齿轮胶合研究综述:机理、计算方法及优化策略

郭栋, 邓文丰, 李明, 辛玉, 方川

表面技术 ›› 2025, Vol. 54 ›› Issue (19) : 14-15.

PDF(4396 KB)
PDF(4396 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (19) : 14-15. DOI: 10.16490/j.cnki.issn.1001-3660.2025.19.002
研究综述

齿轮胶合研究综述:机理、计算方法及优化策略

  • 郭栋a, 邓文丰a, 李明a,*, 辛玉b, 方川a
作者信息 +

Research Review of Gear Scuffing: Mechanism, Calculation Methods and Optimization Strategies

  • GUO Donga, DENG Wenfenga, LI Minga,*, XIN Yub, FANG Chuana
Author information +
文章历史 +

摘要

随着新能源汽车的发展,其减速器中的齿轮常处于高速重载等极端工况,易因润滑不良引发胶合失效,表现为齿面温度急剧上升导致润滑油膜破裂,金属表面粘连并撕裂,严重影响着传动系统的可靠性和使用寿命。综述了现目前有关于齿轮胶合的失效机理,包括闪温理论、弹流润滑理论、PVT极限理论以及绝热剪切不稳定性理论。通过对比ISO 6336-20/21与GB/Z 6413.1/2等标准中的计算方法,揭示了积分温度法与闪温法在复杂工况下的适用性差异,探讨了数值计算方法和机器学习算法在齿轮胶合问题中的应用。总结了影响齿轮胶合的关键因素,包括制造工艺、工作条件、几何参数和润滑条件等。合理设计压力角、模数等宏观参数可改善载荷分布,而微观修形则能优化表面接触状态;极压添加剂和合理的供油方式能有效增强油膜稳定性;表面强化处理和涂层技术则能改善残余应力分布,降低摩擦系数。通过优化齿轮制造工艺、改善齿轮工作和润滑条件、合理设计齿轮几何参数,可有效提高齿轮的抗胶合性能。最后对齿轮胶合的发展趋势进行了展望,未来研究应结合多学科交叉技术,融合先进计算方法与实验手段,提升齿轮胶合预测的精度和适用性。同时应针对现代高性能齿轮在极端工况下的应用需求,优化材料、润滑和制造工艺,开发更具针对性的抗胶合设计策略,为高效可靠的齿轮传动系统提供坚实的技术支撑。

Abstract

With the development of new energy vehicles, the gears in their reducers are often in extreme working conditions such as high speed, heavy load and poor lubrication, which makes the gears prone to scuffing failure during the meshing process. Gear scuffing is mainly manifested in a sharp increase in the local temperature of the tooth surface, rupture of the lubricating oil film, direct contact and adhesion of the metal surfaces, and ultimately tearing of the tooth surface material. This failure mode seriously affects the reliability and service life of the transmission system. Beyond merely reducing service life, scuffing failures in critical components like new energy vehicle reducers often lead to unpredictable breakdowns, resulting in significant economic losses due to downtime and high maintenance costs. Studying the mechanism of gear scuffing and its affecting factors is crucial to improving the durability of the gear. Improving the anti-scuffing performance of the gear is an urgent problem to be solved at present. The work aims to review the current failure mechanisms of gear scuffing, including flash temperature theory, elastohydrodynamic lubrication theory, PVT limit theory and adiabatic shear instability theory. By comparing the calculation methods in standards such as ISO 6336-20/21 and GB/Z 6413.1/2, the differences in the applicability of the integral temperature method and the flash temperature method under complex working conditions are revealed. The application of numerical calculation methods and machine learning algorithms in gear scuffing problems is analyzed. Numerical approaches, such as the finite element method, enable precise simulation of gear temperature fields under various operating conditions, offering detailed insights into thermal behavior. Concurrently, the integration of machine learning algorithms presents a powerful avenue for enhancing prediction accuracy and efficiency, particularly in handling the multifaceted variables and non-linear relationships inherent in gear scuffing problems. The key factors affecting gear scuffing are summarized, including manufacturing process, working conditions, geometric parameters and lubrication conditions. Reasonable design of macro parameters such as pressure angle and modulus can improve load distribution, while micro-modification can optimize surface contact state. Extreme pressure additives and reasonable oil supply methods can effectively enhance oil film stability. Surface strengthening treatment and coating technology can improve residual stress distribution and reduce friction coefficient. By optimizing the gear manufacturing process, improving the working and lubrication conditions of gears, and rationally designing the geometric parameters of gears, the anti-scuffing performance of gears can be effectively improved. Finally, the development trend of gear scuffing is prospected. Future research should combine multidisciplinary cross-technology, integrate advanced calculation methods and experimental means, and improve the accuracy and applicability of gear scuffing prediction. At the theoretical level, it is necessary to further explore the material failure mechanism at the microscopic scale. In terms of calculation methods, efficient numerical models coupled with multiple physical fields should be developed. Multi-faceted analyses should be conducted by integrating factors such as heat, force and flow, and machine learning techniques should be introduced to enhance the prediction efficiency under complex working conditions. In addition, efforts should focus on developing new anti-scuffing composite materials and surface engineering technologies, optimizing lubrication methods, and establishing a complete performance database for the entire life cycle of gears. These innovations will drive gear transmission systems towards greater efficiency and reliability, thereby meeting the demanding requirements of high-end application scenarios such as new energy vehicles.

关键词

齿轮胶合 / 失效机理 / 计算方法 / 数值模拟 / 润滑条件 / 制造工艺

Key words

gear scuffing / failure mechanism / calculation method / numerical simulation / lubrication conditions / manufacturing process

引用本文

导出引用
郭栋, 邓文丰, 李明, 辛玉, 方川. 齿轮胶合研究综述:机理、计算方法及优化策略[J]. 表面技术. 2025, 54(19): 14-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.19.002
GUO Dong, DENG Wenfeng, LI Ming, XIN Yu, FANG Chuan. Research Review of Gear Scuffing: Mechanism, Calculation Methods and Optimization Strategies[J]. Surface Technology. 2025, 54(19): 14-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.19.002
中图分类号: TH117   

参考文献

[1] 国家标准化管理委员会. 齿轮胶合承载能力试验方法: GB/Z 13672—2022[S]. 北京: 中国标准出版社, 2022.
Standardization Administration of the People’s Republic of China. Test Method for Scuffing Load Capacity of Gears: GB/Z 13672—2022[S]. Beijing: Standards Press of China, 2022.
[2] BLOK H.Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Lubricating Conditions[J]. Proc. Instn. Mech. Engrs., 1937, 2: 222.
[3] TOBE T, KATO M.A Study on Flash Temperatures on the Spur Gear Teeth[J]. Journal of Engineering for Industry, 1974, 96(1): 78-84.
[4] HE T, ZHU D, WANG J X, et al.Experimental and Numerical Investigations of the Stribeck Curves for Lubricated Counterformal Contacts[J]. Journal of Tribology, 2017, 139(2): 021505.
[5] DYSON A.The Failure of Elastohydrodynamic Lubrication of Circumferentially Ground Discs[J]. Proceedings of the Institution of Mechanical Engineers, 1976, 190(1): 699-711.
[6] ZHU D, WANG J X, JANE WANG Q.On the Stribeck Curves for Lubricated Counterformal Contacts of Rough Surfaces[J]. Journal of Tribology, 2015, 137(2): 021501.
[7] PENG B, SPIKES H, KADIRIC A.The Development and Application of a Scuffing Test Based on Contra-Rotation[J]. Tribology Letters, 2019, 67(2): 37.
[8] SONG F Z, WANG Q H, WANG T M.Effects of Glass Fiber and Molybdenum Disulfide on Tribological Behaviors and PV Limit of Chopped Carbon Fiber Reinforced Polytetrafluoroethylene Composites[J]. Tribology International, 2016, 104: 392-401.
[9] WOJCIECHOWSKI Ł, MATHIA T G.Focus on the Concept of Pressure-Velocity-Time Limits for Boundary Lubricated Scuffing[J]. Wear, 2018, 402: 179-186.
[10] 陈进筱, 魏沛堂, 李炎军, 等. 航空齿轮胶合承载能力试验与“材料-工艺-滑油” 抗胶合设计方法[J/OL]. 航空学报, 2024: 1-14. (2024-08-27). https://kns.cnki.net/kcms/detail/11.1929.v.20240826.1203.005.html.
CHEN J X, WEI P T, LI Y J, et al. [J/OL]. Acta Aeronautica et Astronautica Sinica, 2024: 1-14. (2024- 08-27). https://kns.cnki.net/kcms/detail/11.1929.v.20240826.1203.005.html.
[11] CHEN T M, ZHU C C, LIU H J, et al.The PVT Limit for Gear Scuffing Assessment[J]. Wear, 2024, 558: 205557.
[12] AJAYI O O, LORENZO-MARTIN C, ERCK R A, et al.Analytical Predictive Modeling of Scuffing Initiation in Metallic Materials in Sliding Contact[J]. Wear, 2013, 301(1/2): 57-61.
[13] ZHANG C W, PENG B, GU L, et al.A Scuffing Criterion of Steels Based on the Friction-Induced Adiabatic Shear Instability[J]. Tribology International, 2020, 148: 106340.
[14] International Organization for Standardization.2022. Calculation of load capacity of spur and helical gears. Part 20: Calculation of scuffing load capacity—Flash temperature method, 6336-20.
[15] International Organization for Standardization.2022. Calculation of load capacity of spur and helical gears. Part 21: Calculation of scuffing load capacity—Integral temperature method, 6336-21.
[16] International Organization for Standardization.2000. Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears. Part 1: Flash temperature method, 13989-1.
[17] International Organization for Standardization.2000. Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears. Part 2: Integral temperature method, 13989-2.
[18] 国家质量监督检验检疫总局. 圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第1部分:闪温法: GB/Z 6413.1—2003[S]. 北京: 中国标准出版社, 2004: 1-32.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calculation of Scuffing Load Capacity of Cylindrical, bevel and Hypoid Gears: Part 1: Flash Temperature Method: GB/Z 6413.1—2003[S]. Beijing: Standards Press of China, 2004: 1-32.
[19] 国家质量监督检验检疫总局. 圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法第2部分:积分温度法: GB/Z 6413.2—2003[S]. 北京: 中国标准出版社, 2004: 1-38.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calculation of Scuffing Load Capacity of Cylindrical, Bevel and Hypoid Gears: Part 2: Integral Temperature Method: GB/Z 6413.2—2003[S]. Beijing: Standards Press of China, 2004: 1-38.
[20] 航空渐开线圆柱齿轮胶合承载能力计算: HB/Z 84.4—1984[S].
Calculation of Bonded Bearing Capacity of Aeronautical Involute Cylindrical Gears: HB/Z 84.4—1984[S].
[21] 黄平. 弹性流体动压润滑数值计算方法[M]. 北京: 清华大学出版社, 2013.
HUANG P.Numerical Calculation Methods of Elastohydrodynamic Lubrication[M]. Beijing: Tsinghua University Press, 2013.
[22] HU Y Z, ZHU D.A Full Numerical Solution to the Mixed Lubrication in Point Contacts[J]. Journal of Tribology, 2000, 122(1): 1-9.
[23] LIU Y C, WANG Q J, WANG W Z, et al.Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts[J]. Journal of Tribology, 2006, 128(3): 641-653.
[24] ZHU D.On Some Aspects of Numerical Solutions of Thin-Film and Mixed Elastohydrodynamic Lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(5): 561-579.
[25] LI S, KAHRAMAN A.A Scuffing Model for Spur Gear Contacts[J]. Mechanism and Machine Theory, 2021, 156: 104161.
[26] SHI X J, LU X Q, HE T, et al.Predictions of Friction and Flash Temperature in Marine Gears Based on a 3D Line Contact Mixed Lubrication Model Considering Measured Surface Roughness[J]. Journal of Central South University, 2021, 28(5): 1570-1583.
[27] ZHOU C J, XING M C, WANG H B, et al.A Novel Thermal Network Model for Predicting the Contact Temperature of Spur Gears[J]. International Journal of Thermal Sciences, 2021, 161: 106703.
[28] 姚阳迪, 林腾蛟, 何泽银. 高速斜齿轮传动稳态温度场仿真分析[J]. 机械研究与应用, 2009, 22(6): 9-12.
YAO Y D, LIN T J, HE Z Y.Simulation and Analysis of Steady-State Temperature Field for High-Speed Helical Gear Transmission[J]. Mechanical Research & Application, 2009, 22(6): 9-12.
[29] LI W, TIAN J Y.Unsteady-State Temperature Field and Sensitivity Analysis of Gear Transmission[J]. Tribology International, 2017, 116: 229-243.
[30] LI S, KAHRAMAN A.A Scuffing Model for Spur Gear Contacts[J]. Mechanism and Machine Theory, 2021, 156: 104161.
[31] 陈玉灵, 朱加赞, 陈泰民, 等. 航空高速齿轮服役温度预测模型研究[J]. 机械传动, 2024, 48(2): 1-9.
CHEN Y L, ZHU J Z, CHEN T M, et al.Study on Operating Temperature Prediction Model of Aero High-Speed Gears[J]. Journal of Mechanical Transmission, 2024, 48(2): 1-9.
[32] ZHENG X Q, LAN H Q.Analysis of Scuffing through Temperature Measurement Experiment and Numerical Simulation for Spiral Bevel Gears[J]. Thermal Science and Engineering Progress, 2024, 52: 102648.
[33] 贾晨帆, 刘怀举, 朱才朝, 等. 基于CatBoost的航空齿轮本体温度预测方法与验证研究[J/OL]. 中国机械工程, 2024: 1-18. (2024-12-17). https://kns.cnki.net/kcms/detail/42.1294.th.20241216.1642.004.html.
JIA C F, LIU H J, ZHU C C, et al. Research on Temperature Prediction Method and Verification of Aviation Gear Body Based on CatBoost[J/OL]. China Mechanical Engineering, 2024: 1-18. (2024-12-17). https://kns.cnki.net/kcms/detail/42.1294.th.20241216.1642.004.html.
[34] SINGH A, WOLF M, JACOBS G, et al.Machine Learning Based Surrogate Modelling for the Prediction of Maximum Contact Temperature in EHL Line Contacts[J]. Tribology International, 2023, 179: 108166.
[35] BAI B, LI X P, GUO W C, et al.Effect of Geometric Parameters of High-Speed Helical Gears on Friction Flash Temperature and Scuffing Load Capacity in Electric Vehicles[J]. Applied Sciences, 2024, 14(22): 10326.
[36] 张金龙, 王少兵, 李威, 等. 考虑热变形的齿轮修形研究[J]. 机械传动, 2023, 47(3): 22-32.
ZHANG J L, WANG S B, LI W, et al.Research on Gear Modification Considering Thermal Deformation[J]. Journal of Mechanical Transmission, 2023, 47(3): 22-32.
[37] SAVOLAINEN M, LEHTOVAARA A.An Experimental Approach for Investigating Scuffing Initiation Due to Overload Cycles with a Twin-Disc Test Device[J]. Tribology International, 2017, 109: 311-318.
[38] HÖLM B, MICLWELIS K, COLLENBERG H, et al. Effect of Temperature on the Scuffing Load Capacity of EP Gear Lubricants[J]. Tribotest, 2001, 7(4): 317-332.
[39] HÖHN B R, MICHAELIS K. Influence of Oil Temperature on Gear Failures[J]. Tribology International, 2004, 37(2): 103-109.
[40] BRENNEMAN J W.An Experimental Study on the Scuffing Performance of High-Power Spur Gears at Elevated Oil Temperatures[D]. Ohio State: The Ohio State University, 2013.
[41] 王维, 回春, 汪洋, 等. 基于Romax软件的变速器传动效率仿真分析与试验研究[J]. 机械传动, 2017, 41(10): 178-184.
WANG W, HUI C, WANG Y, et al.Simulation Analysis and Experimental Research of the Transmission Efficiency of Mechanical Transmission Based on Romax Software[J]. Journal of Mechanical Transmission, 2017, 41(10): 178-184.
[42] RUAN J F, WANG X G, WANG Y M, et al.Study on Anti-Scuffing Load-Bearing Thermoelastic Lubricating Properties of Meshing Gears with Contact Interface Micro-Texture Morphology[J]. Journal of Tribology, 2022, 144(10): 101202.
[43] 张芳萍, 张帆, 高毅, 等. 基于Romax的新能源汽车减速器齿轮修形研究[J]. 计算机仿真, 2024, 41(4): 151-155.
ZHANG F P, ZHANG F, GAO Y, et al.Research on Gear Modification of New Energy Vehicle Decelerator Based on Romax[J]. Computer Simulation, 2024, 41(4): 151-155.
[44] 贾军. 乏油条件下齿轮传动的热弹流润滑与胶合失效分析[D]. 重庆: 重庆大学, 2013.
JIA J.Failure Analysis of Thermal Elastohydrodynamic Lubrication and Gluing of Gear Transmission under the Condition of Lack of Oil[D]. Chongqing: Chongqing University, 2013.
[45] WANG L N, LIU Y, ZHANG K L, et al.Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox[J]. Lubricants, 2024, 12(8): 283.
[46] 侍东, 张钰哲, 张红, 等. 高速齿轮两相流场及喷油润滑特性分析[J]. 机械传动, 2024, 48(7): 1-8.
SHI D, ZHANG Y Z, ZHANG H, et al.Analysis of Two-Phase Flow Field and Oil Injection Lubrication Characteristics of High-Speed Gears[J]. Journal of Mechanical Transmission, 2024, 48(7): 1-8.
[47] RIGGS M R, MURTHY N K, BERKEBILE S P.Scuffing Resistance and Starved Lubrication Behavior in Helicopter Gear Contacts: Dependence on Material, Surface Finish, and Novel Lubricants[J]. Tribology Transactions, 2017, 60(5): 932-941.
[48] HU X Z, JIANG Y Y, LUO C, et al.Churning Power Losses of a Gearbox with Spiral Bevel Geared Transmission[J]. Tribology International, 2019, 129: 398-406.
[49] ZHANG J W, LI W, WANG H Q, et al.A Comparison of the Effects of Traditional Shot Peening and Micro-Shot Peening on the Scuffing Resistance of Carburized and Quenched Gear Steel[J]. Wear, 2016, 368: 253-257.
[50] 李嘉玮, 赵新浩, 李炎军, 等. 服役工况及喷丸强化对航空齿轮钢接触疲劳性能的影响[J]. 表面技术, 2023, 52(2): 14-24.
LI J W, ZHAO X H, LI Y J, et al.Effect of Service Condition and Shot Peening on Rolling Contact Fatigue Performance of Aviation Gear Steel[J]. Surface Technology, 2023, 52(2): 14-24.
[51] 张博宇, 刘怀举, 魏沛堂, 等. 基于DEM-FEM的微粒喷丸仿真分析[J]. 中国表面工程, 2022, 35(4): 204-212.
ZHANG B Y, LIU H J, WEI P T, et al.Simulation Analysis of Micro-Shot Peening Based on DEM-FEM Method[J]. China Surface Engineering, 2022, 35(4): 204-212.
[52] 王长清, 张慧芸, 唐进元, 等. 人字形齿轮喷丸残余应力和粗糙度的计算与试验验证[J]. 表面技术, 2025, 54(5): 245-256.
WANG C Q, ZHANG H Y, TANG J Y, et al.Numerical Research and Experimental Investigation of Residual Stress and Roughness of Double Helical Gear after Shot Peening[J]. Surface Technology, 2025, 54(5): 245-256.
[53] BENEDETTI M, FONTANARI V, TORRESANI E, et al.Investigation of Lubricated Rolling Sliding Behaviour of WC/C, WC/C-CRN, DLC Based Coatings and Plasma Nitriding of Steel for Possible Use in Worm Gearing[J]. Wear, 2017, 378: 106-113.
[54] TUSZYŃSKI W, MICHALCZEWSKI R, OSUCH- SŁOMKA E, et al. Abrasive Wear, Scuffing and Rolling Contact Fatigue of DLC-Coated 18CrNiMo7-6 Steel Lubricated by a Pure and Contaminated Gear Oil[J]. Materials, 2021, 14(22): 7086.
[55] WU J Z, WEI P T, LIU G Q, et al.A Comprehensive Evaluation of DLC Coating on Gear Bending Fatigue, Contact Fatigue, and Scuffing Performance[J]. Wear, 2024, 536: 205177.

基金

重庆市自然科学基金创新发展联合基金项目(CSTB2022NSCQ-LZX0051); 重庆市教育委员会科学技术研究项目(KJQN202201149)

PDF(4396 KB)

Accesses

Citation

Detail

段落导航
相关文章

/