目的 研究不同轧制速率对医用锌合金微观组织结构及摩擦磨损性能的影响规律,为延长人体环境下植入部位的服役寿命提供理论支撑,提高植入安全性。方法 通过真空熔炼制备新型Zn-Li-Er合金,并采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、激光共聚焦分析仪(3D/CLSM)及多功能材料表面性能试验仪对不同轧制速率下医用锌合金的显微组织结构、相组成、力学性能和干/湿摩擦磨损性能进行检测和分析,阐明合金服役过程的摩擦磨损失效机制。结果 在轧制速率30 m/min下,医用锌合金经过形变后在Hank's模拟体液环境下表现出较好的耐磨性能,磨损率仅为0.65×10-3 g/(N∙m);晶粒细化程度较高,硬度为164.96HV。材料的硬度越高,则抵抗划伤和切削的能力越强,进而其耐磨性得到改善。同时,热能的输入调控了合金内部组织的空间分布,增强了微观组织的机械稳定性,降低了摩擦力及摩擦损耗。当轧制速率增至40 m/min时,晶粒尺寸开始变大,较低的密度晶界网络不利于阻碍摩擦副的相对运动,进而恶化了合金的耐磨性能。结论 在轧制速率为30 m/min时,医用锌合金表现出较优的植入性能,实现了抗磨损能力和耐腐蚀性能的双重提升。
Abstract
During clinical service, medical metals are not only subject to complex stress states but also suffer from the wear-corrosion interaction under nonlinear loads, resulting in remarkable deterioration in mechanical properties, accelerated component loss, local damage, and catastrophic failure. Especially, the fine particles formed by wear and the accumulation of metal ions may easily cause the osteolysis, which seriously threatens the safety of organisms. Therefore, it is particularly necessary to develop high-performance wear-resistant medical metal materials and explore their corrosion-wear mechanisms in physiological environments.
The new Zn-Li-Er alloy was fabricated through vacuum melting. The alloy was placed in a box furnace at 320 ℃ for 2 h. The plate was hot rolled at different rolling speeds of 10 m/min, 30 m/min, and 40 m/min at a rolling temperature of 320 ℃, a rolling reduction ratio of 70%, and a single rolling thickness of 2 mm. After each pass, the rolled plate was reheated for 5 minutes. The experimental samples were cut by an electrical discharge numerical control wire cutting machine. Then, metallographic microscope (Leica Dmi8), scanning electron microscope (Phenom XL) and X-ray diffractometer (XRD, D8 ADVANCE) were used to analyze the microstructure and phase composition of zinc alloys at different rolling speeds, and keller reagent was used as a corrosion agent for optical microstructure. The tensile test of hot-rolled zinc alloy samples was carried out by tensile testing machine (UTM 5305), and the hardness data were tested by Vickers hardness tester (HV-5SPTA). The friction tests were carried out by a multifunctional material surface property tester (MFT-4000) to calculate the wear rates and observe the surface morphology, element distribution and 3D profile of the wear mark by SEM and laser confocal analyzer (3D/CLSM).
After the deformation at 30 m/min rolling rate, the medical zinc alloy showed the best wear resistance in Hank's simulated body fluid environment, and the wear rate was only 0.65×10-3 g/(N∙m), the grain refinement degree was the highest, and the hardness was 164.96HV. The higher the material hardness, the stronger the ability to resist scratching and cutting, thereby improving its wear resistance. At the same time, high thermal energy improved the mechanical stability of the microstructure by changing the redistribution of the second phase/intermetallic compounds, leading to a decrease in the friction force, reducing the cleavage effect of the second relative matrix, and thereby reducing the wear and rupture rate of the alloy. However, when the rolling speed increased to 40 m/min, the grain sizes began to increase, forming a relatively lower density grain boundary network that was less conducive to impeding the relative motion of the friction pair, thereby deteriorating the wear resistance of the alloy.
It is found that the medical zinc alloy at a rolling rate of 30 m/min exhibits the best implantation performance, achieving a dual improvement in anti-wear ability and corrosion resistance.
关键词
医用锌合金 /
轧制速率 /
磨损率 /
细晶强化 /
固溶强化
Key words
medical zinc alloy /
hot rolling speed /
wear rate /
fine grain strengthening /
solution strengthening
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯博玄, 谭晋韵, 裴佳, 等. 可降解锌基骨植入材料及其表面改性研究进展[J]. 表面技术, 2024, 53(2): 1-14.
FENG B X, TAN J Y, PEI J, et al.Research Progress of Biodegradable Zinc-Based Orthopedic Implant Materials and Their Surface Modification[J]. Surface Technology, 2024, 53(2): 1-14.
[2] 张昕, 王婷, 白晶, 等. 不同工艺参数对微弧氧化医用纯锌表面微观组织和性能的影响[J]. 表面技术, 2021, 50(2): 39-47.
ZHANG X, WANG T, BAI J, et al.Effects of Different Technological Parameters on Surface Microstructure and Properties of Micro-Arc Oxidized Medical Pure Zinc[J]. Surface Technology, 2021, 50(2): 39-47.
[3] 刘敬福, 鹿超超, 尹康, 等. ZnMgBaGd生物医用锌合金的组织及性能研究[J]. 功能材料, 2020, 51(10): 10145-10151.
LIU J F, LU C C, YIN K, et al.Study on the Microstructure and Properties of ZnMgBaGd Biomedical Zinc Alloy[J]. Journal of Functional Materials, 2020, 51(10): 10145-10151.
[4] LIU Y Y, YANG Y L, DONG D Y, et al.Improving Wear Resistance of Zr-2.5Nb Alloy by Formation of Microtextured Nitride Layer Produced via Laser Surface Texturing/Plasma Nitriding Technology[J]. Surfaces and Interfaces, 2020, 20: 100638.
[5] 李锋, 王安敏, 王成焘. 天然关节软骨与医用不锈钢摩擦磨损行为研究[J]. 摩擦学学报, 2016, 36(1): 42-47.
LI F, WANG A M, WANG C T.Tribological Behavior of Articular Cartilage Against Medical Stainless Steel[J]. Tribology, 2016, 36(1): 42-47.
[6] 王振国, 程曦, 刘伟, 等. 一种新型生物医用Ti-20Zr-10Nb合金的腐蚀、磨损及腐蚀磨损行为[J]. 稀有金属材料与工程, 2022, 51(6): 1972-1978.
WANG Z G, CHENG X, LIU W, et al.Corrosion, Wear and Tribocorrosion Behavior of a New Biomedical Ti-20Zr-10Nb Alloy[J]. Rare Metal Materials and Engineering, 2022, 51(6): 1972-1978.
[7] 薛燕, 王振国. 医用NiTi合金在Hank's模拟体液中的微磨损行为[J]. 表面技术, 2018, 47(11): 97-101.
XUE Y, WANG Z G.Micro-Wear Behavior of the Medical NiTi Alloy in Hank's Simulated Body Fluid[J]. Surface Technology, 2018, 47(11): 97-101.
[8] ZHAO S, SEITZ J M, EIFLER R, et al.Zn-Li Alloy after Extrusion and Drawing: Structural, Mechanical Characterization, and Biodegradation in Abdominal Aorta of Rat[J]. Materials Science and Engineering: C, 2017, 76: 301-312.
[9] 孟晓丽, 吕萍, 崔旭东, 等. 生物可降解锌合金用于骨植入物的研究进展[J]. 表面技术, 2022, 51(10): 66-75.
MENG X L, LYU P, CUI X D, et al.Research Progress of Biodegradable Zinc Alloys for Bone Implants[J]. Surface Technology, 2022, 51(10): 66-75.
[10] 王岚, 余森, 于振涛, 等. 生物医用镁锌合金表面多孔钙磷涂层制备及其特征研究[J]. 热加工工艺, 2019, 48(18): 85-89.
WANG L, YU S, YU Z T, et al.Research on Preparation and Characteristics of Porous Ca-P Coatings on Biomedical Mg-Zn Alloys Surface[J]. Hot Working Technology, 2019, 48(18): 85-89.
[11] 石磊, 曹磊, 古毓康, 等. 金属锌表面超疏水薄膜的耐蚀及摩擦学性能的表征[J]. 表面技术, 2017, 46(9): 203-208.
SHI L, CAO L, GU Y K, et al.Characterization of Corrosion Resistance and Tribological Property of Super-Hydrophobic Film on Metallic Zinc[J]. Surface Technology, 2017, 46(9): 203-208.
[12] 黄雅盼, 邹晋, 胡强, 等. Cu-15Fe-Ce轧制形变合金组织和性能研究[J]. 有色金属工程, 2024, 14(11): 76-84.
HUANG Y P, ZOU J, HU Q, et al.Study on the Microstructure and Properties of Cu-15Fe-Ce Rolled Deformation Alloy[J]. Nonferrous Metals Engineering, 2024, 14(11): 76-84.
[13] HUANG S Y, WANG L N, ZHENG Y F, et al.In Vitro Degradation Behavior of Novel Zn-Cu-Li Alloys: Roles of Alloy Composition and Rolling Processing[J]. Materials & Design, 2021, 212: 110288.
[14] 邵海泉, 李强军. 比压对液态模锻机械外壳用ZnAl13Si2Mn0.6锌合金性能的影响[J]. 热加工工艺, 2020, 49(21): 99-101.
SHAO H Q, LI Q J.Effect of Specific Pressure on Properties of ZnAl13Si2Mn0.6 Zinc Alloy for Liquid Die Forging Machine Shell[J]. Hot Working Technology, 2020, 49(21): 99-101.
[15] TONG X, SHEN T X, ZHOU X, et al.Biodegradable Zn-Cu-Li Alloys with Ultrahigh Strength, Ductility, Antibacterial Ability, Cytocompatibility, and Suitable Degradation Rate for Potential Bone-Implant Applications[J]. Smart Materials in Manufacturing, 2023, 1: 100012.
[16] LIN J X, TONG X, SHI Z M, et al.A Biodegradable Zn-1Cu-0.1Ti Alloy with Antibacterial Properties for Orthopedic Applications[J]. Acta Biomaterialia, 2020, 106: 410-427.
[17] TONG X, CAI W H, LIN J X, et al.Biodegradable Zn-3Mg-0.7Mg2Si Composite Fabricated by High-Pressure Solidification for Bone Implant Applications[J]. Acta Biomaterialia, 2021, 123: 407-417.
[18] ZHANG X B, DAI J W, ZHANG J, et al.Quantitative Evaluation of the Interaction between Wear and Corrosion on Mg-3Gd-1Zn Alloy in Simulated Body Fluid[J]. Journal of Materials Engineering and Performance, 2019, 28(1): 355-362.
[19] OO H Z, MUANGJUNBUREE P.Hardfacing of THermite Welded Rail by Flux-Cored Arc Welding[J]. Wear, 2024, 546: 205314.
[20] SHANG X C, LIANG Y L, WANG P, et al.Synergistic Mechanism of the Fretting Wear Resistance of Fe2O3/Ag Nanostructured Coatings Prepared by Sliding Friction and Magnetron Sputtering[J]. Wear, 2024, 546: 205313.
[21] TONG X, ZHANG D C, LIN J X, et al.Development of Biodegradable Zn-1Mg-0.1RE (RE=Er, Dy, and Ho) Alloys for Biomedical Applications[J]. Acta Biomaterialia, 2020, 117: 384-399.
[22] 陈吉华, 邹正阳, 严红革, 等. 高应变速率轧制对Mg-4Zn合金组织及性能的影响[J]. 稀有金属材料与工程, 2017, 46(8): 2220-2226.
CHEN J H, ZOU Z Y, YAN H G, et al.Effects of High Strain-Rate Rolling on Microstructure and Properties of the Mg-4Zn Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(8): 2220-2226.
[23] 张鹏, 段宏钢, 张丽娜, 等. 轧制应变速率对2A14铝合金组织和力学性能的影响[J]. 热加工工艺, 2021, 50(15): 91-93.
ZHANG P, DUAN H G, ZHANG L N, et al.Effect of Rolling Strain Rate on Microstructure and Mechanical Properties of 2A14 Aluminum Alloy[J]. Hot Working Technology, 2021, 50(15): 91-93.
[24] 刘华燊, 孙有平, 何江美, 等. 轧制应变速率对Mg-1%Al合金组织、阻尼和力学性能的影响[J]. 矿冶工程, 2024, 44(2): 172-177.
LIU H S, SUN Y P, HE J M, et al.Effects of Rolling Strain Rates on Microstructure, Damping and Mechanical Properties of Mg-1%Al Alloy[J]. Mining and Metallurgical Engineering, 2024, 44(2): 172-177.
[25] 邢秀伟, 黄晨, 刘阳, 等. 中高应变速率轧制AZ31镁合金边裂组织研究[J]. 塑性工程学报, 2023, 30(5): 66-72.
XING X W, HUANG C, LIU Y, et al.Research on Edge Crack Microstructure of AZ31 Magnesium Alloy during Medium-High Strain Rate Rolling[J]. Journal of Plasticity Engineering, 2023, 30(5): 66-72.
[26] NEČAS D, HYBÁŠEK V, PINC J, et al. Exploring the Microstructure, Mechanical Properties, and Corrosion Resistance of Innovative Bioabsorbable Zn-Mg-(Si) Alloys Fabricated via Powder Metallurgy Techniques[J]. Journal of Materials Research and Technology, 2024, 29: 3626-3641.
[27] 刘春鹏, 张关震, 李传维, 等. 载荷对D2车轮钢滑动磨损表层微观组织和性能影响[J]. 表面技术, 2024, 53(11): 150-159.
LIU C P, ZHANG G Z, LI C W, et al.Effect of Load on Surface Microstructure and Property of D2 Wheel Steel under Sliding Wear[J]. Surface Technology, 2024, 53(11): 150-159.
[28] 延黎, 吴昊年, 田乐, 等. 激光冲击强化MB8镁合金的工艺分析及摩擦磨损性能研究[J]. 表面技术, 2022, 51(11): 45-57.
YAN L, WU H N, TIAN L, et al.Process Analysis and Friction Wear Performance Study of Laser Impact Strengthened MB8 Magnesium Alloy[J]. Surface Technology, 2022, 51(11): 45-57.
[29] LI W Y, DAI Y L, ZHANG D C, et al.Biodegradable Zn-0.5Li Alloys with Supersaturated Solid Solution-Aging Treatment for Implant Applications[J]. Journal of Materials Research and Technology, 2023, 24: 9292-9305.
[30] 姜自滔, 杨康, 辛越, 等. 退火热处理对Cr3C2-FeCrBSi涂层摩擦磨损性能的影响[J]. 表面技术, 2024, 53(1): 65-77.
JIANG Z T, YANG K, XIN Y, et al.Effect of Annealing Treatment on Friction and Wear Properties of Cr3C2-FeCrBSi Coatings[J]. Surface Technology, 2024, 53(1): 65-77.
基金
河北省中央引导地方科技发展资金项目(226Z1004G); 河北省自然科学基金(E2024209059); 华北理工大学医工融合项目(ZD-YG-202427); 河北省省属高校基本科研业务费(JJC2024080)