目的 铁路道岔的结构复杂,车轮与道岔之间的动态相互作用较剧烈,容易出现磨损和接触疲劳损伤,因此提高道岔的耐磨性和滚动接触疲劳性能成为亟须解决的关键问题。激光固态相变技术在提升材料力学性能和耐损伤性能方面展现出巨大潜力,但该技术尚未在道岔应用中得到系统研究,这里旨在探索该技术在道岔钢轨中的应用可行性,并为激光固态相变U75V材料在道岔上的应用提供理论支撑。方法 首先分析不同搭接率下激光固态相变U75V材料的硬度和微观组织分布,并利用MJP-30A滚动磨损与接触疲劳试验机模拟道岔滚动接触载荷,研究激光固态相变U75V的滚动接触疲劳损伤的演变规律,并讨论滚动接触疲劳损伤机理。结果 激光固态相变能够改变U75V材料的微观组织,并提高材料的硬度。在激光固态相变后,形成了以针状马氏体为主的硬化区和以回火马氏体为主的软化区,硬化区表面硬度分布在800HV0.2左右,相较于基体的平均硬度(339HV0.2)提升了1.36倍;软化区表面硬度分布在650HV0.2左右,介于硬化区与基体之间。通过激光固态相变能够提高U75V材料的耐磨性能和抗塑性变形性能,与未处理U75V相比,在干态10 000 r后,激光固态相变U75V材料的磨损量降低了26.3%,硬化区塑性变形层深度减小了97.7%,软化区塑性变形层深度减小了95%。未处理U75V的疲劳裂纹扩展现象严重,在水态下、5 000 r时就发生了严重的疲劳剥落现象。在循环转数较小时激光固态相变U75V的硬化区主要为细小疲劳裂纹,软化区主要为表层细小密集的多层裂纹。在循环转数(130 000 r)较大时,硬化区和软化区发生了疲劳剥落,软化区表层细小密集的裂纹会被磨掉,部分裂纹会扩展,出现枝裂纹。结论 通过激光固态相变能够提高U75V材料的滚动接触疲劳性能。
Abstract
In order to improve the wear resistance and rolling contact fatigue (RCF) performance of railway turnouts which often suffer from severe damage due to their complex geometry and intense dynamic interaction with train wheels, a laser solid-state phase transition technique will be applied to U75V material. This method, although proven effective in enhancing surface properties in other materials, has not yet been systematically investigated for railway turnout applications. The work aims to explore the feasibility of applying this technology in turnout rails and provide theoretical support for the application of laser solid-state phase transition of U75V material in turnouts. A comprehensive experimental approach was employed to evaluate the microstructural evolution, hardness distribution, and RCF resistance of U75V material after laser solid-state phase transition under different overlap ratios.
A series of samples were processed through controlled laser treatment to induce phase transition, resulting in the formation of distinct hardened zone and softening zone. Microstructural characterization revealed that the hardened zone primarily consisted of needle-like martensite, whereas the softened region exhibited tempered martensite. The treated surface exhibited a significant increase in microhardness. The hardened zone reached approximately 800HV0.2, representing a 136% increase over the untreated U75V(339HV0.2), while the softening zone averaged around 650HV0.2, which was between the hardened zone and U75V substrate.
To simulate service conditions of turnouts, a MJP-30A rolling wear and contact fatigue tester was employed under both dry and water conditions. The laser solid-state phase transition U75V samples demonstrated substantial improvements in wear and plastic deformation resistance. After 10 000 revolutions in dry state, the wear volume was reduced by 26.3% compared to the untreated samples. Additionally, the depth of plastic deformation layers in hardened zone and softening zone decreased by 97.7% and 95%, respectively. These results confirmed the enhanced structural integrity of the treated surface under repeated rolling-sliding contact.
In fatigue test, untreated U75V samples showed severe crack propagation and early-stage spalling under water-lubricated conditions, with notable damage occurring at just 5 000 cycles. In contrast, the laser-treated samples exhibited delayed fatigue damage initiation and a different damage mechanism. At lower cycle counts, microcracks in the hardened zone remained fine and dispersed, while the softened zone presented dense, shallow multi-layer cracks confined near the surface. With extended cycles (up to 130 000), fatigue spalling was observed in both zones. However, surface microcracks in the softened region were gradually removed by abrasion, and a portion of them continued to expand downward and form branch cracks.
This study demonstrates that laser solid-state phase transition significantly improves the fatigue endurance and wear resistance of U75V material. The formation of tailored martensitic microstructures and the gradient hardness profile between hardened and softened zones effectively suppress plastic deformation and delay fatigue crack propagation. These findings provide new insights into damage control mechanisms in laser-treated turnout components and also offer experimental basis and theoretical foundation for the application of laser solid-state phase transition U75V material in turnouts.
关键词
激光固态相变 /
U75V材料 /
微观组织 /
塑性变形 /
滚动接触疲劳
Key words
laser solid-state phase transition /
U75V material /
microstructure /
plastic deformation /
rolling contact fatigue
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾志平, 徐榕, 阮莹, 等. 地铁大坡度道岔制动工况下钢轨表面接触应力变化规律研究[J]. 表面技术, 2021, 50(6): 243-249.
ZENG Z P, XU R, RUAN Y, et al.Research on the Change Law of Rail Surface Contact Stress under the Braking Condition of Metro Turnout[J]. Surface Technology, 2021, 50(6): 243-249.
[2] 董志国. 地铁9号高锰钢固定辙叉滚动接触疲劳裂纹萌生分析[D]. 成都: 西南交通大学, 2021: 1-2.
DONG Z G.Analysis on Fatigue Crack Initiation of Rolling Contact of No.9 High Manganese Steel Fixed Frog in Subway[D]. Chengdu: Southwest Jiaotong University, 2021: 1-2.
[3] 何柏林, 江明明. 激光淬火技术在模具表面处理中的应用与展望[J]. 表面技术, 2016, 45(11): 180-186.
HE B L, JIANG M M.Application and Prospect of Laser Quenching Technology in Mould Surface Treatment[J]. Surface Technology, 2016, 45(11): 180-186.
[4] ZHENG Y L, HU Q W, LI C Y, et al.A Novel Laser Surface Compositing by Selective Laser Quenching to Enhance Railway Service Life[J]. Tribology International, 2017, 106: 46-54.
[5] MUTHUKUMARAN G, DINESH BABU P.Laser Transformation Hardening of Various Steel Grades Using Different Laser Types[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(2): 103.
[6] 张群莉, 李国昌, 董浩芃, 等. 42CrMo钢激光-电磁感应复合淬火过程应力与变形研究[J]. 表面技术, 2024, 53(21): 142-152.
ZHANG Q L, LI G C, DONG H P, et al.Stress and Deformation of 42CrMo Steel during Laser-Electromagnetic Induction Hybrid Quenching Process[J]. Surface Technology, 2024, 53(21): 142-152.
[7] WANG B X, PAN Y M, LIU Y, et al.Effects of Quench- Tempering and Laser Hardening Treatment on Wear Resistance of Gray Cast Iron[J]. Journal of Materials Research and Technology, 2020, 9(4): 8163-8171.
[8] ZAMMIT A, ABELA S, BETTS J C, et al.Scuffing and Rolling Contact Fatigue Resistance of Discrete Laser Spot Hardened Austempered Ductile Iron[J]. Wear, 2019, 422: 100-107.
[9] 李光辉. 激光表面淬火对材料疲劳性能的影响研究[D]. 成都: 西南石油大学, 2015: 25-38.
LI G H.Study on the Effect of Laser Surface Quenching on Fatigue Properties of Materials[D]. Chengdu: Southwest Petroleum University, 2015: 25-38.
[10] SHARIFF S M, PAL T K, PADMANABHAM G, et al.Influence of Chemical Composition and Prior Microstructure on Diode Laser Hardening of Railroad Steels[J]. Surface and Coatings Technology, 2013, 228: 14-26.
[11] SHARIFF S M, PAL T K, PADMANABHAM G, et al.Sliding Wear Behaviour of Laser Surface Modified Pearlitic Rail Steel[J]. Surface Engineering, 2010, 26(3): 199-208.
[12] 王文健, 刘吉华, 郭俊, 等. 激光淬火对重载轮轨磨损与损伤性能的影响[J]. 材料科学与工艺, 2012, 20(6): 69-72.
WANG W J, LIU J H, GUO J, et al.Effect of Laser Quenching on Wear and Damage Behaviors of Heavy- Haul Wheel/Rail[J]. Materials Science and Technology, 2012, 20(6): 69-72.
[13] CAO X, SHI L B, CAI Z B, et al.Investigation on the Microstructure and Damage Characteristics of Wheel and Rail Materials Subject to Laser Dispersed Quenching[J]. Applied Surface Science, 2018, 450: 468-483.
[14] 曹熙, 王文健, 刘启跃, 等. 激光离散淬火对轮轨材料磨损与损伤性能的影响[J]. 中国表面工程, 2016, 29(5): 72-79.
CAO X, WANG W J, LIU Q Y, et al.Effects of Laser Dispersed Quenching on Wear and Damage Performances of Wheel/Rail Materials[J]. China Surface Engineering, 2016, 29(5): 72-79.
[15] 郑寅岚. 提高钢轨使用寿命的激光表面复合化技术与机理研究[D]. 武汉: 华中科技大学, 2016: 89-102.
ZHENG Y L.Study on Laser Surface Compounding Technology and Mechanism to Improve Rail Service Life[D]. Wuhan: Huazhong University of Science and Technology, 2016: 89-102.
[16] 国家市场监督管理总局, 国家标准化管理委员会. 铁路用热轧钢轨: GB/T 2585—2021[S]. 北京: 中国标准出版社, 2021: 7-9.
China State Administration for Market Regulation, China National Standardization Administration. Hot-Rolled Steel Rails for Railway: GB/T 2585-2021[S]. Beijing: Standards Press of China, 2021: 7-9.
[17] 杨春雷, 李芾, 付茂海, 等. 重载货车轴重与速度匹配关系研究[J]. 中国铁道科学, 2012, 33(3): 92-97.
YANG C L, LI F, FU M H, et al.Research on the Matching Relationship between the Axle Load and Running Speed of Heavy Haul Freight Train[J]. China Railway Science, 2012, 33(3): 92-97.
[18] 郭利康, 王平, 陈小平. 大秦线75 kg/m钢轨12号高锰钢固定辙叉受力分析[J]. 铁道建筑, 2009, 49(6): 114-117.
GUO L K, WANG P, CHEN X P.Force Analysis of 12# High Manganese Steel Fixed Frog on 75 kg/m Rail of Daqin Line[J]. Railway Engineering, 2009, 49(6): 114-117.
[19] 贾劭飞, 李英奇, 周韶博, 等. 硬度匹配对轮轨滚动接触疲劳损伤行为的影响规律研究[J]. 材料导报, 2024, 38(S1): 423-429.
JIA S F, LI Y Q, ZHOU S B, et al.Study on the Influence of Hardness Matching on Fatigue Damage Behavior of Wheel-Rail Rolling Contact[J]. Materials Reports, 2024, 38(S1): 423-429.
[20] TYFOUR W R, BEYNON J H, KAPOOR A.Deterioration of Rolling Contact Fatigue Life of Pearlitic Rail Steel Due to Dry-Wet Rolling-Sliding Line Contact[J]. Wear, 1996, 197(1/2): 255-265.
[21] LIU G L, HUANG C Z, ZHAO B, et al.Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 118.
[22] 张汉杰. CL60车轮钢表面激光淬火参数实验研究[D]. 西安: 西安科技大学, 2020: 40-41.
ZHANG H J.Experimental Study on Laser Quenching Parameters of CL60 Wheel Steel Surface[D]. Xi'an: Xi'an University of Science and Technology, 2020: 40-41.
[23] 李雪峰, 王春芬, 王嘉敏. 回火马氏体与回火索氏体辨析[J]. 热处理, 2012, 27(4): 12-16.
LI X F, WANG C F, WANG J M.Discrimination of Tempered Martensite from Tempered Sorbite[J]. Heat Treatment, 2012, 27(4): 12-16.
[24] 花银群, 陈瑞芳, 杨继昌, 等. 激光淬火和冲击复合强化处理40Cr钢的耐磨性能研究[J]. 摩擦学学报, 2003, 23(5): 448-450.
HUA Y Q, CHEN R F, YANG J C, et al.Study on Wear-Resistance of Laser Quenched and Shocked 40Cr Steel[J]. Tribology, 2003, 23(5): 448-450.
[25] 赖涵, 阚前华, 赵吉中, 等. 高应力幅循环历史对U78CrV钢棘轮行为的影响[J]. 四川理工学院学报(自然科学版), 2019, 32(2): 43-50.
LAI H, KAN Q H, ZHAO J Z, et al.Effect of High Stress Amplitude Cycle History on Ratcheting Behavior of U78CrV Steel[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2019, 32(2): 43-50.
[26] 胡月, 李群, 刘启跃, 等. 滚动方向对CL60车轮材料接触疲劳损伤的影响[J]. 西南交通大学学报, 2020, 55(1): 84-91.
HU Y, LI Q, LIU Q Y, et al.Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 84-91.
[27] 郭火明. 激光淬火与熔覆对重载轮轨材料磨损与损伤性能影响[D]. 成都: 西南交通大学, 2014: 34-35.
GUO H M.Effect of Lase Quenching and Clad on Wear and Damage Properties of Heavy-Duty Wheel and Rail Materials[D]. Chengdu: Southwest Jiaotong University, 2014: 34-35.
[28] 李学成. 微观组织对钢轨材料磨损与滚动接触疲劳性能影响研究[D]. 成都: 西南交通大学, 2021: 30-44.
LI X C.Effect of Microstructure on Wear and Rolling Contact Fatigue Properties of Rail Materials[D]. Chengdu: Southwest Jiaotong University, 2021:30-44.
[29] HARDWICK C, LEWIS R, EADIE D T.Wheel and Rail Wear-understanding the Effects of Water and Grease[J]. Wear, 314: 198-204.
[30] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 142-148.
LI S, ZHANG Q S, DAI G Z.Effect of Pre-Cracks on Wear Behavior of Railway Wheel Material Quenched by Plasma[J]. Materials Reports, 2022, 36(5): 142-148.
[31] 刘启跃, 何成刚, 黄育斌, 等. 轮轨疲劳损伤模拟实验研究及展望[J]. 西南交通大学学报, 2016, 51(2): 282-290.
LIU Q Y, HE C G, HUANG Y B, et al.Research and Prospects of Simulation Experiment on Wheel/Rail Fatigue Damage[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 282-290.
[32] 黄金伟, 王文健, 丁昊昊, 等. 激光表面淬火对车轮多边形萌生及发展影响试验研究[J]. 摩擦学学报, 2024, 44(2): 154-166.
HUANG J W, WANG W J, DING H H, et al.Experimental Study on the Influence of Laser Surface Quenching on the Initiation and Development of Wheel Polygon[J]. Tribology, 2024, 44(2): 154-166.
[33] 刘颍宾, 宫彦华, 王强, 等. 列车车轮滚动接触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305-313.
LIU Y B, GONG Y H, WANG Q, et al.Evaluation of Rolling Contact Fatigue Crack of Train Wheels[J]. Tribology, 2020, 40(3): 305-313.
基金
国家重点研发计划(2023YFB4603400); 国家自然科学基金(52320105007); 四川省博士后创新人才支持项目(BX202420); 中央高校基本科研业务费专项资金(2682024CG007)