目的 建立外螺纹根部超声滚压仿真模型,结合试验和仿真,研究超声滚压静压力、超声振幅和滚压遍数对34CrNiMo6钢外螺纹根部表层残余应力的影响。方法 在MTS809.25型250 kN拉扭疲劳试验系统及分离式霍普金森压杆试验系统上,对34CrNiMo6钢的Johnson-Cook(J-C)本构模型参数进行标定,通过Hypermesh、Matlab联合建立带螺纹升角的螺纹有限元模型,基于赫兹接触理论给出静态力压下深度,从而建立外螺纹根部超声滚压仿真模型,通过试验对该模型进行有效性验证,并研究不同工艺参数对强化后螺纹根部残余应力的影响。结果 所建仿真模型残余应力计算结果与试验结果趋势相吻合,平均误差为11.4%。对外螺纹根部进行超声滚压仿真,发现最大残余压应力随着静压力、超声振幅的增大而增大,随着滚压遍数的增加呈先增大后减小的趋势。当其他参数相同时,残余压应力分别在静压力1 kN、振幅10 μm、滚压4遍时达到最大值,分别为-719.54、-723.61、-691.03 MPa。结论 通过超声滚压强化可以显著提高34CrNiMo6钢外螺纹根部的残余压应力,所建仿真模型能够有效预测强化后螺纹根部的应力分布。针对因根部圆角半径较小无法通过试验准确测量残余应力的螺纹,提供了一种仿真分析获取残余应力的方法。
Abstract
The fatigue resistance of threaded components can be enhanced through ultrasonic rolling surface strengthening, which improves the surface morphology of thread roots and introduces residual compressive stresses. However, ultrasonic strengthening of thread roots has been insufficiently investigated in existing literature, and no simulation studies on ultrasonic rolling processes for thread roots have been conducted. Therefore, a simulation model for ultrasonic rolling of external thread roots is developed. The combined experimental and simulation approach is employed to investigate the effects of static pressure, ultrasonic amplitude, and rolling passes on the residual stress distribution in the subsurface layer of 34CrNiMo6 steel external thread roots.
A quasi-static tensile test is first conducted with a MTS809.25 250 kN tension-torsion fatigue test system. Dynamic tensile tests are then conducted under three strain rates (1 000 s-1, 2 000 s-1, and 3 000 s-1) through a split Hopkinson pressure bar system to determine the Johnson-Cook constitutive model parameters for 34CrNiMo6 steel. A cylindrical mesh with predefined pitch is first generated in HyperMesh software, followed by extraction of nodal coordinates. The mesh geometry is then transformed into thread-specific nodal configurations through Matlab algorithms, enabling the finite element model of the threaded structure to be established. Based on the Hertz contact theory, the indentation depth under static loading is calculated, and a helical ultrasonic rolling simulation model considering the thread lead angle is established. Boundary conditions are subsequently defined in accordance with actual machining operational requirements. In addition, the experimental residual stress data are fitted using Origin software and subsequently imported into the finite element model through the Abaqus user subroutine sigini. Validation is performed by comparing simulated residual stresses with experimental results under identical processing parameters, showing consistent trends with an average error of 11.4%.
Three process parameters-static pressure, ultrasonic amplitude, and number of rolling passes-are selected for conducting ultrasonic rolling simulations on external thread roots. It is found through the simulations that the maximum residual compressive stress is found to increase proportionally with static pressure and ultrasonic amplitude, while demonstrating an initial increase followed by subsequent decrease with additional rolling passes. When other parameters are maintained constant, the maximum residual compressive stresses are obtained under the following individual parameter settings: -719.54 MPa is attained when the static pressure is set to 1 000 N; -723.61 MPa is achieved with the ultrasonic amplitude adjusted to 10 μm; -691.03 MPa is attained after the number of rolling passes is increased to 4. Furthermore, the depth of maximum residual stress is observed to shift from 50 μm to 150 μm below the surface when static pressure increased from 200 N to 1 000 N. Similar depth variations are recorded with ultrasonic amplitude enhancement (4 μm to 10 μm) and rolling pass increments (1 to 4 passes).
Significant enhancement of residual compressive stresses in 34CrNiMo6 steel external thread roots can be achieved through ultrasonic rolling surface strengthening, along with a progressive shift of the maximum residual compressive stress location to greater subsurface depths. The developed simulation methodology, incorporating actual thread geometry and initial stress states, provides reliable prediction of post-treatment stress fields. The maximum residual compressive stress is increased with higher static pressure and ultrasonic amplitude, but is first increased then decreased as rolling passes are added. For threads where residual stresses cannot be accurately measured experimentally due to small root fillet radii, a simulation-based method for residual stress determination is provided.
关键词
J-C本构模型 /
超声强化 /
螺纹根部 /
数值模拟 /
残余应力场
Key words
J-C constitutive model /
ultrasonic strengthening /
thread root /
numerical simulation /
residual stress field
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 方琴, 陈庚, 吴永波, 等. 热处理对34CrNiMo6钢组织和力学性能的影响[J]. 铸造技术, 2017, 38(8): 1866-1867.
FANG Q, CHEN G, WU Y B, et al.Influence of Heat Treatment on Microstructure and Mechanical Properties of 34CrNiMo6 Steel[J]. Foundry Technology, 2017, 38(8): 1866-1867.
[2] SHI S, HUANG C P, LIU F G, et al.Effect of Heat Treatment on Microstructure and Mechanical Properties of 34CrNiMo6 Steel by Laser Solid Forming[J]. Journal of Manufacturing Processes, 2022, 78: 308-318.
[3] HUANG C P, LIN X, YANG H O, et al.Microstructure and Tribological Properties of Laser Forming Repaired 34CrNiMo6 Steel[J]. Materials, 2018, 11(9): 1722.
[4] REZA KASHYZADEH K, GHORBANI S, KASIMOVICH A M.Common Causes of Failures in the Industrial Bolt and Nut Connections[J]. Engineering Failure Analysis, 2025, 173: 109431.
[5] SHAKERI I, DANIELSEN H K, TRIBHOU A, et al.Effect of Manufacturing Defects on Fatigue Life of High Strength Steel Bolts for Wind Turbines[J]. Engineering Failure Analysis, 2022, 141: 106630.
[6] 宋德玉, 高文, 赵振业, 等. 内螺纹滚压强化对超高强度钢疲劳性能的影响[J]. 航空学报, 1995, 16(5): 619-622.
SONG D Y, GAO W, ZHAO Z Y, et al.Effect of Female Screw Rolling Strengthening on Fatigue Property of 300M Superhigh Strength Steel[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(5): 619-622.
[7] 夏春和. 螺纹根部圆角滚压强化对螺纹疲劳寿命的影响[J]. 航空制造技术, 2014, 57(增刊1): 56-58.
XIA C H.Effect of Rolling Strengthening for Thread Fillet on Thread Fatigue Life[J]. Aeronautical Manufacturing Technology, 2014, 57(Sup. 1): 56-58.
[8] 邹洁, 刘士军, 刘萍. 油管螺纹滚压强化技术研究[J]. 采油工程, 2015(1): 45-49.
ZOU J, LIU S J, LIU P.Study on Tubing Thread Rolling Strengthening Technology[J]. Oil Production Engineering, 2015(1): 45-49.
[9] CHENG M L, ZHANG D Y, CHEN H W, et al.Development of Ultrasonic Thread Root Rolling Technology for Prolonging the Fatigue Performance of High Strength Thread[J]. Journal of Materials Processing Technology, 2014, 214(11): 2395-2401.
[10] 程明龙, 贾延奎, 张德远. 高强螺纹滚压工艺的有限元模拟及试验研究[J]. 工具技术, 2017, 51(5): 18-22.
CHENG M L, JIA Y K, ZHANG D Y.Numerical and Experiment Study of Cold Rolling Processing for High- Strength Thread[J]. Tool Engineering, 2017, 51(5): 18-22.
[11] 孙鑫, 张德远, 程明龙, 等. A100钢外螺纹椭圆超声滚压强化试验研究[J]. 航空制造技术, 2016, 59(3): 77-80.
SUN X, ZHANG D Y, CHENG M L, et al.Study on Strengthening of External Threads in A100 Steel by Elliptical Ultrasonic Rolling[J]. Aeronautical Manufacturing Technology, 2016, 59(3): 77-80.
[12] 夏天成, 杨晓峰, 邵照宇, 等. 超声滚压工艺对镍基单晶高温合金DD6表面完整性和疲劳寿命的影响[J]. 表面技术, 2024, 53(1): 182-191.
XIA T C, YANG X F, SHAO Z Y, et al.Effect of Ultrasonic Rolling Process on Surface Integrity and Fatigue Life of Nickel-Based Single Crystal Superalloy DD6[J]. Surface Technology, 2024, 53(1): 182-191.
[13] LIU Z H, YANG M J, DENG J, et al.A Predictive Approach to Investigating Effects of Ultrasonic-Assisted Burnishing Process on Surface Performances of Shaft Targets[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 4203-4219.
[14] LIU Y, ZHAO X, WANG D.Effective FE Model to Predict Surface Layer Characteristics of Ultrasonic Surface Rolling with Experimental Validation[J]. Materials Science and Technology, 2014, 30(6): 627-636.
[15] REN Z H, LI Z H, ZHOU S H, et al.Study on Surface Properties of Ti-6Al-4V Titanium Alloy by Ultrasonic Rolling[J]. Simulation Modelling Practice and Theory, 2022, 121: 102643.
[16] WANG H J, WANG X Q, TIAN Y J, et al.Study on Surface Residual Stress of 42CrMo Steel Treated by Ultrasonic Rolling Extrusion[J]. Scientific Reports, 2023, 13(1): 6956.
[17] FURUKAWA A, HAGIWARA M.Relationship between Fatigue Strength of a Bolt and the Residual Stress at the Thread Root: 1st Report, Residual Stress on the Groove- Rolled Specimen(Machine Elements and Manufacturing)[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2009, 75(752): 1094-1099.
[18] KIM W, KAWAI K, KOYAMA H, et al.Fatigue Strength and Residual Stress of Groove-Rolled Products[J]. Journal of Materials Processing Technology, 2007, 194(1/2/3): 46-51.
[19] 谢波, 李秋睿, 纪超, 等. 高承载曲轴用34CrNiMo6钢调质处理工艺强韧化机理研究[J]. 热加工工艺, 2024, 53(16): 24-29.
XIE B, LI Q R, JI C, et al.Study on Strengthening and Toughening Mechanism of 34CrNiMo6 Steel for High Load Crankshaft by Quenching and Tempering Process[J]. Hot Working Technology, 2024, 53(16): 24-29.
[20] LIU Z H, ZHAO H, LI J P, et al.Modified Johnson-Cook Constitutive Model of 18CrNiMo7-6 Alloy Steel under Ultrasonic Surface Burnishing Process[J]. Journal of Materials Engineering and Performance, 2023, 32(9): 4022-4030.
[21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料拉伸试验第1部分:室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature: GB/T 228.1-2010 [S]. Beijing: Standards Press of China, 2011.
[22] LIU Z H, ZHAO H, ZHANG C H, et al.Investigation on the Evolution of Residual Stress in Ultrasonic Surface Rolling Treatment-Processed 18CrNiMo7-6 Alloy Steel[J]. Transactions of the Indian Institute of Metals, 2023, 76(3): 777-785.
[23] ISO 724:2023, ISO General Purpose Metric Screw Threads - Basic Dimensions[S].
[24] LIU Z H, NIU Z T, LIU H Y, et al.Simulation of Residual Stress of V-Notch Specimen Treated by Ultrasonic Rolling[J]. Journal of Materials Engineering and Performance, 2025, 34(2): 1232-1242.
[25] TANG J Y, SHI Y, ZHAO J Y, et al.Numerical Modeling Considering Initial Gradient Mechanical Properties and Experiment Verification of Residual Stress Distribution Evolution of 12Cr2Ni4A Steel Generated by Ultrasonic Surface Rolling[J]. Surface and Coatings Technology, 2023, 452: 129127.
[26] 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报, 2020, 41(10): 023685.
ZHAO B, JIANG Y, BIE W B.Ultrasonic Rolling Technology in Surface strengthening: Progress in Research and Applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023685.
[27] ZHANG M, LIU Z H, DENG J, et al.Optimum Design of Compressive Residual Stress Field Caused by Ultrasonic Surface Rolling with a Mathematical Model[J]. Applied Mathematical Modelling, 2019, 76: 800-831.
[28] 刘治华, 刘鸿宇, 李建鹏, 等. 18CrNiMo7-6渗碳钢超声滚压工艺及疲劳性能研究[J]. 组合机床与自动化加工技术, 2025(3): 155-159.
LIU Z H, LIU H Y, LI J P, et al.Study on Ultrasonic Rolling Process and Fatigue Properties of 18CrNiMo7-6 Carburized Steel[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025(3): 155-159.
[29] 刘治华, 牛志涛, 郑凌硕, 等. 圆棒试样V型槽超声滚压装置设计及试验研究[J]. 重庆理工大学学报(自然科学), 2023, 37(8): 158-165.
LIU Z H, NIU Z T, ZHENG L S, et al.Design of Ultrasonic Rolling Device for V-Shaped Groove of round Rod Specimen and Experimental Study[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(8): 158-165.
[30] WANG F, MEN X H, LIU Y J, et al.Experiment and Simulation Study on Influence of Ultrasonic Rolling Parameters on Residual Stress of Ti-6Al-4V Alloy[J]. Simulation Modelling Practice and Theory, 2020, 104: 102121.
[31] 吴鲁纪, 吕永鑫, 张亚龙. 超声滚压对18CrNiMo7-6渗碳钢残余应力的数值模拟与试验研究[J]. 制造技术与机床, 2023(9): 34-38.
WU L J, LYU Y X, ZHANG Y L.Numerical Simulation and Experimental Study of Residual Stress of 18CrNiMo7-6 Carburized Steel by Ultrasonic Rolling[J]. Manufacturing Technology & Machine Tool, 2023(9): 34-38.
基金
国家自然科学基金重点项目(12432004)