 李秀红, 等. 高性能零件滚磨光整加工的研究进展[J]. 表面技术, 2019, 48(10): 13-24.
YANG S Q, LI W H, LI X H, et al.Research Development of Mass Finishing for High-Performance Parts[J]. Surface Technology, 2019, 48(10): 13-24.
[24] 朱志成, 杨昭, 潘博, 等. 各向异性对IC10高温合金磨削表面完整性的影响[J]. 表面技术, 2023, 52(1): 222-231.
ZHU Z C, YANG Z, PAN B, et al.Effect of Anisotropy on Surface Integrity of IC10 Superalloy after Grinding[J]. Surface Technology, 2023, 52(1): 222-231.
[25] 淮文博. 整体叶盘叶片自适应柔性抛光工艺参数优化研究[D]. 西安: 西北工业大学, 2018: 83-99.
HUAI W B.Optimization of Adaptive Flexible Polishing Process Parameters for Integral Bladed Disks[D]. Xi'an: Northwestern Polytechnical University, 2018: 83-99.
[26] 王圆明. 面向航空发动机整体叶盘的机器人磨抛路径规划研究[D]. 武汉: 华中科技大学, 2021.
WANG Y M.Research on Robot Grinding and Polishing Path Planning for Aeroengine Integral Blades[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[27] 赵涛. 整体叶盘叶片百叶轮高效磨抛表面完整性控制研究[D]. 西安: 西北工业大学, 2020: 81-97.
ZHAO T.Study on Surface Integrity Control of High- efficiency Grinding and Polishing of Integral Bladed Disk Blades[D]. Xi'an: Northwestern Polytechnical University, 2020: 81-97.
[28] BRECHER C, TUECKS R, ZUNKE R, et al.Development of a Force Controlled Orbital Polishing Head for Free Form Surface Finishing[J]. Production Engineering, 2010, 4(2): 269-277.
[29] 谢海龙. 复杂构件机器人砂带磨抛轨迹规划与形貌仿真研究[D]. 广州: 华南理工大学, 2022: 46-155.
XIE H L.Research on Trajectory Planning and Morphology Simulation of Robot Abrasive Belt Polishing for Complex Components[D]. Guangzhou: South China University of Technology, 2022: 46-155.
[30] 杨赫然. 叶片双面砂带磨削工艺理论与关键技术研究[D]. 长春: 吉林大学, 2012: 1-13.
YANG H R.Research on Technology Theory and Key Technology of Double-sided Abrasive Belt Grinding for Blades[D]. Changchun: Jilin University, 2012: 1-13.
[31] LI Z R, ZOU L, YIN J C, et al.Investigation of Parametric Control Method and Model in Abrasive Belt Grinding of Nickel-Based Superalloy Blade[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9): 3301-3311.
[32] 刘静怡, 李文辉, 李秀红, 等. 航空零部件的金属增材制造光整加工技术研究进展[J]. 表面技术, 2023, 52(12): 20-41.
LIU J Y, LI W H, LI X H, et al.Research Progress of Finishing Technology for Aviation Parts Built by Metal Additive Manufacturing[J]. Surface Technology, 2023, 52(12): 20-41.
[33] 庄曙东. 基于流体动压效应磨粒流可控光整加工的研究[D]. 南京: 南京航空航天大学, 2018: 9-100.
ZHUANG S D.Study on Controllable Finishing of Abrasive Flow Based on Hydrodynamic Effect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 9-100.
[34] 李俊烨. 微小孔磨粒流抛光装置的研制与工艺研究[D]. 长春: 长春理工大学, 2011: 1-23.
LI J Y.Development and Process Research of Micro-hole Abrasive Flow Polishing Device[D]. Changchun: Changchun University of Science and Technology, 2011: 1-23.
[35] 强争荣. 磨料水射流曲面抛光冲蚀机理及加工工艺研究[D]. 无锡: 江南大学, 2019: 1-30.
QIANG Z R.Study on Erosion Mechanism and Processing Technology of Abrasive Water Jet Curved Surface Polishing[D]. Wuxi: Jiangnan University, 2019: 1-30.
[36] 石岩, 郭志, 刘佳, 等. SLM增材制造微流道内表面磨粒流抛光工艺与机理[J]. 表面技术, 2021, 50(9): 361-369.
SHI Y, GUO Z, LIU J, et al.Polishing Process and Mechanism of Abrasive Flow on Inner Surface of Microchannel by SLM Additive Manufacturing[J]. Surface Technology, 2021, 50(9): 361-369.
[37] 王磊, 邬宇梁, 赵纪元, 等. 增材制件内流道精整加工技术研究进展[J]. 中国机械工程, 2023, 34(7): 757-769.
WANG L, WU Y L, ZHAO J Y, et al.Research Progresses of Finishing Technology for Inner Channel of Additive Manufacturing Parts[J]. China Mechanical Engineering, 2023, 34(7): 757-769.
[38] 林飞鸿. 基于柔性复合磨抛系统的叶片曲面抛光技术研究[D]. 长沙: 湖南大学, 2022.
LIN F H.Research on Blade Surface Polishing Technology Based on Flexible Compound Grinding and Polishing System[D]. Changsha: Hunan University, 2022.
[39] 赵路, 孙玉利, 施凯博, 等. 整体叶盘磨粒流加工仿真与试验研究[J]. 航空制造技术, 2019, 62(13): 53-59.
ZHAO L, SUN Y L, SHI K B, et al.Simulations and Experiments on Blisk by Using Abrasive Flow Machining[J]. Aeronautical Manufacturing Technology, 2019, 62(13): 53-59.
[40] KUM C W, WU C H, WAN S, et al.Prediction and Compensation of Material Removal for Abrasive Flow Machining of Additively Manufactured Metal Components[J]. Journal of Materials Processing Technology, 2020, 282: 116704.
[41] 渠晓刚, 高杰, 焦松岩, 等. 磨粒流抛光阀块内孔道的数值模拟与试验研究[J]. 机床与液压, 2023, 51(7): 70-76.
QU X G, GAO J, JIAO S Y, et al.Numerical Simulation and Experimental Study on Abrasive Flow Polishing of Inner Channel of Hydraulic Valve Block[J]. Machine Tool & Hydraulics, 2023, 51(7): 70-76.
[42] ZHU W L, BEAUCAMP A.Compliant Grinding and Polishing: A Review[J]. International Journal of Machine Tools and Manufacture, 2020, 158: 103634.
[43] VERMA G C, KALA P, PANDEY P M.Experimental Investigations into Internal Magnetic Abrasive Finishing of Pipes[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5): 1657-1668.
[44] QIAN C, FAN Z H, TIAN Y B, et al.A Review on Magnetic Abrasive Finishing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3): 619-634.
[45] 韩冰, 邓超, 陈燕. 球形磁铁在弯管内表面磁力研磨中的应用[J]. 摩擦学学报, 2013, 33(6): 565-570.
HAN B, DENG C, CHEN Y.The Spherical Magnet Processing of Inner Surface of Bending Pipe by Magnetic Abrasive Finishing[J]. Tribology, 2013, 33(6): 565-570.
[46] 刘文浩, 陈燕, 李文龙, 等. 磁粒研磨加工技术的研究进展[J]. 表面技术, 2021, 50(1): 47-61.
LIU W H, CHEN Y, LI W L, et al.Research Progress of Magnetic Abrasive Finishing Technology[J]. Surface Technology, 2021, 50(1): 47-61.
[47] 夏楠, 马小刚, 吴传宗, 等. 磁力研磨工艺提高叶片表面质量的试验研究[J]. 表面技术, 2023, 52(2): 67-77.
XIA N, MA X G, WU C Z, et al.Experimental Investigation of Magnetic Finishing for Improving Blade Surface Quality[J]. Surface Technology, 2023, 52(2): 67-77.
[48] WANG Y L, WU Y B, NOMURA M.Feasibility Study on Surface Finishing of Miniature V-Grooves with Magnetic Compound Fluid Slurry[J]. Precision Engineering, 2016, 45: 67-78.
[49] 王硕, 陈松, 程海东, 等. 空间弯管内表面磁粒研磨位姿轨迹优化试验研究[J]. 表面技术, 2024, 53(14): 146-156.
WANG S, CHEN S, CHENG H D, et al.Experimental Study on Trajectory Optimization of Magnetic Particle Grinding on Inner Surface of Space Elbow[J]. Surface Technology, 2024, 53(14): 146-156.
[50] VAHDATI M, RASOULI S A.Study of Magnetic Abrasive Finishing on Freeform Surface[J]. Transactions of the IMF, 2016, 94(6): 294-302.
[51] KHALAJ A S, MOSADDEGH P, FADAEI T A.Study on Magnetic Abrasive Finishing of Spiral Grooves Inside of Aluminum Cylinders[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2885-2894.
[52] 董彦辉, 牛风丽, 任泽, 等. 金刚石磁性磨料与SiC磁性磨料的研磨加工性能分析[J]. 金刚石与磨料磨具工程, 2023, 43(3): 379-385.
DONG Y H, NIU F L, REN Z, et al.Comparison of Lapping Performance between Diamond Magnetic Abrasives and Silicon Carbide Magnetic Abrasives[J]. Diamond & Abrasives Engineering, 2023, 43(3): 379-385.
[53] 李新凯. 扫描电子束能量密度对45钢抛光复合强化影响的研究[D]. 桂林: 桂林电子科技大学, 2023: 1-14.
LI X K.Effect of Scanning Electron Beam Energy Density on Polishing Composite Strengthening of 45 Steel[D]. Guilin: Guilin University of Electronic Technology, 2023: 1-14.
[54] 杜春阳. 复杂曲面铝反射镜离子束加工基础研究[D]. 长沙: 国防科技大学, 2022: 3-18.
DU C Y.Basic Research on Ion Beam Machining of Aluminum Reflector with Complex Curved Surface[D]. Changsha: National University of Defense Technology, 2022: 3-18.
[55] ZENG J Y, ZHANG W, GUO T, et al.Numerical and Experimental Analysis of Dual-Beam Laser Polishing Additive Manufacturing Ti6Al4V[J]. Micromachines, 2023, 14(9): 1765.
[56] TIAN Y T, GORA W S, CABO A P, et al.Material Interactions in Laser Polishing Powder Bed Additive Manufactured Ti6Al4V Components[J]. Additive Manufacturing, 2018, 20: 11-22.
[57] ZHOU Y Q, ZHAO Z Y, ZHANG W, et al.Experiment Study of Rapid Laser Polishing of Freeform Steel Surface by Dual-Beam[J]. Coatings, 2019, 9(5): 324.
[58] HUANG S, ZENG J Y, WANG W Q, et al.Study on Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting[J]. Micromachines, 2024, 15(3): 336.
[59] JIN L, CAI J X, ZHANG B J, et al.Optimization of Surface Morphology and Mechanism of Liquid-Assisted Combined Laser Removal of Surface Rust on Q235 Steel[J]. Optics Communications, 2025, 578: 131496.
[60] 陈峰, 刘巧沐, 杜鹏, 等. GH4099蜂窝芯飞秒激光抛光试验研究[J]. 航空制造技术, 2019, 62(S2): 46-51.
CHEN F, LIU Q M, DU P, et al.Experimental Study on Femtosecond Laser Polishing of GH4099 Honeycomb Core[J]. Aeronautical Manufacturing Technology, 2019, 62(S2): 46-51.
[61] KUMSTEL J, KIRSCH B.Polishing Titanium- and Nickel-Based Alloys Using Cw-Laser Radiation[J]. Physics Procedia, 2013, 41: 362-371.
[62] LIU Y F, SUN S Y, WANG J L, et al.Tribological Behaviors of LDED Inconel 718 Samples Polished with a Hybrid Laser Polishing Technique[J]. Journal of Materials Research and Technology, 2023, 25: 633-646.
[63] 刘二举, 徐杰, 陈曦, 等. 激光抛光技术研究进展与发展趋势[J]. 中国激光, 2023, 50(16): 100-118.
LIU E J, XU J, CHEN X, et al.Advancements and Developments of Laser Polishing Technology[J]. Chinese Journal of Lasers, 2023, 50(16): 100-118.
[64] GUSAROV A V, PAVLOV M, SMUROV I.Residual Stresses at Laser Surface Remelting and Additive Manufacturing[J]. Physics Procedia, 2011, 12: 248-254.
[65] 王志远. 强流脉冲电子束辐照YG10硬质合金表层组织及磨损性能研究[D]. 大连: 大连理工大学, 2017: 6-13.
WANG Z Y.Study on Surface Microstructure and Wear Properties of YG10 Cemented Carbide Irradiated by Intense Pulsed Electron Beam[D]. Dalian: Dalian University of Technology, 2017: 6-13.
[66] DENG T T, LI J J, ZHENG Z Z.Fundamental Aspects and Recent Developments in Metal Surface Polishing with Energy Beam Irradiation[J]. International Journal of Machine Tools and Manufacture, 2020, 148: 103472.
[67] 彭文海. 强流脉冲电子束辐照WC-10%Co硬质合金改性组织性能及热稳定性研究[D]. 大连: 大连理工大学, 2021: 1-16.
PENG W H.Study on Microstructure, Properties and Thermal Stability of WC-10%Co Cemented Carbide Modified by Intense Pulsed Electron Beam Irradiation[D]. Dalian: Dalian University of Technology, 2021: 1-16.
[68] 贾甜甜, 徐芳君, 张忠忠, 等. 回火对强流脉冲电子束辐照M50钢重熔层耐蚀性能的影响[J]. 金属热处理, 2016, 41(7): 70-73.
JIA T T, XU F J, ZHANG Z Z, et al.Effect of Tempering on Corrosion Resistance of M50 Steel Remelted by High Current Pulsed Electron Beam[J]. Heat Treatment of Metals, 2016, 41(7): 70-73.
[69] ALI U, FAYAZFAR H, AHMED F, et al.Internal Surface Roughness Enhancement of Parts Made by Laser Powder-Bed Fusion Additive Manufacturing[J]. Vacuum, 2020, 177: 109314.
[70] 张峻山. 3D打印航空发动机喷油杆内壁化学和电解组合抛光加工工艺研究[D]. 沈阳: 沈阳航空航天大学, 2024: 23-40.
ZHANG J S.Study on Chemical and Electrolytic Combined Polishing Process for Inner Wall of Jet rod of 3D Printing Aeroengine[D]. Shenyang: Shenyang Aerospace University, 2024: 23-40.
[71] MUHAMMAD AJMAL K, YI R, ZHAN Z J, et al.Highly Efficient Smoothing of Inconel 718 via Electrochemical-Based Isotropic Etching Polishing[J]. Precision Engineering, 2021, 71: 119-129.
[72] 常帅. 不锈钢阵列结构选区激光熔化制备与电化学抛光技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 20-96.
CHANG S.Study on Selective Laser Melting Preparation and Electrochemical Polishing Technology of Stainless Steel Array Structure[D]. Harbin: Harbin Institute of Technology, 2019: 20-96.
[73] 王超群, 吴松全, 杨义, 等. 低共熔溶剂中乙醇添加对激光选区熔化GH4169合金电化学抛光行为的影响[J]. 航空制造技术, 2024, 67(12): 71-78.
WANG C Q, WU S Q, YANG Y, et al.Effect of Ethanol Addition in Eutectic Solvent on Electrochemical Polishing Behavior of GH4169 Alloy by Selective Laser Melting[J]. Aeronautical Manufacturing Technology, 2024, 67(12): 71-78.
[74] DURADZHI V N, BRYANTSEV I V.Investigation of Erosion of The Anode Under The Action of an Electrolytic Plasma on it[J]. Elektronnaya Obrabotka Materialov, 1979, 5(89): 15-19.
[75] PLOTNIKOV N V, SMYSLOV A M, Tamindarov D.R. To a Question on Model of Electrolytic-plasma Polishing[J]. Scientific Journal of Ufa State Aviation, 2013, 17(4): 90-95.
[76] VAŇA D, PODHORSKÝ Š, HURAJT M, et al. Surface Properties of The Stainless Steel X10 CrNi 18/10 After Aplication of Plasma Polishing in Electrolyte[J]. International Journal of Modern Engineering Research, 2013, 3(2): 788-792.
[77] 王季, 索来春, 付宜利. 电解质等离子抛光液中硫酸铵含量的检测方法[J]. 材料科学与工艺, 2014, 22(2): 30-35.
WANG J, SUO L C, FU Y L.Detecting the Mass Fraction of Ammonium Sulfate in Polishing Solution in Electrolysis and Plasma Polishing[J]. Materials Science and Technology, 2014, 22(2): 30-35.
[78] BÖTTGER-HILLER F, NESTLER K, ZEIDLER H, et al. Plasma Electrolytic Polishing of Metalized Carbon Fibers[J]. AIMS Materials Science, 2016, 3(1): 260-269.
[79] PARFENOV E V, YEROKHIN A, NEVYANTSEVA R R, et al.Towards Smart Electrolytic Plasma Technologies: An Overview of Methodological Approaches to Process Modelling[J]. Surface and Coatings Technology, 2015, 269: 2-22.
[80] KUSMANOV S, ZHIROV A, KUSMANOVA I, et al.Aspects of Anodic Plasma Electrolytic Polishing of Nitrided Steel[J]. Surface Engineering, 2019, 35(6): 507-511.
[81] SEO B, PARK H K, KIM H G, et al.Corrosion Behavior of Additive Manufactured CoCr Parts Polished with Plasma Electrolytic Polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[82] QUITZKE S, KRÖNING O, SAFRANCHIK D, et al. Design and Setup of a Jet-Based Technology for Localized Small Scale Plasma Electrolytic Polishing[J]. Journal of Manufacturing Processes, 2022, 75: 1123-1133.
[83] PODHORSKÝ S.Plasma Polishing of Complexly Shaped Metallic Objects[J]. Metal, 2007, 5: 22-24.
[84] YEROKHIN A L, NIE X, LEYLAND A, et al.Plasma Electrolysis for Surface Engineering[J]. Surface and Coatings Technology, 1999, 122(2/3): 73-93.
[85] 刘登卫. 不锈钢制品内表面电解质等离子抛光技术的研究及应用[D]. 哈尔滨: 哈尔滨工业大学, 2017: 14-54.
LIU D W.Research and Application of Electrolyte Plasma Polishing Technology for Inner Surface of Stainless Steel Products[D]. Harbin: Harbin Institute of Technology, 2017: 14-54.
[86] CORNELSEN M, DEUTSCH C, SEITZ H.Electrolytic Plasma Polishing of Pipe Inner Surfaces[J]. Metals, 2018, 8(1): 12.
[87] PARFENOV E V, FARRAKHOV R G, MUKAEVA V R, et al.Electric Field Effect on Surface Layer Removal during Electrolytic Plasma Polishing[J]. Surface and Coatings Technology, 2016, 307: 1329-1340.
[88] DANILOV I, HACKERT-OSCHÄTZCHEN M, ZINECKER M, et al. Process Understanding of Plasma Electrolytic Polishing through Multiphysics Simulation and Inline Metrology[J]. Micromachines, 2019, 10(3): 214.
[89] NESTLER K, BÖTTGER-HILLER F, ADAMITZKI W, et al. Plasma Electrolytic Polishing - an Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range[J]. Procedia CIRP, 2016, 42: 503-507.
[90] KALENCHUKOVA O V, NAGULA P K, TRETINNIKOV D L.About Changes in the Chemical Composition of the Electrolyte in the Process of electrolytic-Plasma Treatment of Materials[J]. Materials, Methods & Technologies, 2015, 9: 404-413.
[91] ZEIDLER H, BOETTGER-HILLER F, EDELMANN J, et al.Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[92] 王季. 金属表面电解质等离子抛光及其工艺的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 17-41.
WANG J.Study on Electrolyte Plasma Polishing of Metal Surface and Its Technology[D]. Harbin: Harbin Institute of Technology, 2013: 17-41.
[93] WANG J, SUO L C, GUAN L L, et al. Analytical Study on Mechanism of Electrolysis and Plasma Polishing[J]. Advanced Materials Research, 2012, 472/473/474/475: 350-353.
[94] SLOVETSKII D I, TERENT’EV S D. Parameters of an Electric Discharge in Electrolytes and Physicochemical Processes in an Electrolyte Plasma[J]. High Energy Chemistry, 2003, 37(5): 310-316.
[95] ZHAN S D, ZHAO Y H.Plasma-Assisted Electrochemical Machining of Microtools and Microstructures[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103596.
[96] ZHOU C Q, SU H H, QIAN N, et al.Characteristics and Function of Vapour Gaseous Envelope Fluctuation in Plasma Electrolytic Polishing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7815-7825.
[97] YEROKHIN A, MUKAEVA V R, PARFENOV E V, et al.Charge Transfer Mechanisms Underlying Contact Glow Discharge Electrolysis[J]. Electrochimica Acta, 2019, 312: 441-456.
[98] NEVYANTSEVA R R, GORBATKOV S A, PARFENOV E V, et al.The Influence of Vapor-Gaseous Envelope Behavior on Plasma Electrolytic Coating Removal[J]. Surface and Coatings Technology, 2001, 148(1): 30-37.
[99] SINKEVITCH Y V.Conceptual Model of Commutation Mechanism for Electric Conductivity of vapor-Gas Envelope in electro-Impulse Polishing Mode[J]. Science & Technique, 2016, 15(5): 407-414.
[100] ZHOU C Q, QIAN N, SU H H, et al.Pulsed Unipolar- Polarisation Plasma Electrolytic Polishing of Ni-Based Superalloys: A Proof of Conception[J]. Chinese Journal of Mechanical Engineering, 2024, 37(1): 105.
[101] YANG D L, SUN H W, WANG J, et al.The Formation and Stripping Mechanism of Oxide Film on Ti6Al4V Alloy Surface during Electrolytic Plasma Polishing[J]. Surface and Coatings Technology, 2024, 478: 130469.
[102] JI G Q, MA L F, ZHANG S N, et al.Study of Electrochemical Behavior and a Material Removal Mechanism during Electrolytic Plasma Polishing of 316L Stainless Steel[J]. Materials, 2025, 18(6): 1307.
[103] POPOV A I, TYUKHTYAEV M I, RADKEVICH M M, et al.The Analysis of Thermal Phenomena Occuring under Jet Focused Electrolytic Plasma Processing[J]. St Petersburg State Polytechnical University Journal, 2017, 254(4): 141-150.
[104] ABLYAZ T R, MURATOV K R, RADKEVICH M M, et al.Electrolytic Plasma Surface Polishing of Complex Components Produced by Selective Laser Melting[J]. Russian Engineering Research, 2018, 38(6): 491-492.
[105] NOVOSELOV M, SHILLING N, RUDAVIN A, et al.Assessment of a Possibility Polishing of Stainless Steels Jet Electrolytic and Plasma Processing[J]. PNIPU Bulletin the Mechanical Engineering, Materials Science, 2018, 20(1): 94-102.
[106] YEROKHIN A, PILKINGTON A, MATTHEWS A.Pulse Current Plasma Assisted Electrolytic Cleaning of AISI 4340 Steel[J]. Journal of Materials Processing Technology, 2010, 210(1): 54-63.
[107] WANG J, SUN H W, YANG D L, et al.Local Surface Smoothness on TC4 Alloy during Microbubbles Flow Electrolytic Plasma Polishing: Prototype Rig, Phenomena, and Mechanism[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(3): 1879-1892.
[108] SCHULZE H P, ZEIDLER H, KRÖNING O, et al. Process Analysis of Plasma-Electrolytic Polishing (PeP) of Forming Tools[J]. International Journal of Material Forming, 2022, 15(1): 6.
[109] CHEN Y J, YI J, WANG Z W, et al.Experimental Study on Ultrasonic-Assisted Electrolyte Plasma Polishing of SUS304 Stainless Steel[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(7): 2835-2846.
[110] CORNELSEN M, DEUTSCH C, SEITZ H.Influence of the Velocity and the Number of Polishing Passages on the Roughness of Electrolytic Plasma Polished Pipe Inner Surfaces[J]. Metals, 2018, 8(5): 330.
[111] USHOMIRSKAYA L A, BARON Y M, KUZMICHEV I S.Design of Special Device for the Forced Electrolytic- Plasma Polishing of Internal Surfaces by Counter Flows[J]. Key Engineering Materials, 2019, 822: 610-616.
[112] BELKIN P N, SILKIN S A, D’YAKOV I G, et al. Influence of Plasma Electrolytic Polishing Conditions on Surface Roughness of Steel[J]. Surface Engineering and Applied Electrochemistry, 2020, 56(1): 55-62.
[113] XIANG Y X, SUN H W, YANG D L, et al.Material Removal Model for Describing the Plasma Discharge Effect in Magnetic-Electrolytic Plasma Polishing[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(9): 5023-5036.
[114] ZAKHAROV S V, KOROTKIKH M T.Electrolytic Plasma Processing of Complex Products from Aluminum Alloy D16[J]. Journal of «Almaz - Antey» Air and Space Defence Corporation, 2017(3): 83-87.
[115] VALIEV R I, KHAFIZOV A A, SHAKIROV Y I, et al.Polishing and Deburring of Machine Parts in Plasma of Glow Discharge between Solid and Liquid Electrodes[J]. IOP Conference Series: Materials Science and Engineering, 2015, 86: 012026.
[116] PODHORSKÝ Š, BAJČIČÁK M. Plasma Polishing of Stainless Steels - the Electrolyte Concentration Vs. Gloss Level[J]. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 2018, 26(42): 171-176.
[117] ALTERI G B, BONOMO M, DECKER F, et al.Contact Glow Discharge Electrolysis: Effect of Electrolyte Conductivity on Discharge Voltage[J]. Catalysts, 2020, 10(10): 1104.
[118] SU F C, YANG H, WU W, et al.An Electrolyte Life Indicator for Plasma Electrolytic Polishing Optimization[J]. Applied Sciences, 2022, 12(17): 8594.
[119] WANG J, SUO L C, GUAN L L, et al. Optimization of Processing Parameters for Electrolysis and Plasma Polishing[J]. Applied Mechanics and Materials, 2012, 217/218/219: 1368-1371.
[120] RAJPUT A S, ZEIDLER H, SCHUBERT A.Analysis of Voltage and Current during the Plasma Electrolytic Polishing of Stainless Steel[C]// In Proceedings of the 17th International Conference European Society Precision Engineering Nanotechnology. Hannover, Germany: EUSPEN, 2017: 2-3.
[121] MUKAEVA V R, PARFENOV E V.Mathematical Modeling of Electrolytic Plasma Polishing Process[J]. Vestnik UGATU, 2012(16): 67-73.
[122] CHIRKUNOVA N V, VOLENKO A P, MULYUKOV R R, et al.Improving the Technology of Electrolytic-Plasma Treatment of Austenitic Stainless Steel[J]. Letters on Materials, 2013, 3(4): 309-311.
[123] JI G Q, SUN H W, DUAN H D, et al.Enhancement of Corrosion Resistance for Medical Grade 316L Stainless Steel by Electrolytic Plasma Polishing[J]. Journal of Materials Engineering and Performance, 2023, 32(4): 1498-1507.
[124] WANG C Y, DING F, LI Y J, et al.Plasma Electrolytic Polishing for Improving the Surface Quality of Zirconium- Based Bulk Metallic Glass[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(7): 2079-2093.
[125] YANG D L, SUN H W, JI G Q, et al.Effect of Electrolytic Plasma Polishing on Surface Properties of Titanium Alloy[J]. Coatings, 2024, 14(5): 615.
[126] ZATKALÍKOVÁ V, PODHORSKÝ Š, ŠTRBÁK M, et al. Plasma Electrolytic Polishing—An Ecological Way for Increased Corrosion Resistance in Austenitic Stainless Steels[J]. Materials, 2022, 15(12): 4223.
[127] ALIAKSEYEU Y G, KOROLYOV A Y, NISS V S, et al.electrolyte-Plasma Polishing of Titanium and Niobium Alloys[J]. Science & Technique, 2018, 17(3): 211-219.
[128] YANG L Q, LAUGEL N, HOUSDEN J, et al.Plasma Additive Layer Manufacture Smoothing (PALMS) Technology - an Industrial Prototype Machine Development and a Comparative Study on both Additive Manufactured and Conventional Machined AISI 316 Stainless Steel[J]. Additive Manufacturing, 2020, 34: 101204.
[129] DOBRYNIN D A.Electrolytic-Plasma Polishing of Titanium Alloys VT6 and VT8M-1[J]. Proceedings of VIAM, 2017(7): 2.
[130] SMYSLOVA M K, TAMINDAROV D R, PLOTNIKOV N V, et al.Surface Electrolytic-Plasma Polishing of Ti-6Al-4V Alloy with Ultrafine-Grained Structure Produced by Severe Plastic Deformation[J]. IOP Conference Series: Materials Science and Engineering, 2018, 461: 012079.
[131] UHLMANN E, RIEMER H, AN S, et al.Ecological and Functional Optimization of the Pretreatment Process for Plasma Based Coatings of Cutting Tools[J]. Procedia Manufacturing, 2019, 33: 618-624.
[132] AN S, FOEST R, FRICKE K, et al.Pretreatment of Cutting Tools by Plasma Electrolytic Polishing (PEP) for Enhanced Adhesion of Hard Coatings[J]. Surface and Coatings Technology, 2021, 405: 126504.
[133] LI S, WU Y, YAMAMURA K, et al.Improving the Grindability of Titanium Alloy Ti-6Al-4V with the Assistance of Ultrasonic Vibration and Plasma Electrolytic Oxidation[J]. CIRP Annals, 2017, 66(1): 345-348.

基金

国家自然科学基金项目(52205476); 中央高校基本科研业务费(NG2024008); 江苏省精密与微细制造技术重点实验室重大项目(1005-ZAA20003-14); 山东省科技型中小企业创新能力提升工程项目(2025TSGCCZZB0886)

PDF(41698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/