基于牛血清白蛋白的防污涂层研究进展

张载言, 李鹏飞, 张宇浩, 高海滨, 张世新, 李长江, 陈昊冉, 张嘉文, 项力

表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 1-14.

PDF(7153 KB)
PDF(7153 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (20) : 1-14. DOI: 10.16490/j.cnki.issn.1001-3660.2025.20.001
研究综述

基于牛血清白蛋白的防污涂层研究进展

  • 张载言a, 李鹏飞a, 张宇浩a, 高海滨a, 张世新a, 李长江b, 陈昊冉c, 张嘉文b, 项力a,*
作者信息 +

Research Progress on Bovine Serum Albumin (BSA)-based Antifouling Coatings

  • ZHANG Zaiyana, LI Pengfeia, ZHANG Yuhaoa, GAO Haibina, ZHANG Shixina, LI Changjiangb, CHEN Haoranc, ZHANG Jiawenb, XIANG Lia,*
Author information +
文章历史 +

摘要

生物污损主要源于蛋白质、细胞及微生物在材料表面非特异性吸附并逐步形成生物膜,对医疗器械及生物传感器的长期性能构成严重威胁。牛血清白蛋白(Bovine Serum Albumin, BSA)凭借其优异的生物相容性、多功能配体结合能力及动态界面调控特性,已成为构建高效防污涂层的关键材料。系统综述了基于BSA防污涂层的研究进展,首先解析了生物污损的五阶段形成机制及防污涂层构建的三大核心策略,然后重点阐述了BSA涂层的原位相变(还原与热变性)技术,以及与小分子、高分子、纳米材料的复合改性方法,全面梳理了各类策略在优化界面亲水性、增强涂层稳定性与阻断生物膜形成方面的协同机理,评述了BSA基涂层在植入式与介入式医疗器械中的实际应用效果,指出其在抑制细菌黏附、改善抗血栓性能等方面的显著优势。最后,结合涂层耐久性、复杂生物流体适应性及产业化制备等挑战,提出未来研究应聚焦分子机理解析、长期稳定性提升及应用范围拓展(如海洋防污)的发展方向,为高效、安全、可持续的抗污技术创新提供理论依据和实践指导。

Abstract

Biofouling, characterized by the nonspecific adsorption of proteins, cells, and microorganisms onto material surfaces followed by biofilm formation, poses a persistent threat to the functionality and biocompatibility of medical devices and biosensors. In recent years, Bovine Serum Albumin (BSA), a naturally abundant and biocompatible protein, has garnered considerable attention as a versatile material for constructing antifouling coatings. This review provides a comprehensive overview of the recent advances in BSA-based antifouling coatings, and summarizes the fundamental mechanisms of biofouling, the intrinsic advantages of BSA, various modification strategies, and their practical applications in medical devices.
The paper first details the five-stage process of biofouling, from initial protein adsorption to mature biofilm detachment and dissemination. It emphasizes the role of the "conditioning film" as a precursor to microbial colonization and highlights the challenges of breaking the cycle of protein-mediated microbial adhesion. Against this backdrop, the antifouling potential of BSA emerges due to its unique spherical conformation, amphiphilic surface, and rich functional group composition, which enable it to form hydrated, non-fouling interfaces that hinder biomolecular attachment.
The paper then surveys both structural design strategies and practical applications of BSA-based antifouling coatings from two complementary modification routes: in situ structural transformation, in which BSA undergoes TCEP-induced phase transition or heat-denaturation to unfold its globular structure, expose hydrophobic domains and reactive residues, and thereby anchor more robustly to diverse substrates while significantly enhancing resistance to enzymatic degradation, fluid shear stress, and bacterial colonization; and molecular-level composite engineering, where BSA is conjugated with small molecules, zwitterionic polymers (e.g., SBMA, MPC), hydrophilic polymers, or nanomaterials via covalent or non-covalent interactions to construct multifunctional interfaces. These engineered composites form dense electrostatic hydration layers and steric barriers that deliver superior and durable antifouling performance under high-salinity, variable-pH, and protein-rich conditions. In terms of application, these tailored coatings have been successfully deployed on implantable and interventional medical devices, demonstrating marked reductions in Staphylococcus aureus and Escherichia coli adhesion, effective suppression of platelet activation and thrombosis, and long-term maintenance of blood flow in vivo. Bioinspired composite platforms—such as insect cuticle-inspired BSA@HCA and BSA-polymer conjugates—exhibit enhanced mechanical durability and interface stability under pulsatile flow and shear conditions. Meanwhile, BSA-nanocomposite coatings incorporating gold nanowires or silica nanostructures enable electrochemical biosensors to retain signal fidelity, minimize background noise, and resist multifaceted biofoulant interference during extended exposure to complex biological media, highlighting their translational potential for scalable, high-performance antifouling solutions.
Despite these advances, challenges remain. Native BSA's low isoelectric point can lead to undesirable electrostatic interactions, and the stability of protein-based coatings under physiological stresses needs further optimization. Key future directions include elucidating the molecular interactions that govern antifouling behaviors, improving long-term mechanical and chemical stability in complex environments, expanding application domains beyond biomedical devices (e.g., marine antifouling), and developing scalable and eco-friendly production processes. In particular, integrating antifouling, antibacterial, and self-cleaning functionalities into a single BSA-based platform remains a promising yet underexplored frontier.
In conclusion, BSA-based antifouling coatings offer a sustainable, biocompatible, and multifunctional solution to the global challenge of biofouling. By combining natural protein structures with advanced materials science and surface engineering, these coatings hold great potential for transformative applications in healthcare, biotechnology, and environmental protection.

关键词

生物污损 / BSA / 防污涂层 / 改性 / 复合 / 医疗器械

Key words

biofouling / BSA / antifouling coatings / modification / composite / medical devices

引用本文

导出引用
张载言, 李鹏飞, 张宇浩, 高海滨, 张世新, 李长江, 陈昊冉, 张嘉文, 项力. 基于牛血清白蛋白的防污涂层研究进展[J]. 表面技术. 2025, 54(20): 1-14 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.001
ZHANG Zaiyan, LI Pengfei, ZHANG Yuhao, GAO Haibin, ZHANG Shixin, LI Changjiang, CHEN Haoran, ZHANG Jiawen, XIANG Li. Research Progress on Bovine Serum Albumin (BSA)-based Antifouling Coatings[J]. Surface Technology. 2025, 54(20): 1-14 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.20.001
中图分类号: TB34   

参考文献

[1] MUTSCHLER A, TALLET L, RABINEAU M, et al.Unexpected Bactericidal Activity of Poly(Arginine)/Hyaluronan Nanolayered Coatings[J]. Chemistry of Materials, 2016, 28(23): 8700-8709.
[2] VAISOCHEROVÁ H, BRYNDA E, HOMOLA J.Functionalizable Low-Fouling Coatings for Label-Free Biosensing in Complex Biological Media: Advances and Applications[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3927-3953.
[3] ZHANG R N, LIU Y N, HE M R, et al.Antifouling Membranes for Sustainable Water Purification: Strategies and Mechanisms[J]. Chemical Society Reviews, 2016, 45(21): 5888-5924.
[4] 闻小虎, 潘景龙, 高多龙, 等. 海洋防污涂层的抗污机制及制备策略研究进展[J]. 表面技术, 2023, 52(11): 171-181.
WEN X H, PAN J L, GAO D L, et al.Review on Mechanism and Preparation Strategy of Advanced Anti-Fouling Coatings[J]. Surface Technology, 2023, 52(11): 171-181.
[5] WANG K S, LAN H T, WU C H, et al.Electrochemical Polymerization of PEDOT: PSS with Graphene Oxide and Silver Nanoparticles for Antibacterial Coating and SERS Detection[J]. Surface and Coatings Technology, 2024, 485: 130889.
[6] NAKKALA J R, LI Z M, AHMAD W, et al.Immunomodulatory Biomaterials and Their Application in Therapies for Chronic Inflammation-Related Diseases[J]. Acta Biomaterialia, 2021, 123: 1-30.
[7] SUT T N, YOON B K, JEON W Y, et al.Supported Lipid Bilayer Coatings: Fabrication, Bioconjugation, and Diagnostic Applications[J]. Applied Materials Today, 2021, 25: 101183.
[8] HU X Y, TIAN J H, LI C, et al.Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling[J]. Advanced Materials, 2020, 32(23): 2000128.
[9] VON EIFF C, JANSEN B, KOHNEN W, et al.Infections Associated with Medical Devices: Pathogenesis, Management and Prophylaxis[J]. Drugs, 2005, 65(2): 179-214.
[10] MACK D, ROHDE H, HARRIS L G, et al.Biofilm Formation in Medical Device-Related Infection[J]. The International Journal of Artificial Organs, 2006, 29(4): 343-359.
[11] PERCIVAL S L, SULEMAN L, VUOTTO C, et al.Healthcare-Associated Infections, Medical Devices and Biofilms: Risk, Tolerance and Control[J]. Journal of Medical Microbiology, 2015, 64(Pt 4): 323-334.
[12] MAKI D G, TAMBYAH P A.Engineering out the Risk of Infection with Urinary Catheters[J]. Emerging Infectious Diseases, 2001, 7(2): 342-347.
[13] DONLAN R M.Biofilms and Device-Associated Infections[J]. Emerging Infectious Diseases, 2001, 7(2): 277-281.
[14] DONLAN R M.Biofilm Formation: A Clinically Relevant Microbiological Process[J]. Clinical Infectious Diseases, 2001, 33(8): 1387-1392.
[15] TRAUTNER B W, DAROUICHE R O.Catheter-Associated Infections: Pathogenesis Affects Prevention[J]. Archives of Internal Medicine, 2004, 164(8): 842-850.
[16] PLAKUNOV V K, MART’YANOV S V, TETENEVA N A, et al. Controlling of microbial biofilms formation: Anti- and Probiofilm Agents[J]. Microbiology, 2017, 86(4): 423-438.
[17] 王瑞麟, 赖长洪, 何孟泽, 等. 医用导管抗菌涂层的研究进展[J]. 表面技术, 2024, 53(16): 51-67.
WANG R L, LAI C H, HE M Z, et al.Research Progress of Antibacterial Coating for Medical Catheter[J]. Surface Technology, 2024, 53(16): 51-67.
[18] DAMODARAN V B, SANJEEVA MURTHY N.Bio-Inspired Strategies for Designing Antifouling Biomaterials[J]. Biomaterials Research, 2016, 20: 18.
[19] ZANDER Z K, BECKER M L.Antimicrobial and Antifouling Strategies for Polymeric Medical Devices[J]. ACS Macro Letters, 2018, 7(1): 16-25.
[20] KARIMI M, BAHRAMI S, RAVARI S B, et al.Albumin Nanostructures as Advanced Drug Delivery Systems[J]. Expert Opinion on Drug Delivery, 2016, 13(11): 1609-1623.
[21] SPADA A, EMAMI J, TUSZYNSKI J A, et al.The Uniqueness of Albumin as a Carrier in Nanodrug Delivery[J]. Molecular Pharmaceutics, 2021, 18(5): 1862-1894.
[22] TIAN J H, LIU Y C, MIAO S T, et al.Amyloid-Like Protein Aggregates Combining Antifouling with Antibacterial Activity[J]. Biomaterials Science, 2020, 8(24): 6903-6911.
[23] ZHAO Z Q, PAN M F, QIAO C Y, et al.Bionic Engineered Protein Coating Boosting Anti-Biofouling in Complex Biological Fluids[J]. Advanced Materials, 2023, 35(6): 2208824.
[24] WILLIAMS D F.On the Mechanisms of Biocompatibility[J]. Biomaterials, 2008, 29(20): 2941-2953.
[25] HORNOK V.Serum Albumin Nanoparticles: Problems and Prospects[J]. Polymers, 2021, 13(21): 3759.
[26] BÖKE F, SCHICKLE K, FISCHER H. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces[J]. Materials, 2014, 7(6): 4473-4492.
[27] PARK J H, JACKMAN J A, FERHAN A R, et al.Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32047-32057.
[28] ZHANG W F, LI N, LIN L, et al.Metabolism-Based Capture and Analysis of Circulating Tumor Cells in an Open Space[J]. Analytical Chemistry, 2021, 93(18): 6955-6960.
[29] WANG Z L, SUN N, LIU M, et al.Multifunctional Nanofibers for Specific Purification and Release of CTCS[J]. ACS Sensors, 2017, 2(4): 547-552.
[30] JIANG W N, HAN L L, YANG L W, et al.Natural Fish Trap-Like Nanocage for Label-Free Capture of Circulating Tumor Cells[J]. Advanced Science, 2020, 7(22): 2002259.
[31] JIA F, WANG Y H, FANG Z G, et al.Novel Peptide- Based Magnetic Nanoparticle for Mesenchymal Circulating Tumor Cells Detection[J]. Analytical Chemistry, 2021, 93(14): 5670-5675.
[32] LI C, XU L, ZUO Y Y, et al.Tuning Protein Assembly Pathways through Superfast Amyloid-Like Aggregation[J]. Biomaterials Science, 2018, 6(4): 836-841.
[33] QIN R R, LIU Y C, TAO F, et al.Protein-Bound Freestanding 2D Metal Film for Stealth Information Transmission[J]. Advanced Materials, 2019, 31(5): 1803377.
[34] 李基容, 储爱民, 王书晗, 等. 植介入医疗器械涂层的研究进展[J]. 表面技术, 2024, 53(14): 56-74.
LI J R, CHU A M, WANG S H, et al.Research Progress of Coatings for Implantable and Interventional Medical Devices[J]. Surface Technology, 2024, 53(14): 56-74.
[35] HAN S I, SUNWOO S H, PARK C S, et al.Next- Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics[J]. ACS Nano, 2024, 18(19): 12025-12048.
[36] SUNWOO S H, HAN S I, JUNG D, et al.Stretchable Low-Impedance Conductor with Ag-Au-Pt Core-Shell- Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device[J]. ACS Nano, 2023, 17(8): 7550-7561.
[37] SUNWOO S H, HAN S I, JOO H, et al.Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering[J]. Matter, 2020, 3(6): 1923-1947.
[38] CHOI S, HAN S I, KIM D, et al.High-Performance Stretchable Conductive Nanocomposites: Materials, Processes, and Device Applications[J]. Chemical Society Reviews, 2019, 48(6): 1566-1595.
[39] CHOI S, HAN S I, JUNG D, et al.Highly Conductive, Stretchable and Biocompatible Ag-Au Core-Sheath Nanowire Composite for Wearable and Implantable Bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056.
[40] LOZANO A M, LIPSMAN N, BERGMAN H, et al.Deep Brain Stimulation: Current Challenges and Future Directions[J]. Nature Reviews Neurology, 2019, 15(3): 148-160.
[41] SULLIVAN S J L, TIMMIE TOPOLESKI L D. Surface Modifications for Improved Wear Performance in Artificial Joints: A Review[J]. JOM, 2015, 67(11): 2502-2517.
[42] CINGOLANI E, GOLDHABER J I, MARBÁN E. Next- Generation Pacemakers: From Small Devices to Biological Pacemakers[J]. Nature Reviews Cardiology, 2018, 15(3): 139-150.
[43] BORHANI S, HASSANAJILI S, AHMADI TAFTI S H, et al. Cardiovascular Stents: Overview, Evolution, and Next Generation[J]. Progress in Biomaterials, 2018, 7(3): 175-205.
[44] MORAIS J M, PAPADIMITRAKOPOULOS F, BURGESS D J.Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response[J]. The AAPS Journal, 2010, 12(2): 188-196.
[45] FU C Y, WANG Z G, GAO Y T, et al.Sustainable Polymer Coating for Stainproof Fabrics[J]. Nature Sustainability, 2023, 6: 984-994.
[46] WEISSLEDER R, KELLY K, SUN E Y, et al.Cell- Specific Targeting of Nanoparticles by Multivalent Attachment of Small Molecules[J]. Nature Biotechnology, 2005, 23(11): 1418-1423.
[47] ZHAO Z Q, YU W T, YANG W S, et al.Dual-Protection Inorganic-Protein Coating on Mg-Based Biomaterials through Tooth-Enamel-Inspired Biomineralization[J]. Advanced Materials, 2024, 36(21): 2313211.
[48] SALTER B S, GROSS C R, WEINER M M, et al.Temporary Mechanical Circulatory Support Devices: Practical Considerations for all Stakeholders[J]. Nature Reviews Cardiology, 2023, 20(4): 263-277.
[49] WANG W P, LI H C, TAM M D, et al.The Amplatzer Vascular Plug: A Review of the Device and Its Clinical Applications[J]. Cardiovascular and Interventional Radiology, 2012, 35(4): 725-740.
[50] XIU W J, GAN S Y, WEN Q R, et al.Biofilm Microenvironment-Responsive Nanotheranostics for Dual- Mode Imaging and Hypoxia-Relief-Enhanced Photodynamic Therapy of Bacterial Infections[J]. Research, 2020, 2020: 9426453.
[51] TREROTOLA S O, PYERITZ R E.Does Use of Coils in Addition to Amplatzer Vascular Plugs Prevent Recanalization[J]. AJR American Journal of Roentgenology, 2010, 195(3): 766-771.
[52] SAITO N, MATSUMOTO H, YAGI T, et al. Evaluation of the Safety and Feasibility of Resuscitative Endovascular Balloon Occlusion of the Aorta[J]. The Journal of Trauma and Acute Care Surgery, 2015, 78(5): 897-903; discussion 904.
[53] JOELS C S, SING R F, HENIFORD B T.Complications of Inferior Vena Cava Filters[J]. The American Surgeon, 2003, 69(8): 654-659.
[54] MASSOUMI H, CHUG M K, NGUYEN G H, et al.A Multidisciplinary Experiment to Characterize Antifouling Biocompatible Interfaces via Quantification of Surface Protein Adsorption[J]. Journal of Chemical Education, 2022, 99(7): 2667-2676.
[55] HOU Y, DENG X, XIE C M.Biomaterial Surface Modification for Underwater Adhesion[J]. Smart Materials in Medicine, 2020, 1: 77-91.
[56] LYU N, DENG D H, XIANG Y T, et al.An Insect Sclerotization-Inspired Antifouling Armor on Biomedical Devices Combats Thrombosis and Embedding[J]. Bioactive Materials, 2024, 33: 562-571.
[57] ASHA A B, CHEN Y J, NARAIN R.Bioinspired Dopamine and Zwitterionic Polymers for Non-Fouling Surface Engineering[J]. Chemical Society Reviews, 2021, 50(20): 11668-11683.
[58] ZHAO Z Q, HUANG C, ZENG H B.Zwitterion-Conjugated Protein Coatings for Enhanced Antifouling in Complex Biofluids: Underlying Molecular Interaction Mechanisms[J]. Langmuir, 2024, 40(48): 25708-25716.
[59] LI R, YU K P, FAN G C, et al.Polyethyleneimine Cross- Linked BSA with Enhanced Antifouling Capability for Electrochemical Detection of Cancer Antigen 125 in Complex Biofluids[J]. Sensors and Actuators B: Chemical, 2024, 408: 135520.
[60] ZHANG G W, JIA X Y, XING J L, et al.A Facile and Fast Approach to Coat Various Substrates with Poly(styrene- co-maleic anhydride) and Polyethyleneimine for Oil/Water Separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19475-19485.
[61] PIETERS B J G E, VAN ELDIJK M B, NOLTE R J M, et al. Natural Supramolecular Protein Assemblies[J]. Chemical Society Reviews, 2016, 45(1): 24-39.
[62] KAWECKI G E, KING K M, CRAMER N A, et al.Simulations of Cross-amyloid Aggregation of Amyloid-β and Islet Amyloid Polypeptide Fragments[J]. Biophysical Journal, 2022, 121(11): 2002-2013.
[63] LIU Y C, TAO F, MIAO S T, et al.Controlling the Structure and Function of Protein Thin Films through Amyloid- Like Aggregation[J]. Accounts of Chemical Research, 2021, 54(15): 3016-3027.
[64] WANG S Q, DONG X R, LI J L, et al.Design of a Facile Antifouling Sensor Based on the Synergy between an Antibody and Phase-Transited BSA[J]. Biosensors, 2023, 13(12): 1004.
[65] ZHANG W T, ZHANG J L, HU F K, et al.Active Dual- Protein Coating Assisted by Stepwise Protein-Protein Interactions Assembly Reduces Thrombosis and Infection[J]. Advanced Science, 2024, 11(17): 2310259.
[66] FERRABOSCHI P, CICERI S, GRISENTI P.Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic[J]. Antibiotics, 2021, 10(12): 1534.
[67] DEL RÍO J S, HENRY O Y F, JOLLY P, et al. An Antifouling Coating that Enables Affinity-Based Electrochemical Biosensing in Complex Biological Fluids[J]. Nature Nanotechnology, 2019, 14(12): 1143-1149.
[68] CAMPUZANO S, PEDRERO M, YÁÑEZ-SEDEÑO P, et al. Antifouling (Bio)Materials for Electrochemical (Bio) Sensing[J]. International Journal of Molecular Sciences, 2019, 20(2): 423.
[69] LI S M, WANG K, HAO S S, et al.Antifouling Gold- Inlaid BSA Coating for the Highly Efficient Capture of Circulating Tumor Cells[J]. Analytical Chemistry, 2022, 94(18): 6754-6759.
[70] 于雪艳, 高鹏, 陈正涛, 等. 溶蚀型海洋防污涂料制备及其性能[J]. 表面技术, 2023, 52(9): 247-252.
YU X Y, GAO P, CHEN Z T, et al.Preparation and Performance Investigation of Ablative Marine Antifouling Coating[J]. Surface Technology, 2023, 52(9): 247-252.
[71] 刘思琪, 刘斌, 宁玉杰, 等. 抗菌低表面能复合型海洋防污涂料的研究进展[J]. 表面技术, 2022, 51(5): 265-273.
LIU S Q, LIU B, NING Y J, et al.Progress in the Antibacterial and Low Surface Energy Composite Marine Antifouling Coatings[J]. Surface Technology, 2022, 51(5): 265-273.

基金

国家自然科学基金(52305185); 江苏省自然科学基金(BK20220835); 江苏省双创博士计划(JSSCBS20220160); 南京市海外留学人才科技创新计划(Class A)

PDF(7153 KB)

Accesses

Citation

Detail

段落导航
相关文章

/