不同轧制态医用Zn-Li-Ce合金表面涂层特征及腐蚀行为研究

张源, 牛丽静, 张朋, 刘芸, 王子剑, 田亚强, 陈连生

表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 100-110.

PDF(12781 KB)
PDF(12781 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 100-110. DOI: 10.16490/j.cnki.issn.1001-3660.2025.16.008
腐蚀与防护

不同轧制态医用Zn-Li-Ce合金表面涂层特征及腐蚀行为研究

  • 张源, 牛丽静, 张朋, 刘芸*, 王子剑, 田亚强, 陈连生
作者信息 +

Surface Coating Characteristics and Corrosion Properties of Zn-Li-Ce Alloys at Different Rolling States

  • ZHANG Yuan, NIU Lijing, ZHANG Peng, LIU Yun*, WANG Zijian, TIAN Yaqiang, CHEN Liansheng
Author information +
文章历史 +

摘要

目的 锌基合金具有良好的生物降解性、可加工性和优异的生物功能性,但铸态锌合金存在局部腐蚀倾向,过度释放的Zn2+会造成局部组织毒性并对骨愈合/修复产生不利影响,难以满足临床植入的要求。方法 通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及动电位极化PDP/EIS等手段探究轧制态合金组织对其表面涂层特征及降解行为的影响。结果 当轧制压下率为80%时,磷酸锌锶涂层锌合金表现出优异的耐蚀性能。这是由于适宜晶粒尺寸的轧制锌合金具有较高的晶界密度,在化学转化过程中Zn2+能够通过晶界更有效地释放到暴露的表面中,产生更多活性点,有利于促进表面形成均匀致密的磷酸锌锶涂层,有效地阻碍了侵蚀性离子与基体的直接接触,增强了合金的耐蚀性能;此外,轧制后的高密度晶界可作为腐蚀点蚀的屏障,阻碍腐蚀坑的进展,进一步增强基体对腐蚀的防御能力。结论 随轧制压下率增加(20%、40%、60%和80%),磷酸锌锶涂层锌合金在模拟体液中测得的电化学腐蚀速率(0.669、0.408、0.249和0.160 mm/a)及失重速率(0.0526、0.0313、0.0170和0.0121 mm/a)均呈现逐渐降低的趋势。其中,磷酸锌锶涂层锌合金在轧制压下率80%时获得最优异的耐蚀性能。

Abstract

Zinc-based alloys own good biodegradability, machinability and excellent biological functionality, but the excessive release of Zn2+ will cause the local toxicity and affect bone tissue healing, which is difficult to meet the requirements of medical implants. In this study, the novel Zn-Li-Ce zinc alloys were successfully prepared and coated with the zinc strontium phosphate conversion coatings. Besides, the morphology composition, elements distribution, thickness and corrosion resistance were elucidated by OM, SEM/EDS, XRD, 3D/CLSM, PDP and EIS. With the increase of the rolling reduction rate (20%, 40%, 60% and 80%), the surface morphology of coated alloys changed from large mass to small spherical and quadrilateral interwoven growth structure. It could be seen from the element distributions that with the increase of rolling reduction rates, the coverage and uniformity of coating components were improved. The electrochemical corrosion rates (0.669, 0.408, 0.249 and 0.160 mm/a) and static weight-loss rates (0.052 6, 0.031 3, 0.017 0 and 0.012 1 mm/a) of coated zinc alloys measured in simulated body fluids showed a gradual decreasing trend. Therein, the best excellent corrosion resistance of coated zinc alloys were obtained at the rolled-reduction of 80%. In the case of large deformation, the small angle grain boundary and the coexisting crystal boundary hindered the pit progress by changing the crystal orientation, thereby enhancing the corrosion resistance of the substrate. In addition, the hot-rolled Zn alloys owned high grain boundary densities, which induced the Zn2+ more efficiently to penetrate into the exposed surface through the grain boundaries during the chemical transformation process. The formation of a large number of activated particles was conducive to the formation of uniform and dense zinc-strontium phosphate coating on the surface, which effectively prevented the direct contact between the aggressive ions and the substrate, thereby enhancing the corrosion resistance of the alloy. In the early stage of corrosion, the protective effect of the coating could prevent the surface of the zinc alloy substrate from directly contacting the corrosion solution. With the prolongation of the corrosion process, the film layer of corrosion products was ultimately formed on the surface of the alloy, which effectively reduced the degradation rate of the zinc alloy. In the middle and late stages of corrosion, the degree of protection provided was also different due to the different adhesion between the coating and the substrate. Particularly, the coated zinc alloy with the large rolling pressure rate had the strong binding force and the good coating thickness and density, which could better protect the substrate from erosion, resulting in a uniform corrosion plane. Compared with traditional zinc alloys, the hot-rolled zinc alloys with zinc strontium phosphate conversion coatings have better corrosion resistance and controllable corrosion rates. The results obtained are of great significance for the research on the corrosion resistance of medical zinc alloys, and the zinc strontium phosphate coating coupled with hot-rolled may be an effective measure to decrease the corrosion rates of Zn-Li-Ce alloys, providing a promising way for the surface modification of degradable metals.

关键词

医用Zn-Li-Ce合金 / 轧制压下率 / 化学转化 / 降解速率 / 腐蚀行为

Key words

medical zinc alloy / rolling reduction rate / chemical conversion / degradation rate / corrosion behavior

引用本文

导出引用
张源, 牛丽静, 张朋, 刘芸, 王子剑, 田亚强, 陈连生. 不同轧制态医用Zn-Li-Ce合金表面涂层特征及腐蚀行为研究[J]. 表面技术. 2025, 54(16): 100-110 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.008
ZHANG Yuan, NIU Lijing, ZHANG Peng, LIU Yun, WANG Zijian, TIAN Yaqiang, CHEN Liansheng. Surface Coating Characteristics and Corrosion Properties of Zn-Li-Ce Alloys at Different Rolling States[J]. Surface Technology. 2025, 54(16): 100-110 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.008
中图分类号: TG174.4   

参考文献

[1] 刘晓倩, 刘翠, 乔爱科, 等. 可降解医用Zn-3Al-1Mg合金的体外腐蚀行为和力学性能[J]. 材料与冶金学报, 2024, 23(2): 181-189.
LIU X Q, LIU C, QIAO A K, et al.In Vitro Corrosion Behavior and Mechanical Properties of Biodegradable Medical Zn-3Al-1Mg Alloy[J]. Journal of Materials and Metallurgy, 2024, 23(2): 181-189.
[2] RAO J H, GAO H R, SUN J W, et al.A Critical Review of Biodegradable Zinc Alloys Toward Clinical Applications[J]. ACS Biomaterials Science & Engineering, 2024, 10(9): 5454-5473.
[3] PESODE P, BARVE S.Surface Modification of Biodegradable Zinc Alloy for Biomedical Applications[J]. BioNanoScience, 2023, 13(4): 1381-1398.
[4] LIU Y, DU T M, QIAO A K, et al.Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation[J]. Journal of Functional Biomaterials, 2022, 13(4): 164.
[5] 郭传平, 高冬芳, 李羡, 等. 医用镁合金耐腐蚀性能研究进展[J]. 稀有金属材料与工程, 2024, 53(8): 2390-2404.
GUO C P, GAO D F, LI X, et al.Research Progress on Corrosion Resistance of Medical Magnesium Alloy[J]. Rare Metal Materials and Engineering, 2024, 53(8): 2390-2404.
[6] CHASAPIS C T, NTOUPA P A, SPILIOPOULOU C A, et al.Recent Aspects of the Effects of Zinc on Human Health[J]. Archives of Toxicology, 2020, 94(5): 1443-1460.
[7] JOMOVA K, MAKOVA M, ALOMAR S Y, et al.Essential Metals in Health and Disease[J]. Chemico- Biological Interactions, 2022, 367: 110173.
[8] 夏先朝, 聂敬敬, 李逸, 等. 镁合金超疏水磷酸盐化学转化涂层的制备与耐蚀性能[J]. 表面技术, 2024, 53(16): 116-128.
XIA X C, NIE J J, LI Y, et al.Preparation and Corrosion Resistance of Superhydrophobic Phosphate Chemical Conversion Coatings for Magnesium Alloys[J]. Surface Technology, 2024, 53(16): 116-128.
[9] CAO F, WANG J P, LIAN Y L, et al.A Study on the Influence of the Electroplating Process on the Corrosion Resistance of Zinc-Based Alloy Coatings[J]. Coatings, 2023, 13(10): 1774.
[10] BARTMAŃSKI M, PAWŁOWSKI Ł, KNABE A, et al. The Effect of Marginal Zn2+ Excess Released from Titanium Coating on Differentiation of Human Osteoblastic Cells[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 48412-48427.
[11] LIU M J, TAN J L, LI S, et al.Psoralen Synergies with Zinc Implants to Promote Bone Repair by Regulating ZIP4 in Rats with Bone Defect[J]. Biomaterials Research, 2023, 27(1): 129.
[12] MAO Q Z, LIU Y F, ZHAO Y H.A Review on Mechanical Properties and Microstructure of Ultrafine Grained Metals and Alloys Processed by Rotary Swaging[J]. Journal of Alloys and Compounds, 2022, 896: 163122.
[13] TONG X, HONG X H, CHEN L, et al.Degradable Zn-5Ce Alloys with High Strength, Suitable Degradability, Good Cytocompatibility, and Osteogenic Differentiation Fabricated via Hot-Rolling, Hot-Extrusion, and High- Pressure Torsion for Potential Load-Bearing Bone-Implant Application[J]. Journal of Materials Research and Technology, 2024, 28: 1752-1763.
[14] YANG X X, BAO W Z, CAI Z Y, et al.Enhanced Mechanical Performance and Tailored Degradation Characteristics of Rolled Zn-0.8Li-0.4Mn Alloy[J]. Materials & Design, 2024, 245: 113259.
[15] LIU Y Y, YUE R, YANG L J, et al.Effects of Various Rolling Deformations on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytocompatibility of Biodegradable Zn-0.5Mn Alloys[J]. Corrosion Communications, 2025, 18: 1-18.
[16] HUANG S Y, WANG L N, ZHENG Y F, et al.In Vitro Degradation Behavior of Novel Zn-Cu-Li Alloys: Roles of Alloy Composition and Rolling Processing[J]. Materials & Design, 2021, 212: 110288.
[17] KRAWIEC H, KOZINA I, STAROWICZ M, et al.Corrosion Rate and Mechanism of Degradation of Chitosan/TiO2 Coatings Deposited on MgZnCa Alloy in Hank’s Solution[J]. International Journal of Molecular Sciences, 2024, 25(10): 5313.
[18] 唐帅. 可降解吸收锌金属在不同模拟体液中的体外长期腐蚀降解行为[D]. 成都: 西南交通大学, 2019.
TANG S.Long-term Corrosion Degradation Behavior of Degradable and Absorbable Zinc Metal in Different Simulated Body Fluids in Vitro[D]. Chengdu: Southwest Jiaotong University, 2019.
[19] 王熠玮, 郭锋, 胡文鑫, 等. 稀土元素Ce、Y在Mg-Mn-RE镁合金腐蚀中的作用及其差异[J]. 表面技术, 2023, 52(9): 232-240.
WANG Y W, GUO F, HU W X, et al.Effects and Difference of Ce and Y on Corrosion Behaviors of Mg-Mn-RE Magnesium Alloys[J]. Surface Technology, 2023, 52(9): 232-240.
[20] 曹晓君, 刘美辰, 杨康, 等. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 211-217.
CAO X J, LIU M C, YANG K, et al.Microstructure and Properties of Degradable Cast Zn-Cu-Sr Alloy[J]. Materials Reports, 2024, 38(18): 211-217.
[21] 张蛟, 魏敏, 李庆林. 超声处理制备的生物可降解Zn-1Mg-0.5Ca合金的微观组织与腐蚀行为[J]. 材料科学与工程学报, 2024, 42(1): 52-60.
ZHANG J, WEI M, LI Q L.Microstructure and Corrosion Behavior of Biodegradable Zn-1Mg-0.5Ca Alloy Prepared by Ultrasonic Treatment[J]. Journal of Materials Science and Engineering, 2024, 42(1): 52-60.
[22] 张而耕, 王林林, 梁丹丹, 等. 温度变化对TiAlCN涂层耐蚀性和钝化膜性能的影响[J]. 表面技术, 2024, 53(18): 91-99.
ZHANG E G, WANG L L, LIANG D D, et al.Effect of Temperature on Corrosion Resistance and Passive Film Properties of TiAlCN Coatings[J]. Surface Technology, 2024, 53(18): 91-99.
[23] GEORGE J S, VIJAYAN P P, HOANG A T, et al.Recent Advances in Bio-Inspired Multifunctional Coatings for Corrosion Protection[J]. Progress in Organic Coatings, 2022, 168: 106858.
[24] 周欣欣, 陈步明, 郭俊, 等. 铅合金微观组织结构对其耐蚀性与电催化性能影响规律的研究进展[J]. 材料保护, 2024, 57(7): 181-190.
ZHOU X X, CHEN B M, GUO J, et al.Research Progress on the Influence Law of Microstructure of Lead Alloys on Their Corrosion Resistance and Electrocatalytic Performance[J]. Materials Protection, 2024, 57(7): 181-190.
[25] CHEN Q H, CHEN R N, SU J, et al.The Mechanisms of Grain Growth of Mg Alloys: A Review[J]. Journal of Magnesium and Alloys, 2022, 10(9): 2384-2397.
[26] LI J Q, LI X H, XU T Y, et al.Regulating the Grain Refinement and Rolling Properties of Coarse-Crystalline Mg-Zn-Gd-Ca-Mn Alloy through Multi-Pass Cold Rolling and Annealing[J]. Materials Science and Engineering: A, 2024, 911: 146940.
[27] LIU X R, XIA Z M, WANG Y Z, et al.Zinc-Doped Inorganic Bioactive Materials: A Comprehensive Review of Properties and Their Applications in Osteogenesis, Antibacterial, and Hemostasis[J]. Applied Materials Today, 2024, 40: 102393.
[28] NILAWAR S, UDDIN M, CHATTERJEE K.Surface Engineering of Biodegradable Implants: Emerging Trends in Bioactive Ceramic Coatings and Mechanical Treatments[J]. Materials Advances, 2021, 2(24): 7820-7841.
[29] LIU Z Q, LIU X L, RAMAKRISHNA S.Surface Engineering of Biomaterials in Orthopedic and Dental Implants: Strategies to Improve Osteointegration, Journal, 2021, 16(7): 2000116.
[30] LIU Y, ZHANG Y, ZHENG R N, et al.Microstructure Characteristics, Degradation Behaviors and Film Formation Mechanism of Zn-1Mg-0.25Nd-xSn in the Kokubo’s Electrolyte[J]. Materials Characterization, 2021, 174: 111034.
[31] JI C W, MA A B, JIANG J H, et al.Regulating Mechanical Properties and Degradation Behavior of Biodegradable Zn-0.6Mg Alloy via ECAP Plus Cold Rolling[J]. Journal of Alloys and Compounds, 2023, 937: 168487.
[32] MARDER A R.The Metallurgy of Zinc-Coated Steel[J]. Progress in Materials Science, 2000, 45(3): 191-271.

基金

中央引导地方科技发展资金项目(226Z1004G); 河北省自然科学基金(E2024209059); 华北理工大学医工融合项目(ZD-YG-202427); 河北省省属高校基本科研业务费(JJC2024080)

PDF(12781 KB)

Accesses

Citation

Detail

段落导航
相关文章

/