Inconel 690合金晶体取向依赖的腐蚀行为和光学反射特征研究

谭鼎耀, 滕李虎, 但丽玲, 郭勇, 李煌政, 吴刚, 武肖雷, 王静雅, 储淑芬, 杨耀, 曾小勤

表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 60-66.

PDF(23136 KB)
PDF(23136 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 60-66. DOI: 10.16490/j.cnki.issn.1001-3660.2025.16.004
腐蚀与防护

Inconel 690合金晶体取向依赖的腐蚀行为和光学反射特征研究

  • 谭鼎耀1a, 滕李虎2, 但丽玲3, 郭勇1b, 李煌政1c, 吴刚1c, 武肖雷1c, 王静雅1a, 储淑芬1a,*, 杨耀1a, 曾小勤1a,*
作者信息 +

Crystallographic Orientation-dependent Corrosion Behavior and Optical Reflection Characteristics of Inconel 690 Alloys

  • TAN Dingyao1a, TENG Lihu2, DAN Liling3, GUO Yong1b, LI Huangzheng1c, WU Gang1c, WU Xiaolei1c, WANG Jingya1a, CHU Shufen1a,*, YANG Yao1a, ZENG Xiaoqin1a,*
Author information +
文章历史 +

摘要

目的 为了探索一种基于光学显微镜的金属晶体取向快速标定方法,需要构建晶体取向依赖的表面腐蚀形貌,并建立晶体取向、腐蚀形貌与光学反射特征之间的对应关系。方法 以Inconel 690合金为模型材料,首先对其腐蚀形貌进行了微观表征,建立了晶体取向与腐蚀形貌之间的对应关系。进一步,使用自主开发的程控的离轴照明光学显微镜装置,研究了腐蚀表面在不同方向入射光下的反射特征。结果 腐蚀后{111}晶面附近的晶粒形貌呈三棱锥形,在{001}附近的晶粒表面覆盖有大量腐蚀坑,而在{110}附近的晶粒形貌呈鱼鳞状。进一步,自主开发了一套离轴照明光学显微镜装置,通过程序控制LED阵列以不同的入射光角度照明样品表面,探索腐蚀表面对不同方向入射光的反射特征。通过分析3个接近主轴方向的典型晶粒的光学反射强度,证明了光学反射特征对晶体取向显著的依赖性,这可以归因于腐蚀表面上排列有序的微结构单元特有的反射能力。结论 上述研究结果建立了晶体取向、腐蚀形貌和光学反射特征之间的明确关系,意味着可以通过腐蚀后的光学反射特征来推导晶体取向。在此基础上,有望使用简单的光学显微镜装置来进行快速和低成本的表面晶体取向的测定。

Abstract

The crystallographic orientations of grains in metallic materials play an important role on the microstructures and properties of materials. The determination of crystallographic orientations of grains on the metal surface has long relied on backscattered electron diffraction (EBSD), which is costly and time-consuming. It has been reported that the corrosion behaviours of various metal materials show significant crystallographic orientation dependence. By testing the reflection intensity of light from different corrosion morphologies, the crystallographic orientation can be deduced based on the relationship between corrosion morphologies and crystallographic orientations. In this work, with Inconel 690 alloy as a model alloy, its corrosion behaviours are investigated by immersing the alloy samples in a solution of 1 mol/L H2SO4 and 0.1 mol/L NaCl at 58 ℃ for 24 h. EBSD and scanning electron microscope (SEM) are used to characterize the microstructures and correlate the corrosion morphologies and crystallographic orientations. The statistical results of surface morphologies reveal that grains with orientations near {111} exhibit triangular pyramidal features, grains with orientations near {001} show corrosion pits, and those with orientations near {110} present fish scale-like morphology. According to the corrosion depths obtained from AFM analysis, the dissolution rate of the grains follows the following order: {111}> {110}> {100}. That is to say, the correlation between grain orientations and corrosion morphologies is successfully established. Furthermore, a custom-made OM setup is developed to explore the optical reflection characteristics of different corroded surfaces, i.e., aggregates of microstructure units. The optical reflection intensity of the surface grains at 396 angles (12 elevation × 36 azimuth) is obtained by the OM setup and plotted as directional reflection profile (DRP) to assess the optical reflection characteristics. Our findings reveal that surfaces exhibiting triangular pyramids and fish scale-like features demonstrate significant reflection at specific incident light angles due to the orientation of their maximum exposure facets. In contrast, surfaces characterized by corrosion pits show relatively weak reflection across all incident light angles. Therefore, a clear relationship among grain orientation, corrosion morphologies, and optical reflectance is established. This means that the crystal orientation can be derived from the optical reflection characteristics after corrosion. Compared with previous reports, the work shows remarkable creativity. To be specific, a programmed LED light source is used with each LED controlled by software to turn on or off, minimizing the effects of mechanical vibrations during optical micrograph acquisition. The inner surface of the dome-shaped LED light source is coated in black to eliminate interference from external light sources. All the LEDs are high-brightness and strategically aligned to the center of the dome, where the sample is positioned. This configuration ensures that the incident light is uniformly directed onto the sample surface and thus no additional background removal is required. Furthermore, the OM setup achieves higher resolution in imaging grains due to the use of an objective lens with greater magnification and larger numerical apertures. Based on this, it is expected to perform a fast and low-cost determination of the surface grain orientation using a simple optical setup in the future.

关键词

晶体取向 / 腐蚀 / 光学显微镜 / 反射 / 690合金

Key words

crystallographic orientation / corrosion / optical microscope / reflection / 690 alloy

引用本文

导出引用
谭鼎耀, 滕李虎, 但丽玲, 郭勇, 李煌政, 吴刚, 武肖雷, 王静雅, 储淑芬, 杨耀, 曾小勤. Inconel 690合金晶体取向依赖的腐蚀行为和光学反射特征研究[J]. 表面技术. 2025, 54(16): 60-66 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.004
TAN Dingyao, TENG Lihu, DAN Liling, GUO Yong, LI Huangzheng, WU Gang, WU Xiaolei, WANG Jingya, CHU Shufen, YANG Yao, ZENG Xiaoqin. Crystallographic Orientation-dependent Corrosion Behavior and Optical Reflection Characteristics of Inconel 690 Alloys[J]. Surface Technology. 2025, 54(16): 60-66 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.004
中图分类号: TG174   

参考文献

[1] DONG S Q, CHEN X, LA PLANTE E C, et al. Elucidating the Grain-Orientation Dependent Corrosion Rates of Austenitic Stainless Steels[J]. Materials & Design, 2020, 191: 108583.
[2] SONG G L, XU Z Q.Crystal Orientation and Electrochemical Corrosion of Polycrystalline Mg[J]. Corrosion Science, 2012, 63: 100-112.
[3] SONG J M, ZOU Y S, KUO C C, et al.Orientation Dependence of the Electrochemical Corrosion Properties of Electrodeposited Cu Foils[J]. Corrosion Science, 2013, 74: 223-231.
[4] TRUSTER T J, MOSLEHY A, ALSHIBLI K A.Effects of Crystal Orientation, Temperature, Deviatoric Stress, and Confining Stress on Creep of Rock Salt[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 183: 105913.
[5] CHAO Z, WANG B J, XU C, et al.Study of Grain Orientation Effect on the Corrosion Behavior of Biocompatible Magnesium Alloy Mg-2Zn-0.5Ca[J]. Materials Chemistry and Physics, 2024, 328: 130039.
[6] SCHWARTZ A J E. Electron Backscatter Diffraction in Materials Science[M]. Boston: Springer US, 2009.
[7] BISWAS K E, SIVAKUMAR S E, GURAO N E, et al.Electron Microscopy in Science and Engineering[M]. Singapore: Springer Nature Singapore, 2022.
[8] HAGIHARA K, OKUBO M, YAMASAKI M, et al.Crystal-Orientation-Dependent Corrosion Behaviour of Single Crystals of a Pure Mg and Mg-Al and Mg-Cu Solid Solutions[J]. Corrosion Science, 2016, 109: 68-85.
[9] SHANG J, SUN S, LIU S M.Corrosion Resistance and Mechanism of (100), (110) and (111) Preferred Orientation of Single Crystal Copper in NaCl Solution[J]. International Journal of Electrochemical Science, 2023, 18(12): 100378.
[10] SCHWARTZ A J, KING W E, KUMAR M.Influence of Processing Method on the Network of Grain Boundaries[J]. Scripta Materialia, 2006, 54(6): 963-968.
[11] WANG W, ALFANTAZI A.Correlation between Grain Orientation and Surface Dissolution of Niobium[J]. Applied Surface Science, 2015, 335: 223-226.
[12] YI X N, MA A L, ZHANG L M, et al.Crystallographic Anisotropy of Corrosion Rate and Surface Faceting of Polycrystalline 90Cu-10Ni in Acidic NaCl Solution[J]. Materials & Design, 2022, 215: 110429.
[13] SCHREIBER A, ROSENKRANZ C, LOHRENGEL M M.Grain-Dependent Anodic Dissolution of Iron[J]. Electrochimica Acta, 2007, 52(27): 7738-7745.
[14] KOROLEVA E V, THOMPSON G E, SKELDON P, et al.Crystallographic Dissolution of High Purity Aluminium[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2083): 1729-1748.
[15] WANG S Y, WANG J Q.Effect of Grain Orientation on the Corrosion Behavior of Polycrystalline Alloy 690[J]. Corrosion Science, 2014, 85: 183-192.
[16] MA A L, ZHANG L J, ENGELBERG D, et al.Understanding Crystallographic Orientation Dependent Dissolution Rates of 90Cu-10Ni Alloy: New Insights Based on AFM/SKPFM Measurements and Coordination Number/Electronic Structure Calculations[J]. Corrosion Science, 2020, 164: 108320.
[17] SZCZOTOK A.Quantitative Evaluation of Carbides in Nickel-Base Superalloy MAR-M247[J]. IOP Conference Series: Materials Science and Engineering, 2011, 22: 012007.
[18] ORSETTI ROSSI P L, SELLARS C M. Quantitative Metallography of Recrystallization[J]. Acta Materialia, 1997, 45(1): 137-148.
[19] EXNER H E.Quantitative Metallography in Three Dimensions[J]. Praktische Metallographie/Practical Metallography, 2001, 38(7): 370-84.
[20] SEITA M, NIMERFROH M M, DEMKOWICZ M J.Acquisition of Partial Grain Orientation Information Using Optical Microscopy[J]. Acta Materialia, 2017, 123: 70-81.
[21] WANG X G, GAO S B, JAIN E, et al.Measuring Crystal Orientation from Etched Surfaces via Directional Reflectance Microscopy[J]. Journal of Materials Science, 2020, 55(25): 11669-11678.
[22] GASKEY B, HENDL L, WANG X G, et al.Optical Characterization of Grain Orientation in Crystalline Materials[J]. Acta Materialia, 2020, 194: 558-564.
[23] WANG N G, MU Y C, XIONG W H, et al.Effect of Crystallographic Orientation on the Discharge and Corrosion Behaviour of AP65 Magnesium Alloy Anodes[J]. Corrosion Science, 2018, 144: 107-126.
[24] MA Y, ZHOU X, LIAO Y, et al.Localised Corrosion in AA 2099-T83 Aluminium-Lithium Alloy: The Role of Grain Orientation[J]. Corrosion Science, 2016, 107: 41-48.
[25] WANG X, SZPUNAR J A, ZHANG L N.Effect of Surface Crystallographic Orientation on the Oxidation Behavior of Ni-Based Alloy[J]. Applied Surface Science, 2015, 327: 532-536.
[26] SEITA M, WITTWER M, WANG X.Optical Metallography of Fusion-Based Additively Manufactured Metals[M]. Encyclopedia of Materials: Metals and Alloys. 2022: 193-202.

基金

国家自然科学基金资助项目(52127801,52425101,52471012)

PDF(23136 KB)

Accesses

Citation

Detail

段落导航
相关文章

/