ZG45铸钢激光淬火-抛光复合工艺参数优化研究

庹军波, 王晨阳, 梁强, 杜彦斌, 徐彬源

表面技术 ›› 2025, Vol. 54 ›› Issue (19) : 198-213.

PDF(19988 KB)
PDF(19988 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (19) : 198-213. DOI: 10.16490/j.cnki.issn.1001-3660.2025.19.017
表面强化技术

ZG45铸钢激光淬火-抛光复合工艺参数优化研究

  • 庹军波1,2, 王晨阳1, 梁强1,*, 杜彦斌1, 徐彬源1
作者信息 +

Optimization of Laser Quenching Polishing Composite Process Parameters for ZG45 Cast Steel

  • TUO Junbo1,2, WANG Chenyang1, LIANG Qiang1,*, DU Yanbin1, XU Binyuan1
Author information +
文章历史 +

摘要

目的 在低碳节能的制造背景下,为同步兼顾激光淬火性能提升和激光抛光表面质量提升的特征。方法 提出了一种基于小龙虾优化算法(COA)的ZG45铸钢激光淬火-抛光复合工艺参数寻优方法。以表面粗糙度、平均淬透深度、峰谷差值和激光作用阶段能耗作为响应目标,使用拉丁超立方(LHS)设计试验,并采用贝叶斯优化(BO)的随机森林回归模型(RF)对试验数据进行拟合,进而构建针对4个响应目标的预测模型。通过COA多目标优化算法进行工艺参数寻优,得到相应的Parato解集,利用优劣解距离法(TOPSIS)结合多准则妥协解排序法(VIKOR)对Parato解集进行综合评分排序,得到最佳工艺参数组合,即激光功率为522 W,扫描速度为12 mm/s,搭接率为70%。结果 试验结果可知,模型预测值与试验真实值的误差不超过11.41%,激光淬火-抛光后表面粗糙度Ra由8.477 μm下降至2.585 μm,降幅为69.51%,表面显微硬度由230HV0.5升至515.8HV0.5,提升了2.24倍,表面体积磨损率由24.7×10-14 m3/(N·m)下降至8.7×10-14 m3/(N·m),降低64.78%;且最佳工艺参数与常规工艺参数对比时,激光作用阶段能耗由927 J降低至864 J,降幅为6.83%,表面粗糙度降低9.2%,淬透深度提升7.56%,峰谷差值降低29.89%。结论 研究成果可为面向高质量低能耗的ZG45铸钢激光淬火-抛光复合工艺参数优化提供有力的参考。

Abstract

The purpose is to simultaneously improve the surface quality of laser polishing and enhance the performance of laser quenching in the context of low-carbon and energy-saving manufacturing. This article proposes a parameter optimization method for the ZG45 cast steel laser quenching and polishing composite process based on the crayfish optimization algorithm (COA). Taking surface roughness, average hardening depth, peak valley difference, and energy consumption during the working process as response objectives, in order to better meet the requirements of machine learning algorithms for dataset uniformity, experiments are designed using Latin hypercube (LHS). Based on Bayesian optimization (BO), a random forest regression model (RF) is used to fit the experimental data, and a prediction model is constructed for the four response objectives. The COA multi-objective optimization algorithm is used to optimize process parameters, to take the minimum values for surface roughness, operating energy consumption, and peak valley difference, as well as the maximum value of the average hardening depth. Under this premise, the response objectives under different parameter combinations are obtained, and the corresponding Parato solution sets are obtained. The TOPSIS method combined with the VIKOR method is used to comprehensively score and rank the Parato solution sets, and the optimal process parameter combination is obtained. After the above evaluation system, the solutions with the highest comprehensive score, namely laser power of 522 W, scanning speed of 12 mm/s, and overlap rate of 70%, are selected for verification experiments in descending order of comprehensive score. The experimental results showed that the error between the predicted value of the model and the actual experimental value does not exceed 11.41%. Moreover, according to the process parameter combination with the highest comprehensive score, the surface roughness Ra after laser quenching polishing decreases from 8.477 μm to 2.585 μm, a decrease of 69.51%; and the surface micro hardness increases from 230HV0.5 to 515.8HV0.5, an increase of 2.24 times; the surface volume wear rate decreases from 24.7×10-14 m3/(N·m) to 8.7×10-14 m3/(N·m), a decrease of 64.78%. The energy consumption of laser is mainly related to laser power, scanning speed, and overlap rate, with laser power accounting for the highest proportion. Other parameters mainly affect the overall energy consumption by changing the laser working time. The conventional laser power is determined based on the carbon content of the material. When compared with conventional process parameters (i.e. laser power as a variable) while keeping all other parameters constant, the energy consumption of laser processing under this set of process parameters decreases from 927 J to 864 J, a decrease of 6.8%, the surface roughness is decreased by 9.2%, quenching depth indicated by 7.56%, and the peak valley difference is decreased by 29.89%. Based on the above, the following conclusion can be drawn: the application of COA optimization algorithm can provide reference for the optimization of laser quenching polishing process parameters for other cast steel materials, helping them determine the approximate range of process parameters. And the prediction model based on BO-RF fitting algorithm has good predictive performance for energy consumption in the machining process, high model stability, and can provide model reference for the calculation of carbon emissions in laser processing. The research results can provide strong reference for optimizing the laser quenching polishing composite process parameters of ZG45 cast steel for high-quality and low-energy consumption.

关键词

ZG45铸钢 / 激光复合工艺 / COA多目标优化 / 拉丁超立方 / 激光能耗 / 拟合回归

Key words

ZG45 cast steel / laser composite technology / COA multi-objective optimization / Latin hypercube / laser energy consumption / fitting regression

引用本文

导出引用
庹军波, 王晨阳, 梁强, 杜彦斌, 徐彬源. ZG45铸钢激光淬火-抛光复合工艺参数优化研究[J]. 表面技术. 2025, 54(19): 198-213 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.19.017
TUO Junbo, WANG Chenyang, LIANG Qiang, DU Yanbin, XU Binyuan. Optimization of Laser Quenching Polishing Composite Process Parameters for ZG45 Cast Steel[J]. Surface Technology. 2025, 54(19): 198-213 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.19.017
中图分类号: TG356.28   

参考文献

[1] 宋量, 王永喆. 耐磨铸钢件及发展趋势[C]//聚焦新质生产力加快铸造行业高质量发展——第二十届中国铸造协会年会论文集. 上海, 2024: 187-192.
SONG L, WANG Y Z.Wear-resistant Steel Castings and Their Development Trends[C]//Focusing on New Quality Productive Forces to Accelerate High-quality Development of Foundry Industry—Proceedings of the 20th Annual Conference of China Foundry Association. Shanghai, 2024: 187-192.
[2] QIANG B, LIU X, WU H, et al.Experimental Investigation on Elevated Temperature Mechanical Properties in Cast Steel Joints[J]. Structures, 2024, 62: 106158.
[3] RAZA A, KUMAR S.A Comparative Investigation on the Surface Characteristics of AISI 304 and AISI 1045 Steel Influenced by Turning Combined with Ball Burnishing[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2025, 239(2): 335-352.
[4] 罗登, 朱拓, 高海亮, 等. 控制轧制对直接淬火EH500海工钢的组织与性能影响[J/OL]. 钢铁, 1-14 [2025-01-06].
LUO D, ZHU T, GAO H L, et al.Effect of Controlled Rolling on the Microstructure and Properties of Directly Quenched EH500 Offshore Steel [J/OL]. Steel, 1-14 [2020-01-06].
[5] 刘二举, 徐杰, 陈曦, 等. 激光抛光技术研究进展与发展趋势[J]. 中国激光, 2023, 50(16): 100-118.
LIU E J, XU J, CHEN X, et al.Advancements and Developments of Laser Polishing Technology[J]. Chinese Journal of Lasers, 2023, 50(16): 100-118.
[6] 朱立华, 于文慧, 亓东锋, 等. 激光表面强化与微纳制造技术研究进展[J]. 材料保护, 2024, 57(8): 130-146.
ZHU L H, YU W H, QI D F, et al.Research Progress in Laser Surface Strengthening and Micro-Nano Manufacturing Technology[J]. Materials Protection, 2024, 57(8): 130-146.
[7] 陈军, 李伟, 郝胜智. 高能束表面改性技术在航空领域的应用[J]. 航空制造技术, 2024, 67(4): 32-43.
CHEN J, LI W, HAO S Z.Applications of High-Energy Beam Surface Modification Technology in Aviation Filed[J]. Aeronautical Manufacturing Technology, 2024, 67(4): 32-43.
[8] 张海鹏, 白志宇, 毛雨欣, 等. 基于相似理论的激光表面淬火大型风电主轴轴承性能试验[J]. 轴承, 2023(6): 115-120.
ZHANG H P, BAI Z Y, MAO Y X, et al.Performance Test of Large Size Wind Turbine Main Shaft Bearings after Laser Surface Hardening Based on Similarity Theory[J]. Bearing, 2023(6): 115-120.
[9] 费琳, 王鹏, 赵新娥. 激光表面硬化工艺对TC4钛合金表面硬度和硬化层深度的影响[J]. 热处理, 2023, 38(4): 32-35.
FEI L, WANG P, ZHAO X E.Effect of Laser Surface Hardening Processes on Surface Hardness and Hardening Depth of TC4 Titanium Alloy[J]. Heat Treatment, 2023, 38(4): 32-35.
[10] REICH S, HEUNOSKE D, LUECK M, et al.Laser Hardening of Steel with a 120 kW Laser at High Throughput[J]. Procedia CIRP, 2024, 124: 751-754.
[11] HUANG J W, WANG W J, DING H H, et al.Experimental Study on the Influence of Laser Surface Quenching on the Initiation and Development of Wheel Polygons[J]. Tribology, 2024, 44(2): 154-166.
[12] 徐辑林, 邹平, 王文杰, 等. 基于烧蚀原理的激光抛光的数值建模与分析[J]. 东北大学学报(自然科学版), 2020, 41(12): 1760-1766.
XU J L, ZOU P, WANG W J, et al.Numerical Modeling and Analysis of Laser Polishing Based on Ablation Principle[J]. Journal of Northeastern University (Natural Science), 2020, 41(12): 1760-1766.
[13] KUMAR A, RAMADAS H, KUMAR C S, et al.Laser Polishing of Additive Manufactured Stainless-Steel Parts by Line Focused Beam: A Response Surface Method for Improving Surface Finish[J]. Journal of Manufacturing Processes, 2025, 133: 1310-1328.
[14] 李亮亮, 牟建伟, 刘艳梅, 等. 皮秒/纳秒脉冲激光抛光对激光选区熔化TC4表面完整性影响[J]. 中国表面工程, 2024, 37(3): 57-66.
LI L L, MU J W, LIU Y M, et al.Effect of Picosecond/ Nanosecond Pulsed-Laser Polishing on Surface Integrity of Selective Laser Melting TC4[J]. China Surface Engineering, 2024, 37(3): 57-66.
[15] 周宇航, 张咪娜, 陈晓晓, 等. 激光增材制造CoCrFeNi高熵合金激光抛光工艺研究[J]. 中国激光, 2023, 50(20): 152-164.
ZHOU Y H, ZHANG M N, CHEN X X, et al.Surface Laser Polishing of High-Entropy CoCrFeNi Alloy Prepared by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2023, 50(20): 152-164.
[16] 冯伟峰, 王涛, 顾志同, 等. 激光抛光316L不锈钢表面熔池演变的数值模拟与分析[J]. 光电子ȷ激光, 2025, 36(3): 292-302.
FENG W F, WANG T, GU Z T, et al.Numerical Simulation and Analysis of Surface Molten Pool Evolution in Laser Polishing of 316L Stainless Steel[J]. Journal of Optoelectronics·Laser, 2025, 36(3): 292-302.
[17] 明智, 姚芳萍, 姜传熹, 等. 激光工艺参数对H13钢表面淬火层组织及性能影响[J]. 制造技术与机床, 2024(6): 18-24.
MING Z, YAO F P, JIANG C X, et al.Effect of Laser Parameters on Microstructure and Properties of H13 Steel Surface Quenched Layer[J]. Manufacturing Technology & Machine Tool, 2024(6): 18-24.
[18] 秦继鹏, 刘俨后, 车科, 等. 光纤激光单道抛光模具钢的工艺参数研究[J]. 机床与液压, 2022, 50(16): 58-62.
QIN J P, LIU Y H, CHE K, et al.Study on Process Parameters of Optical Fiber Laser Single-Pass Polishing Mould Steel[J]. Machine Tool & Hydraulics, 2022, 50(16): 58-62.
[19] MUSHTAQ R T, WANG Y N, BAO C W, et al.Multi- Objective Optimization of Laser Polishing Parameters for Enhanced Mechanical Properties, Sustainability, and Surface Finish of 3D-Printed Industrial ABS Polymers Using Response Surface Methodology (RSM)[J]. Journal of Materials Research and Technology, 2024, 29: 3168-3184.
[20] KOMANDURI R, HOU Z B.Thermal Analysis of Laser Surface Transformation Hardening—Optimization of Process Parameters[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9): 991-1008.
[21] 张永辉, 张双杰, 王伟, 等. 激光表面淬火对铬钼铸铁组织和硬度的影响[J]. 金属热处理, 2022, 47(11): 160-164.
ZHANG Y H, ZHANG S J, WANG W, et al.Effect of Laser Hardening on Microstructure and Hardness of CrMo Cast Iron Surface[J]. Heat Treatment of Metals, 2022, 47(11): 160-164.
[22] 郭宏杰. 激光表面相变硬化对T10微观组织与性能的影响[J]. 有色冶金设计与研究, 2022, 43(2): 22-24.
GUO H J.Effect of Laser Phase Transformation Hardening on Microstructure and Properties of T10 Steel[J]. Nonferrous Metals Engineering & Research, 2022, 43(2): 22-24.
[23] 车科, 刘俨后, 秦继鹏, 等. 连续激光抛光9CrWMn模具钢工艺参数研究[J]. 工具技术, 2022, 56(8): 25-29.
CHE K, LIU Y H, QIN J P, et al.Research on Process Parameters of Continuous Laser Polishing of 9CrWMn Mould Steel[J]. Tool Engineering, 2022, 56(8): 25-29.
[24] 梁强, 徐永航, 杜彦斌, 等. 基于综合满意度函数的D2钢激光抛光工艺参数优化方法[J]. 表面技术, 2024, 53(16): 169-181.
LIANG Q, XU Y H, DU Y B, et al.Optimization Method of Laser Polishing Process Parameters for D2 Steel Based on Comprehensive Satisfaction Function[J]. Surface Technology, 2024, 53(16): 169-181.
[25] 张建康, 刘富文, 郭冠辰, 等. 基于多保真代理模型的塔机臂架结构优化[J]. 机电工程, 2024, 41(11): 1967-1976.
ZHANG J K, LIU F W, GUO G C, et al.Structure Optimization of Tower Crane Jib Based on Multi-Fidelity Surrogate Model[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(11): 1967-1976.
[26] 雷傲宇, 李俊, 梅勇, 等. 基于随机森林算法的大电网动态等值方法[J]. 电气传动, 2025, 55(4): 26-32.
LEI A Y, LI J, MEI Y, et al.Dynamic Equivalence Method for Large-Scale Power Systems Based on the Random Forest Algorithm[J]. Electric Drive, 2025, 55(4): 26-32.
[27] 李超, 涂腾, 彭勋辉, 等. 融合DT-BO-GRU的中长期光伏功率滚动预测模型[J]. 太阳能学报, 2025, 46(5): 275-284.
LI C, TU T, PENG X H, et al.medium-and long-Term Rolling Prediction Model of Pv Power Fused with dt-Bo-Gu[J]. Acta Energiae Solaris Sinica, 2025, 46(5): 275-284.
[28] 高海宾. 一种融合贝叶斯优化的K最近邻分类算法[J]. 绵阳师范学院学报, 2025, 44(5): 79-87.
GAO H B.A Bayesian Optimization-Integrated K-Nearest Neighbors Classification Algorithm[J]. Journal of Mianyang Teachers’ College, 2025, 44(5): 79-87.
[29] EHMSEN S, GLATT M, AURICH J C.Influence of Process Parameters on the Power Consumption of High- Speed Laser Directed Energy Deposition[J]. Procedia CIRP, 2023, 116: 89-94.
[30] 董萌萌, 李涛, 郭燕春, 等. 激光熔覆系统能耗建模分析方法研究[J]. 大连理工大学学报, 2018, 58(3): 229-237.
DONG M M, LI T, GUO Y C, et al.Investigation on Energy Consumption Modeling Analysis Method of Laser Cladding System[J]. Journal of Dalian University of Technology, 2018, 58(3): 229-237.
[31] 李佳霖, 李疆. 激光淬火工艺参数对零件机械损伤的影响研究[J]. 激光杂志, 2021, 42(7): 185-189.
LI J L, LI J.Effect of Laser Quenching Process Parameters on Mechanical Damage of Parts[J]. Laser Journal, 2021, 42(7): 185-189.
[32] 庞铭, 谭雯丹, 刘全秀. 多道搭接对激光相变硬化蠕墨铸铁热力耦合影响的研究[J]. 热加工工艺, 2022, 51(4): 82-86.
PANG M, TAN W D, LIU Q X.Study on Influence of Multi-Track Overlapping on Thermo-Mechanical Coupling of Laser Transformation Hardening of Vermicular Graphite Cast Iron[J]. Hot Working Technology, 2022, 51(4): 82-86.
[33] 单等玉, 陈涛. 激光抛光模具钢的模拟仿真及工艺研究[J]. 电加工与模具, 2019(5): 44-50.
SHAN D Y, CHEN T.Simulation and Process Research of Laser Polishing Die Steel[J]. Electromachining & Mould, 2019(5): 44-50.
[34] 黄旭东, 王涛, 胡少武, 等. 基于正交试验和响应面法的激光抛光参数优化[J]. 激光与光电子学进展, 2022, 59(11): 316-325.
HUANG X D, WANG T, HU S W, et al.Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method[J]. Laser & Optoelectronics Progress, 2022, 59(11): 316-325.
[35] 吕可鑫, 韩雪松. 超快激光抛光硬脆光学材料工艺数值模拟研究[J]. 激光与光电子学进展, 2021, 58(5): 336-342.
LYU K X, HAN X S.Research on Numerical Simulation of Ultrafast Laser Polishing Brittle Optical Materials[J]. Laser & Optoelectronics Progress, 2021, 58(5): 336-342.
[36] 惠记庄, 骆伟, 阎志强, 等. AlSi10Mg选区激光熔化表面粗糙度预测、优化及表面形貌分析[J]. 表面技术, 2024, 53(15): 129-140.
HUI J Z, LUO W, YAN Z Q, et al.Surface Roughness Prediction, Optimization and Surface Morphology Analysis of AlSi10Mg by Selective Laser Melting[J]. Surface Technology, 2024, 53(15): 129-140.
[37] CHAIB L, TADJ M, CHOUCHA A, et al.Improved Crayfish Optimization Algorithm for Parameters Estimation of Photovoltaic Models[J]. Energy Conversion and Management, 2024, 313: 118627.
[38] 沈明, 李少雨, 钱航, 等. 淬火介质浓度对45钢淬硬层深度及组织性能的影响[J]. 大型铸锻件, 2022(2): 41-43.
SHEN M, LI S Y, QIAN H, et al.Effect of Quenching Medium Concentration on Hardened Layer Depth and Microstructure and Properties of 45 Steel[J]. Heavy Casting and Forging, 2022(2): 41-43.
[39] ZHANG H, SUN X Y, XU X B, et al.Numerical Simulation of Surface Structures in Single and Multi-Track Laser Polishing of NiP Alloy[J]. Journal of Manufacturing Processes, 2024, 132: 404-415.

基金

重庆市自然科学基金创新发展联合基金(CSTB2025NSCQ-LZX0133); 湖北省科技重大专项资助(2023BCA006); 重庆工商大学科学研究项目资助(1956057,2156015)

PDF(19988 KB)

Accesses

Citation

Detail

段落导航
相关文章

/