目的 通过在超高分子量聚乙烯(UHMWPE)中添加二氧化硅杂化碳化硅材料(SiO2-SiC)来提升UHMWPE复合材料在不同摩擦工况下的摩擦磨损性能,以期获得摩擦学性能优异的复合材料。方法 以正硅酸四乙酯(TEOS)为硅源,采用原位生长法制备SiO2-SiC杂化材料,解决传统机械共混法中纳米相分散不均、界面结合弱等问题,并首次将其引入UHMWPE基体,采用热压成型法制备不同含量的5种UHMWPE/SiO2-SiC复合材料,采用FTIR、XRD表征分析SiO2-SiC杂化材料的红外特征峰和物相结构,利用万能试验机、硬度计和DSC表征其力学性能和热性能,采用往复式摩擦试验机评估干摩擦与水润滑条件下其摩擦学行为,结合SEM分析其磨损形貌和机理。结果 即使SiO2-SiC杂化材料的质量分数不同,熔融峰温度始终出现在约141 ℃处,增强了UHMWPE复合材料的热稳定性;3SC的硬度达到70HD,相较于纯UHMWPE(65 HD)提升了约7.7%。其中,4SC的模量达到192 MPa,相较于基体(77 MPa)提升了约149.4%,3SC的韧性为80.6 MJ/m3,相较于基体(46.5 MJ/m3)提升了约73.3%。在干摩擦条件下,2SC的平均摩擦因数分别为0.06、0.026、0.052,相较于UHMWPE降低了32.4%以上,在水润滑条件下相较于UHMWPE也降低了32%以上。SEM分析结果表明,SiO2-SiC通过形成连续转移膜和抑制微裂纹扩展,实现了“减摩-抗磨”双效提升。结论 SiO2-SiC杂化材料的添加可以明显提升UHMWPE复合材料的摩擦学性能,2SC在干/水摩擦条件下均表现出最低的摩擦因数和磨损体积,可为设计具有低摩擦因数、耐磨损的新型水润滑轴承复合材料提供关键理论和实验依据。
Abstract
The influence of SiO2-SiC hybrid materials prepared by in-situ growth on the tribological properties of UHMWPE composites under different friction conditions is investigated in order to obtain composites with excellent tribological properties. Five kinds of UHMWPE/SiO2-SiC composites with different contents are prepared by hot pressing. The infrared characteristic peaks and phase structures of SiO2-SiC hybrid materials are analyzed by Fourier transform infrared spectrometer and X-ray diffraction instrument, and the hardness of the composites is measured by Shore D hardness tester. The melting temperature of the composites is measured by differential scanning calorimeter (DSC) at a scanning rate of 10 ℃/min in nitrogen atmosphere. The thermal stability of the composites is analyzed by thermogravimetric analyzer (TGA). The temperature is raised from room temperature to 800 ℃ in argon atmosphere, the heating rate is 20 ℃/min, and the flow rate of argon is 20 mL/min. The tensile stress-strain test is carried out on a universal tensile testing machine (DNS800) at a tensile rate of 5 mm/min at 25 ℃, the mechanical and thermal properties of the composites are studied in detail. In order to investigate the friction and wear properties of UHMWPE composites modified by SiO2-SiC hybrid materials, the tribological properties of UHMWPE composites are investigated by MDW-02G high speed reciprocating friction and wear tester. The surface micro-morphology of the wear samples is photographed with the help of scanning electron microscope, the corresponding wear mechanism is analyzed. The addition of SiO2-SiC hybrid material can reflect the crystallization behavior of UHMWPE matrix, improve the crystallinity of the composite, help to stabilize the internal structure of the material, and reduce the structural change of the material at high temperature, indicating that the SiO2-SiC hybrid material filled modified UHMWPE composite has good thermal stability. The Shore hardness of the composites is improved, and the tensile properties of the composites increase at first and then decrease with the increase of filling content, and the introduction of hybrid SiO2-SiC significantly improves the Shore hardness, strength, modulus, elongation at break and toughness of the composites, which is attributed to the better interfacial bonding and stress transfer efficiency of the hybrid fillers. The UHMWPE composites containing SiO2-SiC hybrid particles not only improve the strength of the composites, but also have better load-bearing capacity of the transfer film. Under most working conditions, the content of SiO2-SiC hybrid fillers has a great influence on the friction coefficient, and the friction coefficient of the composites decreases at first and then increases with the increase of filling content. The tribological properties of UHMWPE composites modified with 2% SiO2-SiC hybrid materials are better than those of other content fillers under dry friction and water lubrication conditions. In conclusion, the tribological properties of the composites with 2% SiO2-SiC hybrid materials are the best, which can be used as a reference for the design of new water-lubricated bearing composites with excellent low friction and wear resistance.
关键词
超高分子量聚乙烯 /
碳化硅 /
原位生长 /
杂化材料 /
摩擦工况 /
摩擦学性能
Key words
UHMWPE /
SiC /
growth in situ /
hybrid material /
friction condition /
ribological properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUN J F, LI A S, SU F H, et al.Tribological Property of Titanium Alloy Surface with Different Texture Structure under Dry Friction and Perfluoropolyether Lubrication[J]. Tribology, 2018, 38(6): 658-664.
[2] DONG C L, YUAN C Q, WANG L, et al.Tribological Properties of Water-Lubricated Rubber Materials after Modification by MoS2 Nanoparticles[J]. Scientific Reports, 2016, 6: 35023.
[3] 邓亚玲, 李于文成, 许煜, 等. 聚乙烯表面接枝改性及应用的研究进展[J]. 表面技术, 2023, 52(9): 108-124.
DENG Y L, LI Y, XU Y, et al.Research Advance in Application of Surface Grafting Modification of Polyethylene[J]. Surface Technology, 2023, 52(9): 108-124.
[4] CHEN J Z, GUO Z W, LI X F, et al.Development of Gradient Structural Composite for Improving Tribological Performance of PU Material in Water-Lubricated Bearings[J]. Tribology International, 2022, 176: 107876.
[5] DUAN L L, LI J, DUAN H T.Nanomaterials for Lubricating Oil Application: A Review[J]. Friction, 2023, 11(5): 647-684.
[6] XIE Z L, JIAO J, YANG K, et al.A State-of-Art Review on the Water-Lubricated Bearing[J]. Tribology International, 2023, 180: 108276.
[7] WU L P, WANG F, ZHANG C W, et al.Silver/Graphene Nanocomposite as an Additive for Aqueous Lubrication[J]. ACS Applied Nano Materials, 2023, 6(3): 1603-1609.
[8] 孟培媛, 孙琳琳. 超高分子量聚乙烯/石墨烯复合涂层制备及其在海洋装备防护中的应用[J]. 表面技术, 2017, 46(10): 35-41.
MENG P Y, SUN L L.Flame Sprayed UHMWPE/ Graphene Nanosheet Composite Coatings for Marine Applications[J]. Surface Technology, 2017, 46(10): 35-41.
[9] 林潼, 杜蓉, 郑晓军, 等. Fe3O4-MoS2协同改性环氧树脂涂层的制备及耐磨防腐性能研究[J]. 表面技术, 2024, 53(20): 102-117.
LIN T, DU R, ZHENG X J, et al.Fe3O4-MoS2 Nanohybrid for Enhancing Wear Resistance and Anticorrosion Performance of Epoxy Coatings[J]. Surface Technology, 2024, 53(20): 102-117.
[10] 傅陈超, 张润, 薛平, 等. GNP和CNT协同增强改性UHMWPE的热性能和力学性能[J]. 塑料工业, 2023, 51(4): 110-116.
FU C C, ZHANG R, XUE P, et al.Synergistic Enhancement of Thermal and Mechanical Properties of Modified UHMWPE by GNPS and CNTS[J]. China Plastics Industry, 2023, 51(4): 110-116.
[11] YANG T, ZHAN S P, JIA D, et al.Tribological Properties of UHMWPE/PAANa/Ph4Sn Composite Materials in Seawater Lubrication[J]. Journal of Polymer Engineering, 2023, 43(4): 333-342.
[12] 郑占模, 董从林, 袁成清, 白秀琴. 二氧化硅纳米颗粒协同碳纤维增强复合材料防滑和耐磨性能研究[J]. 摩擦学学报, 2025, 45(4): 593-607.
ZHENG Z M, DONG C L, YUAN C Q, BAI X Q.Synergistie Effeet of Silica Nano-Particles and Carbon Fiber onthe Antiskidand Wear Resistance Properties of Brake Composites[J]. Tribology, 2025, 45(4): 593-607.
[13] 杨东亚, 田松, 任俊芬, 等. 纳米填料增强UHMWPE-橡胶水润滑摩擦学性能[J]. 工程科学与技术, 2021, 53(5): 191-198.
YANG D Y, TIAN S, REN J F, et al.Tribological Properties of UHMWPE-Rubber Reinforced by Nano Fillers under Water Lubricated[J]. Advanced Engineering Sciences, 2021, 53(5): 191-198.
[14] YE J, KHARE H S, BURRIS D L.Quantitative Characterization of Solid Lubricant Transfer Film Quality[J]. Wear, 2014, 316(1/2): 133-143.
[15] 祝保林, 周胜波, 杨强. SiC改性氰酸酯树脂/三甲氧基乙烯基硅烷材料的制备[J]. 工程塑料应用, 2018, 46(10): 44-50.
ZHU B L, ZHOU S B, YANG Q.Preparation of Composites of Cyanate Ester Resin/Trimethoxy Vinyl Silane Modified by Silicon Carbide[J]. Engineering Plastics Application, 2018, 46(10): 44-50.
[16] 宗学文, 刘亮晶, 田航, 等. 不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响[J]. 材料导报, 2024, 38(11): 240-246.
ZONG X W, LIU L J, TIAN H, et al.Effect of Different SiC/ZnO Contents on the Curing Characteristics and Mechanical Properties of Photosensitive Resin[J]. Materials Reports, 2024, 38(11): 240-246.
[17] 李刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基材料性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(11): 150-159.
LI K, WEI Z Q, QIAO H X, et al.Experimental Study on Property of Polymer Cement Based Composite Modified by Nano-SiO2[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 150-159.
[18] 闫海波, 陶佳栋, 周子涵, 等. SiC/SiO2复合涂层对碳纤维及其复合材料抗氧化性能影响研究[J]. 复合材料科学与工程, 2025(3): 130-138.
YAN H B, TAO J D, ZHOU Z H, et al.Study on the Effect of SiC/SiO2 Complex Coating on the Antioxidant Performance of Carbon Fiber and Its Composite Materials[J]. Composites Science and Engineering, 2025(3): 130-138.
[19] 魏文涛, 王全龙, 王剑宇, 等. SiO2-BNNSs杂化材料对磷酸盐复合涂层高温摩擦学性能的影响[J]. 表面技术, 2024, 53(15): 34-44.
WEI W T, WANG Q L, WANG J Y, et al.Effect of SiO2-BNNSS Hybrid Material on High Temperature Tribological Properties of Phosphate Composite Coatings[J]. Surface Technology, 2024, 53(15): 34-44.
[20] 郭朋彦, 张瑞珠, 包仲保, 等. 纳米氧化铝掺杂酚醛/环氧聚合物基复合材料的制备及耐磨性能[J]. 表面技术, 2023, 52(5): 79-89.
GUO P Y, ZHANG R Z, BAO Z B, et al.Preparation and Wear Resistance of Nano-Al2O3 Doped PF/EP Polymer Matrix Composite[J]. Surface Technology, 2023, 52(5): 79-89.
[21] ZHANG Z, OUYANG W, LIANG X X, et al.Review of the Evolution and Prevention of Friction, Wear, and Noise for Water-Lubricated Bearings Used in Ships[J]. Friction, 2024, 12(1): 1-38.
[22] 胡文博, 杜爱华. 固体润滑剂对NBR/SiC复合材料摩擦磨损性能的影响[J]. 特种橡胶制品, 2021, 42(5): 1-5.
HU W B, DU A H.Effect of Solid Lubricants on the Friction and Wear Properties of NBR/SiC Composites[J]. Special Purpose Rubber Products, 2021, 42(5): 1-5.
[23] XU Y C, ZHAO G G, WANG Q T, et al.Synthesis of Al2O3/SiO2 Core-Shell Composite Abrasives Toward Ultrasmooth and High-Efficiency Polishing for Sapphire Wafers[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237(5): 1698-1708.
[24] YIN Y H, XU P F, FANG J B, et al.Effect of Fly Ash cenosphere@SiO2 Core-Shell Microspheres on Physical Properties and Microstructures of Vitrified Bond Diamond Tools[J]. Diamond and Related Materials, 2020, 103: 107703.
[25] ZHANG H, ZHAO S C, XIN Z, et al.Mechanism of Size Effects of a Filler on the Wear Behavior of Ultrahigh Molecular Weight Polyethylene[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1950-1963.
[26] CAO Z, SHI G J, YAN X T, et al.In Situ Fabrication of CuO/UHMWPE Nanocomposites and Their Tribological Performance[J]. Journal of Applied Polymer Science, 2019, 136(36): 47925.
[27] SHELLY D, LEE S Y, PARK S J.Compatibilization of Ultra-High Molecular Weight Polyethylene (UHMWPE) Fibers and Their Composites for Superior Mechanical Performance: A Concise Review[J]. Composites Part B: Engineering, 2024, 275: 111294.
[28] WANG Q F, WANG H L, FAN N, et al.Combined Effect of Fibers and PTFE Nanoparticles on Improving the Fretting Wear Resistance of UHMWPE-Matrix Composites[J]. Polymers for Advanced Technologies, 2016, 27(5): 642-650.
[29] ARAUJO BORGES R, CHOUDHURY D, ZOU M.3D Printed PCU/UHMWPE Polymeric Blend for Artificial Knee Meniscus[J]. Tribology International, 2018, 122: 1-7.
[30] HADDADI S A, AHMAD RAMAZANI S A, AMINI M, et al. In-Situ Preparation and Characterization of Ultra- High Molecular Weight Polyethylene/Diamond Nanocomposites Using Bi-Supported Ziegler-Natta Catalyst: Effect of Nanodiamond Silanization[J]. Materials Today Communications, 2018, 14: 53-64.
[31] YEH J T, WANG C K, TSAI C C, et al.Ultradrawing Properties of Ultra-High Molecular Weight Polyethylene/ Hydrochloric Acid Treated Attapulgite Fibers[J]. Journal of Polymer Research, 2013, 20(9): 240.
[32] ZHENG X B, GAO G, SUN B G, et al.Study of Frictional Wear and Desorption of Nanoparticle-Rubber Blend Modified UHMWPE Composites[J]. Polymer Composites, 2024, 45(12): 10812-10825.
基金
国家自然科学基金(51775169); 河南省重点研发专项(241111222100); 郑州市创新创业团队项目(2024)