大型水轮机组推力轴承材料与结构及其润滑性能研究进展

杨子毅, 汤正阳, 薛炳, 李湧博, 李虎, 向艾军, 王优强

表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 28-43.

PDF(8421 KB)
PDF(8421 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 28-43. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.003
研究综述

大型水轮机组推力轴承材料与结构及其润滑性能研究进展

  • 杨子毅1a, 汤正阳2,3, 薛炳2,3, 李湧博2,3, 李虎2, 向艾军2,3, 王优强1a,1b,*
作者信息 +

Research Progress on Materials, Structures, and Lubrication Performance of Thrust Bearings in Large Hydro-turbine Units

  • YANG Ziyi1a, TANG Zhengyang2,3, XUE Bing2,3, LI Yongbo2,3, LI Hu2, XIANG Aijun2,3, WANG Youqiang1a,1b,*
Author information +
文章历史 +

摘要

随着中国的能源结构向绿色低碳转型,水电作为清洁能源的重要组成部分,其核心设备水轮机的可靠性和效率备受关注。推力轴承作为水轮机组中承受轴向载荷的关键部件,其润滑性能直接影响机组的运行稳定性。系统综述了大型水轮机组推力轴承及其润滑性能的研究进展,介绍了推力轴承及其静压顶升装置的结构特点,分析了刚性支柱螺栓支撑、弹簧簇支撑、弹性油箱支撑、弹性橡胶垫支撑、弹性圆盘支撑和弹性柱销簇支撑等类型推力轴承的优缺点及其适用工况;对比了巴氏合金、聚四氟乙烯(PTFE)和聚醚醚酮(PEEK)等推力轴瓦材料的性能,并探讨了其在力学性能、热学特性及润滑性能方面的优劣。此外,详细阐述了基于Reynolds方程的热流体动力润滑(THD)和热弹性流体动力润滑(TEHD)分析方法,以及基于计算流体力学(CFD)的润滑特性研究进展,并总结了这些方法在推力轴承润滑特性研究中的应用现状及局限性。最后,从支撑结构优化设计、新型复合材料研发、多尺度润滑机理研究和润滑系统智能运维等角度,对未来大型水轮机组推力轴承的发展方向进行了展望。

Abstract

The global transition towards green and low-carbon energy systems has elevated hydropower as a critical clean energy source, placing significant emphasis on the reliability and efficiency of hydro-turbines. As the key component bearing the entire axial load (including rotor weight and hydraulic thrust) in vertical hydro-turbine units, the lubrication performance of thrust bearings directly dictates operational stability and longevity. The work aims to provide a comprehensive review of the research progress on thrust bearings and their lubrication characteristics in large hydro-turbine units, focusing on structural design, material selection, and lubrication analysis methodologies.
The structural characteristics of thrust bearings are systematically examined, focusing on six primary support designs and their operational suitability. Rigid pillar bolt supports, though simple, require extreme manufacturing precision and lack adaptability, making them unsuitable for high-load applications. Spring cluster supports excel in load distribution and thermal performance but demand high-precision manufacturing. Elastic oil tank systems offer superior self-balancing through interconnected pressurized oil chambers, yet their complexity and potential leakage risk limit widespread adoption. Elastic rubber pad supports provide cost-effective solutions for low-load scenarios with inherent insulation benefits, but their limited load capacity and fatigue susceptibility restrict heavy-duty use. Elastic disc supports feature compact designs with uniform load distribution, though their spherical contact surfaces may induce stress concentrations. The most advanced solution—elastic pin cluster-supported double-layer pads—effectively mitigates thermal and mechanical deformation through optimized pin arrangements, enabling precise load balancing and reducing maintenance costs. Additionally, the critical role of hydrostatic lifting systems is analyzed, emphasizing how injection pocket geometry (circular, trapezoidal, rectangular) affects pressure distribution and thermal performance. Shallow pockets enhance lubrication by maintaining pressure fields, whereas deep pockets reduce effective load-bearing area, underscoring the need for design optimization to balance lift capacity and hydrodynamic efficiency.
Furthermore, the analytical methods for studying lubrication characteristics are elaborated. The Thermo-Hydrodynamic (THD) and Thermo-Elasto-Hydrodynamic (TEHD) lubrication analyses are detailed based on the Reynolds equation, which incorporates the viscosity-temperature effects and the coupled thermal-elastic deformation of pads and runner plates. While traditionally relying on simplified 2D models, advancements now emphasize the necessity of 3D TEHD analysis coupled with realistic 3D structural models for higher accuracy. The limitations of Reynolds-based methods (neglecting inertia, complex geometry simplifications, assumed boundary conditions) are highlighted. Consequently, Computational Fluid Dynamics (CFD) has emerged as a powerful tool for precise TEHD analysis. CFD enables full 3D modeling of the fluid domain, including complex features like pockets and grooves, and facilitates robust fluid-structure-thermal interaction (FSTI) simulations without a priori assumptions about heat transfer coefficients. Studies utilizing CFD, including comparisons with experimental data, validate its effectiveness in capturing the complex lubrication phenomena in large thrust bearings.
Finally, the review concludes by emphasizing four key research priorities: optimization of support structure designs, development of innovative composite materials, and deeper investigation of multi-scale lubrication mechanisms, and advancement of intelligent monitoring and maintenance of lubrication systems. Future studies should particularly focus on enhancing bearing stability under extreme operating conditions, improving material performance characteristics, refining analytical techniques to better understand transient behaviors during start-up, shutdown, and dynamic operational phases, and implementing smart operation and maintenance strategies for lubrication systems.

关键词

大型水轮机组 / 推力轴承 / 支撑结构 / 静压顶升装置 / 轴瓦材料 / 润滑特性分析

Key words

large hydro-turbine units / thrust bearings / support structures / hydrostatic lifting device / bearing materials / lubrication performance analysis

引用本文

导出引用
杨子毅, 汤正阳, 薛炳, 李湧博, 李虎, 向艾军, 王优强. 大型水轮机组推力轴承材料与结构及其润滑性能研究进展[J]. 表面技术. 2025, 54(20): 28-43 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.003
YANG Ziyi, TANG Zhengyang, XUE Bing, LI Yongbo, LI Hu, XIANG Aijun, WANG Youqiang. Research Progress on Materials, Structures, and Lubrication Performance of Thrust Bearings in Large Hydro-turbine Units[J]. Surface Technology. 2025, 54(20): 28-43 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.003
中图分类号: TV734.1   

参考文献

[1] ZHANG Y Q, SUN J, ZHENG Y, et al.Unsteady Characteristics of Lubricating Oil in Thrust Bearing Tank under Different Rotational Speeds in Pumped Storage Power Station[J]. Renewable Energy, 2022, 201: 904-915.
[2] KONG L H, CAO J W, LI X Y, et al.Numerical Analysis on the Hydraulic Thrust and Dynamic Response Characteristics of a Turbine Pump[J]. Energies, 2022, 15(4): 1580.
[3] JI X Y, LI X B, SU W T, et al.On the Hydraulic Axial Thrust of Francis Hydro-Turbine[J]. Journal of Mechanical Science and Technology, 2016, 30(5): 2029-2035.
[4] CAO J W, LUO Y Y, MIRZA UMAR B, et al.Influence of Structural Parameters on the Modal Characteristics of a Francis Runner[J]. Engineering Failure Analysis, 2022, 131: 105853.
[5] WASILCZUK M, WODTKE M, DĄBROWSKI L. Large Hydrodynamic Thrust Bearings and Their Application in Hydrogenerators[M]//Encyclopedia of Tribology. Boston, MA: Springer US, 2013: 1912-1926.
[6] 曲鹏. 立式电机推力轴承的发展现状[J]. 上海大中型电机, 2014(4): 15-18.
QU P.Development Status of Vertical Motor Thrust Bearing[J]. Shanghai Medium and Large Electrical Machines, 2014(4): 15-18.
[7] ZHANG Z, MENG F C, MO Y B, et al.Numerical Simulation of Oil Film Dynamic Characteristics in the Bidirectional Thrust Bearing of a Pumped Storage Unit[J]. Journal of Physics: Conference Series, 2022, 2310(1): 012029.
[8] 曲璠, 李思晗, 刘希, 等. 可倾瓦推力轴承润滑膜厚度的超声检测技术研究[J]. 润滑与密封, 2022, 47(10): 141-146.
QU F, LI S H, LIU X, et al.Research on Ultrasonic Testing Technology of Lubricating Film Thickness of Tilting Pad Thrust Bearing[J]. Lubrication Engineering, 2022, 47(10): 141-146.
[9] 胡灿, 薛俊, 谢斌. 动压滑动轴承油膜不同流态时的油膜力场研究[J]. 润滑与密封, 2012, 37(10): 50-53.
HU C, XUE J, XIE B.Research on Film Force of Hydrodynamic Bearing in Different Oil-Film Flow State[J]. Lubrication Engineering, 2012, 37(10): 50-53.
[10] 徐志豪, 孙军, 张正, 等. 滑动轴承热流体动力润滑分析的现状与展望[J]. 轴承, 2016(10): 58-63.
XU Z H, SUN J, ZHANG Z, et al.Status and Prospect for Thermohydrodynamic Lubrication Analysis of Journal Bearings[J]. Bearing, 2016(10): 58-63.
[11] JI Z W, SHI Y S, DA X M, et al.Influence of Installation Deviation of Thrust Bearing on Oil Film Flow of 1000 MW Hydraulic Turbine Unit[J]. Water, 2023, 15(9): 1649.
[12] ZHAI L M, WANG Z W, LUO Y Y, et al.TEHD Analysis of a Bidirectional Thrust Bearing in a Pumped Storage Unit[J]. Industrial Lubrication and Tribology, 2016, 68(3): 315-324.
[13] ZHAI L M, LUO Y Y, WANG Z W, et al.A Review on the Large Tilting Pad Thrust Bearings in the Hydropower Units[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 1182-1198.
[14] 江晓林, 卢进玉, 陆明, 等. 大型水轮发电机组推力轴承结构型式及特点[J]. 水力发电, 2015, 41(1): 61-65.
JIANG X L, LU J Y, LU M, et al.Structures and Characteristics of Thrust Bearings with Heavy Thrust Load[J]. Water Power, 2015, 41(1): 61-65.
[15] WANG Z C, GUO F, LIU Y, et al.Design and Fabrication of the Tilting-Pad Thrust Bearing Surface Profile[J]. Industrial Lubrication and Tribology, 2018, 70(8): 1402-1407.
[16] BOUYER J, WODTKE M, FILLON M.Experimental Research on a Hydrodynamic Thrust Bearing with Hydrostatic Lift Pockets: Influence of Lubrication Modes on Bearing Performance[J]. Tribology International, 2022, 165: 107253.
[17] WASILCZUK M.Friction and Lubrication of Large Tilting-Pad Thrust Bearings[J]. Lubricants, 2015, 3(2): 164-180.
[18] 吴超, 王文, 陈晓阳, 等. 推力轴承支承方式及间隙影响研究[J]. 润滑与密封, 2006, 31(5): 130-131.
WU C, WANG W, CHEN X Y, et al.The Influence of Supporting Pattern and Oil Film Clearance on Hydrodynamic Thrust Bearing[J]. Lubrication Engineering, 2006, 31(5): 130-131.
[19] SI X H, LU W X, CHU F L.Lateral Vibration of Hydroelectric Generating Set with Different Supporting Condition of Thrust Pad[J]. Shock and Vibration, 2011, 18(1/2): 317-331.
[20] 吴鹏, 小野田勉. 小弹簧簇多点支撑结构在大型推力轴承上的应用[J]. 水力发电, 2013, 39(4): 58-60.
WU P, TSUTOMU O.Application of Multiple Distribution Coil Springs in Thrust Bearing[J]. Water Power, 2013, 39(4): 58-60.
[21] GALVÃO M M, MENON G J, SCHWARZ V A. Numerical Study of the Influence of the Pivot Position on the Steady-State Behavior of Tilting-Pad Thrust Bearings[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(8): 3165-3180.
[22] ASHOUR N M A E, ATHRE K, NATH Y, et al. Distortion Analysis of Large Thrust Bearing on Elastic Support[J]. Wear, 1991, 147(2): 421-430.
[23] 贾利涛. WDD水电站左岸发电机推力组合轴承设计与应用研究[D]. 成都: 四川大学, 2021: 10-15.
JIA L T.[D]. Chengdu: Sichuan University, 2021: 10-15.
[24] ZHU B, LI Y P, WANG W G, et al.Boundary Slippage Modeling and Optimization of Hydrophobic Tilting Pad Thrust Bearing with Elastic Deformation[J]. Tribology International, 2019, 136: 299-316.
[25] MARINESCU A, CICONE T, FATU A.The Study of a Novel Hydrostatic Thrust Bearing with a Structurally Elastic Component: Theory and Experiments[J]. Tribology International, 2023, 189: 108954.
[26] 武中德, 张宏, 吴军令, 等. 巨型水轮发电机塑料瓦推力轴承研究[J]. 润滑与密封, 2015, 40(1): 106-109.
WU Z D, ZHANG H, WU J L, et al.Study of Thrust Bearing with Teflon Layer for Large Hydro-Generators[J]. Lubrication Engineering, 2015, 40(1): 106-109.
[27] ZOUZOULAS V, PAPADOPOULOS C I.3-D Thermohydrodynamic Analysis of Textured, Grooved, Pocketed and Hydrophobic Pivoted-Pad Thrust Bearings[J]. Tribology International, 2017, 110: 426-440.
[28] SHEN F, CHEN C L, LIU Z M.Effect of Pocket Geometry on the Performance of a Circular Thrust Pad Hydrostatic Bearing in Machine Tools[J]. Tribology Transactions, 2014, 57(4): 700-714.
[29] MICHALEC M, SVOBODA P, KŘUPKA I, et al. A Review of the Design and Optimization of Large-Scale Hydrostatic Bearing Systems[J]. Engineering Science and Technology, an International Journal, 2021, 24(4): 936-958.
[30] 沈旭东, 王提军, 胡建宇, 等. 高压油顶起装置设计[J]. 中国机械, 2024(18): 6-10.
SHEN X D, WANG T J, HU J Y, et al.Design of High Pressure Oil Jacking Device[J]. Machine China, 2024(18): 6-10.
[31] HEINRICHSON N, FUERST A, SANTOS I F.The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part II: Comparison between Theory and Experiment[J]. Journal of Tribology, 2007, 129(4): 904-912.
[32] WORDSWORTH R A, ETTLES C M M. The Effect of Jacking Pockets in Hydrodynamic Thrust Pads[J]. Wear, 1975, 31(1): 167-171.
[33] 王林. 大型扇形可倾瓦推力轴承润滑性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2018: 36-48.
WANG L.Study on Lubrication Performance of Large Sector Tilting Pad Thrust Bearing[D]. Harbin: Harbin University of Science and Technology, 2018: 36-48.
[34] PAJĄCZKOWSKI P, SCHUBERT A, WASILCZUK M, et al. Simulation of Large Thrust-Bearing Performance at Transient States, Warm and Cold Start-up[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228(1): 96-103.
[35] DE PELLEGRIN D V, HARGREAVES D J. An Isoviscous, Isothermal Model Investigating the Influence of Hydrostatic Recesses on a Spring-Supported Tilting Pad Thrust Bearing[J]. Tribology International, 2012, 51: 25-35.
[36] HEINRICHSON N, SANTOS I F, FUERST A.The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part I: Theory[J]. Journal of Tribology, 2007, 129(4): 895-903.
[37] HEINRICHSON N, SANTOS I F.Reducing Friction in Tilting-Pad Bearings by the Use of Enclosed Recesses[J]. Journal of Tribology, 2008, 130: 011009.
[38] WANG S, TAN Q C, KOU Z Q.Thermal Elastohydrodynamic Lubrication Analysis of Large Scale Composite Thrust Bearing with Sector Pad Faced by PTFE[J]. Industrial Lubrication and Tribology, 2016, 68(1): 67-75.
[39] 秦卓, 赵子文, 魏海东, 等. 巴氏合金的研究进展及制备技术[J]. 热加工工艺, 2016, 45(18): 10-14.
QIN Z, ZHAO Z W, WEI H D, et al.Research Progress and Preparation Techniques of Babbitt Metal[J]. Hot Working Technology, 2016, 45(18): 10-14.
[40] NUNEZ E E, GHEISARI R, POLYCARPOU A A.Tribology Review of Blended Bulk Polymers and Their Coatings for High-Load Bearing Applications[J]. Tribology International, 2019, 129: 92-111.
[41] ZHOU J, BLAIR B, ARGIRES J, et al.Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing[J]. Lubricants, 2015, 3(1): 3-13.
[42] 付艳超, 王馨, 毛丹丹, 等. 巴氏合金干滑动摩擦磨损机制分析[J]. 润滑与密封, 2011, 36(5): 32-35.
FU Y C, WANG X, MAO D D, et al.The Wear Mechanism of Babbit during Dry Sliding Friction[J]. Lubrication Engineering, 2011, 36(5): 32-35.
[43] 郭正兴, 何永勇, 路新春. 巴氏合金ZSnSb8Cu4的摩擦磨损行为[J]. 润滑与密封, 2014, 39(7): 5-10.
GUO Z X, HE Y Y, LU X C.Tribological Performance of Tin-Based White Metal ZSnSb8Cu4[J]. Lubrication Engineering, 2014, 39(7): 5-10.
[44] 李永海, 武鼎超, 孙向志, 等. 圆形弹性金属塑料瓦推力轴承特性分析[J]. 哈尔滨理工大学学报, 2020, 25(5): 113-119.
LI Y H, WU D C, SUN X Z, et al.Characteristic Analysis of Thrust Bearing with Circular Elastic Metal Plastic Pad[J]. Journal of Harbin University of Science and Technology, 2020, 25(5): 113-119.
[45] 方静辉, 汪久根, 赵志强, 等. PTFE瓦与巴氏合金瓦推力轴承热弹流特性的对比分析[J]. 轴承, 2012(4): 29-32.
FANG J H, WANG J G, ZHAO Z Q, et al.Comparative Analysis on Thrust Bearings with PTFE Pad and Babbitt Alloy Pad Based on TEHD Modeling[J]. Bearing, 2012(4): 29-32.
[46] ZHANG D Y, HO J K L, DONG G N, et al. Tribological Properties of Tin-Based Babbitt Bearing Alloy with Polyurethane Coating under Dry and Starved Lubrication Conditions[J]. Tribology International, 2015, 90: 22-31.
[47] NIE Z, LI G P, WANG X J, et al.Dynamic Experimental Research of PTFE-Faced Pad Thrust Bearings[J]. Tribology Letters, 2016, 62(1): 8.
[48] UNO S, ANDOH M, NAMBA S, et al.Overview of Recent Tendencies in Thrust Bearings for Hydrogenerators[J]. Journal of Tribology, 1997, 42: 129-135.
[49] GLAVATSKIH S B, FILLON M.TEHD Analysis of Thrust Bearings with PTFE-Faced Pads[J]. Journal of Tribology, 2006, 128(1): 49-58.
[50] GLAVATSKIH S B.Evaluating Thermal Performance of a PTFE-Faced Tilting Pad Thrust Bearing[J]. Journal of Tribology, 2003, 125(2): 319-324.
[51] FILLON M, GLAVATSKIH S B.PTFE-Faced Centre Pivot Thrust Pad Bearings: Factors Affecting TEHD Performance[J]. Tribology International, 2008, 41(12): 1219-1225.
[52] MACHINO S, SHINKAI S, MATSUEDA T, et al.Observation of Wear around Surface Crack of PEEK Thrust Bearing under Rolling Contact Fatigue in Water[J]. Journal of Physics: Conference Series, 2024, 2845(1): 012007.
[53] 王伟光, 蔡龙, 李伟, 等. 复合材料推力瓦在油润滑轴承中应用的研究进展[J]. 大电机技术, 2019(2): 39-45.
WANG W G, CAI L, LI W, et al.Research Progress of Composite Thrust Pads in Oil Lubricated Bearings[J]. Large Electric Machine and Hydraulic Turbine, 2019(2): 39-45.
[54] KOOSHA R, SAN ANDRÉS L. Effect of Pad and Liner Material Properties on the Static Load Performance of a Tilting Pad Thrust Bearing[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(12): 121007.
[55] SIMMONS G F, CERDA VARELA A, SANTOS I F, et al.Dynamic Characteristics of Polymer Faced Tilting Pad Journal Bearings[J]. Tribology International, 2014, 74: 20-27.
[56] KAHRAMAN G.Increasing the Power Generation by Raising the Capacity of the Thrust Bearing Oil Cooling System in Hydroelectric Power Plants[J]. Journal of Failure Analysis and Prevention, 2020, 20(4): 1445-1449.
[57] 翟黎明. 蓄能机组轴系振动及推力轴承三维热弹流耦合特性研究[D]. 北京: 清华大学, 2016: 11-19.
ZHAI L M.Research on the Vibration of the Shaft System and the 3D TEHD Lubrication of the Thrust Bearing in the Pumped Storage Power Unit[D]. Beijing: Tsinghua University, 2016: 11-19.
[58] DĄBROWSKI L, WASILCZUK M. Evaluation of Water Turbine Hydrodynamic Thrust Bearing Performance on the Basis of Thermoelastohydrodynamic Calculations and Operational Data[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218(5): 413-421.
[59] 何锫, 陈铁华, 赵冉, 等. 基于有限元的塑料瓦推力轴承油膜特性分析[J]. 长春工程学院学报(自然科学版), 2021, 22(4): 57-61.
HE P, CHEN T H, ZHAO R, et al.Characteristic Analysis of Oil Film in Thrust Bearing with Plastic Pad Based on Finite Element Method[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(4): 57-61.
[60] STERNLICHT B, CARTER G K, ARWAS E B.Adiabatic Analysis of Elastic, Centrally Pivoted, Sector, Thrust- Bearing Pads[J]. Journal of Applied Mechanics, 1961, 28(2): 179.
[61] ETTLES C M, CAMERON A.Thermal and Elastic Distortions in Thrust-Bearings[J]. IMechE Lubr Wear Conv, 1963, 7: 60-71.
[62] ZHAI L M, LUO Y Y, LIU X, et al.Numerical Simulations for the Fluid-Thermal-Structural Interaction Lubrication in a Tilting Pad Thrust Bearing[J]. Engineering Computations, 2017, 34(4): 1149-1165.
[63] GAO Q H, SUN W J, ZHANG J Z.Thermo-Elasto-Hydrodynamic Analysis of a Specific Multi-Layer Gas Foil Thrust Bearing under Thermal-Fluid-Solid Coupling[J]. Chinese Journal of Aeronautics, 2023, 36(12): 231-246.
[64] DOWSON D, HUDSON J.Thermohydrodynamic Analysis of the Infinite Slider Bearing, Part I: The Plane Inclined Slider Bearing[C]//Proceedings of the IMechE Lubrication and Wear Conference, 1963, 4: 31-41.
[65] KIM K W, TANAKA M, HORI Y.A Three-Dimensional Analysis of Thermohydrodynamic Performance of Sector- Shaped, Tilting-Pad Thrust Bearings[J]. Journal of Lubrication Technology, 1983, 105(3): 406-412.
[66] KIM K W, TANAKA M, HORI Y.An experimental-Study on the Thermohydrodynamic Lubrication of tilting-Pad thrust-Bearings[J]. Journal of Japanese Society of Tribologists, 1995, 40: 70-77.
[67] FILLON M, WODTKE M, WASILCZUK M.Effect of Presence of Lifting Pocket on the THD Performance of a Large Tilting-Pad Thrust Bearing[J]. Friction, 2015, 3(4): 266-274.
[68] KOUTSOUMPAS G, CHARITOPOULOS A, PAPADOPOULOS C Ι, et al.Computational Evaluation of Dynamic Coefficients of Thrust Bearings; Effect of Artificial Texturing on Thermohydrodynamic Performance[J]. Surface Topography: Metrology and Properties, 2020, 8(2): 024009.
[69] 柳飞. 水电机组推力轴承稳定状态油膜特性研究[D]. 武汉: 华中科技大学, 2008: 47-58.
LIU F.Study on Steady-state Oil Film Characteristics of Thrust Bearing of Hydropower Unit[D]. Wuhan: Huazhong University of Science and Technology, 2008: 47-58.
[70] PU K X, YUAN F X, DU P C, et al.Study on Influence of Pad Surface Defects on Lubrication Characteristics of Thrust Bearing[J]. Annals of Nuclear Energy, 2024, 203: 110492.
[71] WANG W M, LIU B B, ZHANG Y, et al.Theoretical and Experimental Study on the Static and Dynamic Characteristics of Tilting-Pad Thrust Bearing[J]. Tribology International, 2018, 123: 26-36.
[72] ABDEL-LATIF L A. Analysis of Heavily Loaded Tilted Pads Thrust Bearings with Large Dimensions under TEHD Conditions[J]. Journal of Tribology, 1988, 110(3): 467-476.
[73] JIANG X, WANG J, FANG J.Thermal Elastohydrodynamic Lubrication Analysis of Tilting Pad Thrust Bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225(2): 51-57.
[74] CAO J W, ZHAI L M, LUO Y Y, et al.Transient TEHD Analysis of a Thrust Bearing Based on Two-Way Fluid- Solid-Thermal Interaction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 774(1): 012093.
[75] WODTKE M, OLSZEWSKI A, WASILCZUK M.Application of the Fluid-Structure Interaction Technique for the Analysis of Hydrodynamic Lubrication Problems[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227(8): 888-897.
[76] WODTKE M, SCHUBERT A, FILLON M, et al.Large Hydrodynamic Thrust Bearing: Comparison of the Calculations and Measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228(9): 974-983.
[77] CHEN Y, WANG H C, WANG X Y, et al.Performance Analysis and Geometrical Design of Spiral-Grooved Thrust Bearing Employing CFD Model[J]. Journal of the Institution of Engineers (India): Series C, 2021, 102(3): 765-775.
[78] FOUFLIAS D G, CHARITOPOULOS A G, PAPADOPOULOS C I, et al.Thermohydrodynamic Analysis and Tribological Optimization of a Curved Pocket Thrust Bearing[J]. Tribology International, 2017, 110: 291-306.
[79] GAO S Y, SHANG Y Y, GAO Q, et al.CFD-Based Investigation on Effects of Orifice Length-Diameter Ratio for the Design of Hydrostatic Thrust Bearings[J]. Applied Sciences, 2021, 11(3): 959.
[80] NOVOTNÝ P, HRABOVSKÝ J, JURAČKA J, et al. Effective Thrust Bearing Model for Simulations of Transient Rotor Dynamics[J]. International Journal of Mechanical Sciences, 2019, 157: 374-383.

基金

国家自然科学基金(51575289); 中国长江电力股份有限公司科研项目资助(Z152402042)

PDF(8421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/