选择性激光熔化制备难熔高熵合金研究进展

朱恩, 杨宝震, 张登科, 张微, 李婉秋, 虞飞标

表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 39-59.

PDF(15216 KB)
PDF(15216 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 39-59. DOI: 10.16490/j.cnki.issn.1001-3660.2025.16.003
研究综述

选择性激光熔化制备难熔高熵合金研究进展

  • 朱恩1, 杨宝震1,*, 张登科1, 张微1, 李婉秋2, 虞飞标1
作者信息 +

Research Progress on Selective Laser Melting of Refractory High-entropy Alloys

  • ZHU En1, YANG Baozhen1,*, ZHANG Dengke1, ZHANG Wei1, LI Wanqiu2, YU Feibiao1
Author information +
文章历史 +

摘要

旨在系统梳理选择性激光熔化(SLM)技术在难熔高熵合金(RHEAs)制备领域的研究现状,明确工艺参数-微观结构-性能之间的关联机制。揭示SLM技术解决传统铸造RHEAs晶粒粗大、成分偏析等问题的有效性,并探讨其在工程应用中的关键瓶颈与发展前景。研究表明:SLM技术通过极端非平衡凝固实现了RHEAs的微观结构创新,其独特的晶粒细化效应和原位纳米强化机制为开发高性能RHEAs提供了新途径。通过统计分析近年国际权威文献中SLM制备RHEAs的工艺参数,系统研究能量密度对难熔高熵合金致密度、缺陷特征及元素分布的影响规律。结合文献中电子背散射衍射(EBSD)和透射电镜(TEM)等表征,阐明快速凝固条件下亚稳态相形成机制,定量分析晶粒细化与力学性能提升的对应关系。进一步阐明了如NbC、TiC等纳米析出相通过晶界钉扎效应抑制晶粒粗化及提高材料抗氧化性能的机理。然而,尽管SLM-RHEAs在复杂构件成形方面展现出显著优势,但残余应力分布不均及成分均匀性控制仍是制约其工业化应用的核心瓶颈。最后展望了其在生物医用植入物和航空航天部件等领域的潜力。

Abstract

Refractory high-entropy alloys (RHEAs), composed of multiple principal elements with high melting points, have garnered significant attention for their exceptional mechanical strength, oxidation resistance, and thermal stability, making them ideal candidates for extreme-environment applications in aerospace, nuclear energy, and biomedical engineering. Currently, conventional RHEA preparation processes such as arc melting, powder metallurgy and magnetron sputtering have certain limitations in practical applications. Specifically, arc melting is limited by a low cooling rate (100-102 K/s), which is prone to inducing macroscopic segregation, coarse grains (grain size >100 μm) and shrinkage defects. While powder metallurgy can achieve compositional homogeneity through mechanical alloying, the long-time high-temperature holding time of the conventional sintering process triggers abnormal coarsening of brittle intermetallic compounds (e.g., σ-phase, Laves-phase). Magnetron sputtering, as a physical vapour-phase deposition technique, can prepare nano-crystalline/amorphous structures with a homogeneous distribution of compositions, but it is difficult to obtain direct access to the nanocrystalline/amorphous structure due to the low deposition rate and the finite forming dimensions. Selective laser melting (SLM), an advanced additive manufacturing technique, addresses these challenges through ultrahigh cooling rates (103-105 K/s) and precise layer-by-layer fabrication, enabling unprecedented control over microstructural refinement and property enhancement. The work aims to comprehensively examine recent advancements in SLM-processed RHEAs, focusing on process-microstructure-property relationships, defect mitigation strategies, and industrial applications, while identifying critical challenges and future research directions.
Key findings highlight that SLM achieves remarkable grain refinement, reducing average grain sizes from >200 μm in cast alloys to <20 μm, with further reductions to 10.6 μm through microalloying (e.g., 0.5at.% C in NbMoTaW). Energy density, governed by laser power, scan speed, and layer thickness, critically affects relative density and porosity. Advanced characterization via EBSD and TEM reveals metastable phase formation and in-situ nano-precipitates (e.g., NbC, TiC), which enhances mechanical properties through grain boundary pinning and dislocation interaction. For instance, SLM-fabricated VNbMoTaW alloys exhibit compressive strengths of 993.84 MPa at 1 000 ℃, retaining 62.2% of their room-temperature strength, while NbMoTaW-0.5C demonstrates a 43.3% increase in yield strength (1 391 MPa) and improved ductility (6.9% strain).
The rapid solidification inherent to SLM suppresses elemental segregation, promoting homogeneous microstructures and dense oxide layers (e.g., Nb2O5, Ta2O5) that enhance corrosion resistance. Electrochemical tests reveal corrosion current densities as low as 8.716×10-11 A/cm² for SLM-processed NbMoTaW in 3.5% NaCl, surpassing 316L stainless steel. High-temperature oxidation resistance is further bolstered by ternary oxides (e.g., Ta16W18O94) formed at elevated energy densities (>150 J/mm³), effectively inhibiting oxygen diffusion. Biomedical applications leverage SLM's design flexibility to fabricate porous TiNbTaZrMo implants with tunable Young's modulus (6.71-16.21 GPa), mimicking bone trabeculae to mitigate stress shielding. Osteoblast adhesion and actin filament development on these alloys rival pure titanium, underscoring their biocompatibility.
Despite these advancements, SLM-processed RHEAs face challenges including residual stress (up to 380 MPa at 400 mm/s scan speed), microcracks, and compositional heterogeneity. Residual stress is mitigated by optimizing scan strategies (e.g., stripe vs. chessboard patterns) and post-processing techniques like hot isostatic pressing (HIP), which reduces porosity by 60%. Crack initiation is suppressed through compositional adjustments (e.g., 1at.% C additions to limit oxygen segregation) and adaptive parameter tuning. For example, lowering scan speeds to 600 mm/s reduces surface roughness and transforms long cracks into isolated micropores.
Industrial applications demonstrate SLM's capability to produce complex geometries such as turbine blades, lattice structures, and gradient components. Case studies include lightweight WNbMoTa turbine blades with high strength-to-weight ratios and Ta-rich RHEAs for nuclear reactor cladding, capitalizing on their irradiation resistance. Future research must prioritize defect control through in-situ monitoring, compositional uniformity via machine learning-driven alloy design, and performance validation under extreme conditions (e.g., >1 200 ℃ oxidation, neutron irradiation). Multi-scale simulations (phase-field and molecular dynamics) are essential to decode melt pool dynamics, while hybrid processes (e.g., laser remelting) could enhance surface functionality.
In conclusion, SLM represents a transformative approach to RHEA manufacturing, offering unmatched microstructural control and performance optimization. By bridging laboratory innovation and industrial demands, this technology unlocks new possibilities for high-performance materials in extreme environments. Collaborative efforts in process refinement, computational modeling, and interdisciplinary integration will be pivotal to advancing SLM-processed RHEAs toward widespread commercialization.

关键词

选择性激光熔化 / 耐火高熵合金 / 微观结构演化 / 力学性能 / 增材制造

Key words

selective laser melting / refractory high-entropy alloys / microstructural evolution / mechanical properties / additive manufacturing

引用本文

导出引用
朱恩, 杨宝震, 张登科, 张微, 李婉秋, 虞飞标. 选择性激光熔化制备难熔高熵合金研究进展[J]. 表面技术. 2025, 54(16): 39-59 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.003
ZHU En, YANG Baozhen, ZHANG Dengke, ZHANG Wei, LI Wanqiu, YU Feibiao. Research Progress on Selective Laser Melting of Refractory High-entropy Alloys[J]. Surface Technology. 2025, 54(16): 39-59 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.003
中图分类号: TF841   

参考文献

[1] HUANG P K, YEH J W, SHUN T T, et al.Multi- Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating[J]. Advanced Engineering Materials, 2004, 6(1/2): 74-78.
[2] YEH J W, CHEN S K, LIN S J, et al.Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[3] WANG F L, BALBUS G H, XU S Z, et al.Multiplicity of Dislocation Pathways in a Refractory Multiprincipal Element Alloy[J]. Science, 2020, 370(6512): 95-101.
[4] SENKOV O N, GORSSE S, MIRACLE D B.High Temperature Strength of Refractory Complex Concentrated Alloys[J]. Acta Materialia, 2019, 175: 394-405.
[5] SENKOV O N, WILKS G B, MIRACLE D B, et al.Refractory High-Entropy Alloys[J]. Intermetallics, 2010, 18(9): 1758-1765.
[6] SENKOV O N, WILKS G B, SCOTT J M, et al.Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys[J]. Intermetallics, 2011, 19(5): 698-706.
[7] ZHANG H, ZHAO Y Z, HUANG S, et al.Manufacturing and Analysis of High-Performance Refractory High- Entropy Alloy via Selective Laser Melting (SLM)[J]. Materials, 2019, 12(5): 720.
[8] REN X Q, LI Y G, QI Y F, et al.Review on Preparation Technology and Properties of Refractory High Entropy Alloys[J]. Materials, 2022, 15(8): 2931.
[9] SHAMS S A A, JANG G, WON J W, et al. Low-Cycle Fatigue Properties of CoCrFeMnNi High-Entropy Alloy Compared with Its Conventional Counterparts[J]. Materials Science and Engineering: A, 2020, 792: 139661.
[10] NUTOR R K, CAO Q P, WANG X D, et al.Phase Selection, Lattice Distortions, and Mechanical Properties in High-Entropy Alloys[J]. Advanced Engineering Materials, 2020, 22(11): 2000466.
[11] SENKOV O N, MIRACLE D B, CHAPUT K J, et al.Development and Exploration of Refractory High Entropy Alloys—A Review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128.
[12] SCHELLERT S, GORR B, CHRIST H J, et al.The Effect of Al on the Formation of a CrTaO4 Layer in Refractory High Entropy Alloys Ta-Mo-Cr-Ti-xAl[J]. Oxidation of Metals, 2021, 96(3): 333-345.
[13] MENG A, CHEN X, GUO Y Z, et al.Dislocation Mediated Dynamic Tension-Compression Asymmetry of a Ni2CoFeV0.5Mo0.2 Medium Entropy Alloy[J]. Journal of Materials Science & Technology, 2023, 159: 204-218.
[14] QIN G, CHEN R R, ZHENG H T, et al.Strengthening FCC-CoCrFeMnNi High Entropy Alloys by Mo Addition[J]. Journal of Materials Science & Technology, 2019, 35(4): 578-583.
[15] ZHANG F Q, XIANG C, HAN E H, et al.Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1641-1652.
[16] JIANG H, JIANG L, QIAO D X, et al.Effect of Niobium on Microstructure and Properties of the CoCrFeNb x Ni High Entropy Alloys[J]. Journal of Materials Science & Technology, 2017, 33(7): 712-717.
[17] GAO Q, GUO S Y, PENG T, et al.The Microstructure and Properties of Mo0.5NbTiZrTax High Entropy Alloys Enhanced by Ta Addition[J]. Journal of Materials Research and Technology, 2024, 30: 2064-2085.
[18] 徐琴, 王琪, 赵甲丁, 等. CrMoNbTiVx难熔高熵合金的组织特征及高温抗氧化性能[J]. 稀有金属材料与工程, 2024, 53(11): 3194-3204.
XU Q, WANG Q, ZHAO J D, et al.Microstructure Characteristics and Oxidation Properties at Elevated Temperature for CrMoNbTiVx Refractory High Entropy Alloys[J]. Rare Metal Materials and Engineering, 2024, 53(11): 3194-3204.
[19] WANG M, MA Z L, XU Z Q, et al.Microstructures and Mechanical Properties of HfNbTaTiZrW and HfNbTaTiZrMoW Refractory High-Entropy Alloys[J]. Journal of Alloys and Compounds, 2019, 803: 778-785.
[20] LI Q Y, ZHANG H, LI D C, et al.W x NbMoTa Refractory High-Entropy Alloys Fabricated by Laser Cladding Deposition[J]. Materials, 2019, 12(3): 533.
[21] FENG Z Z, ZHANG C, GU C X, et al.Effect of Ti on Microstructure and Mechanical Properties of CoFeNiVTix High-Entropy Alloys[J]. Journal of Materials Engineering and Performance, 2024, 33(24): 14247-14255.
[22] HAN Z D, CHEN N, ZHAO S F, et al.Effect of Ti Additions on Mechanical Properties of NbMoTaW and VNbMoTaW Refractory High Entropy Alloys[J]. Intermetallics, 2017, 84: 153-157.
[23] SHEIKH S, GAN L, IKEDA A, et al.Alloying Effect on the Oxidation Behavior of a Ductile Al0.5Cr0.25Nb0.5Ta0.5Ti1.5 Refractory High-Entropy Alloy[J]. Materials Today Advances, 2020, 7: 100104.
[24] CHEN G B, XIAO Y, JI X X, et al.Effects of Zr Content on the Microstructure and Performance of TiMoNbZrx High-Entropy Alloys[J]. Metals, 2021, 11(8): 1315.
[25] 秦瑞来. TiZrHfxNbTaV0.5难熔高熵合金的微观组织和力学性能研究[D]. 太原: 太原理工大学, 2023.
QIN R L.Study on Microstructure and Mechanical Properties of TiZrHfxNbTaV0.5 Refractory High Entropy Alloy[D]. Taiyuan: Taiyuan University of Technology, 2023.
[26] 郭杨斌. WTaNbHf系难熔高熵合金成分设计及力学性能研究[D]. 南京: 东南大学, 2022.
GUO Y B.Study on Composition Design and Mechanical Properties of WTaNbHf Refractory High Entropy Alloy[D]. Nanjing: Southeast University, 2022.
[27] YAN J H, LI M J, LI K L, et al.Effects of Cr Content on Microstructure and Mechanical Properties of WMoNbTiCr High-Entropy Alloys[J]. Journal of Materials Engineering and Performance, 2020, 29(4): 2125-2133.
[28] FANG L Y, WANG J, LI X N, et al.Effect of Cr Content on Microstructure Characteristics and Mechanical Properties of ZrNbTaHf0.2Crx Refractory High Entropy Alloy[J]. Journal of Alloys and Compounds, 2022, 924: 166593.
[29] GE S F, FU H M, ZHANG L, et al.Effects of Al Addition on the Microstructures and Properties of MoNbTaTiV Refractory High Entropy Alloy[J]. Materials Science and Engineering: A, 2020, 784: 139275.
[30] XU Z Q, MA Z L, TAN Y, et al.Effects of Si Additions on Microstructures and Mechanical Properties of VNbTiTaSi x Refractory High-Entropy Alloys[J]. Journal of Alloys and Compounds, 2022, 900: 163517.
[31] PEI X H, DU Y, WANG H M, et al.Investigation of High Temperature Tribological Performance of TiZrV0.5Nb0.5 Refractory High-Entropy Alloy Optimized by Si Microalloying[J]. Tribology International, 2022, 176: 107885.
[32] 邓鑫. TiNbZrMoCux难熔高熵合金的组织与性能研究[D]. 西安: 西安工业大学, 2024.
DENG X.Study on Microstructure and Properties of TiNbZrMoCux Refractory High Entropy Alloy[D]. Xi’an: Xi'an Technological University, 2024.
[33] LEE K J, JUNG Y, HAN J, et al.Development of Precipitation-Strengthened Al0.8NbTiVM (M = Co, Ni) Light-Weight Refractory High-Entropy Alloys[J]. Materials, 2021, 14(8): 2085.
[34] ZUO T T, CHENG Y Q, CHEN P Y, et al.Structural and Magnetic Transitions of CoFeMnNiAl High-Entropy Alloys Caused by Composition and Annealing[J]. Intermetallics, 2021, 137: 107298.
[35] PENG Y B, ZHANG W, MEI X L, et al.Microstructures and Mechanical Properties of FeCoCrNi-Mo High Entropy Alloys Prepared by Spark Plasma Sintering and Vacuum Hot-Pressed Sintering[J]. Materials Today Communications, 2020, 24: 101009.
[36] ASGHARI-RAD P, SATHIYAMOORTHI P, NGUYEN N T, et al.A Powder-Metallurgy-Based Fabrication Route towards Achieving High Tensile Strength with Ultra-High Ductility in High-Entropy Alloy[J]. Scripta Materialia, 2021, 190: 69-74.
[37] SANKARA SUBRAMANIAN A T, MEENALOCHINI P, SUBA BALA SATHIYA S, et al. A Review on Selection of Soft Magnetic Materials for Industrial Drives[J]. Materials Today: Proceedings, 2021, 45: 1591-1596.
[38] LEE C Y, LIN S J, YEH J W.(AlCrNbSiTi)N/TiN Multilayer Films Designed by a Hybrid Coating System Combining High-Power Impulse Magnetron Sputtering and Cathode Arc Deposition[J]. Surface and Coatings Technology, 2023, 468: 129757.
[39] WANG M L, LU Y P, LAN J G, et al.Lightweight, Ultrastrong and High Thermal-Stable Eutectic High- Entropy Alloys for Elevated-Temperature Applications[J]. Acta Materialia, 2023, 248: 118806.
[40] YUE Y Y, YAN X H, ZHANG Y.Nano-Fiber-Structured Cantor Alloy Films Prepared by Sputtering[J]. Journal of Materials Research and Technology, 2022, 21: 1120-1127.
[41] MOSER M, DINE S, VREL D, et al.Elaboration and Characterization of WMoTaNb High Entropy Alloy Prepared by Powder Metallurgy Processes[J]. Materials, 2022, 15(15): 5416.
[42] FANG C, ZHANG C, ZHU S S, et al.The Influence of Y Additions on the Microstructure and Mechanical Properties of MoTaWNb Refractory High Entropy Alloy Films by Magnetron Sputtering[J]. Surface and Coatings Technology, 2024, 484: 130792.
[43] ZHAO Q Y, SUN Q Y, XIN S W, et al.High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process[J]. Materials Science and Engineering: A, 2022, 845: 143260.
[44] JIN X, XUE Z, MAO Z Z, et al.Exploring Multicomponent Eutectic Alloys along an Univariant Eutectic Line[J]. Materials Science and Engineering: A, 2023, 877: 145136.
[45] SUN T T, SONG W D, SHAN F L, et al.Phase Formation, Texture Evolutions, and Mechanical Behaviors of Al0.5CoCr0.8FeNi2.5V0.2 High-Entropy Alloys Upon Cold Rolling[J]. Progress in Natural Science: Materials International, 2022, 32(2): 196-205.
[46] LI W, XIONG K, YANG L J, et al.An Ambient Ductile TiHfVNbTa Refractory High-Entropy Alloy: Cold Rolling, Mechanical Properties, Lattice Distortion, and First- Principles Prediction[J]. Materials Science and Engineering: A, 2022, 856: 144046.
[47] MA Y X, SUN L X, ZHANG Y, et al.Achieving Excellent Strength-Ductility Synergy via Cold Rolling-Annealing in Al-Containing Refractory High-Entropy Alloys[J]. International Journal of Refractory Metals and Hard Materials, 2023, 114: 106263.
[48] KARIMI J, KOLLO L, RAHMANI R, et al.Selective Laser Melting of In-Situ CoCrFeMnNi High Entropy Alloy: Effect of Remelting[J]. Journal of Manufacturing Processes, 2022, 84: 55-63.
[49] LUO S C, ZHAO C Y, SU Y, et al.Selective Laser Melting of Dual Phase AlCrCuFeNix High Entropy Alloys: Formability, Heterogeneous Microstructures and Deformation Mechanisms[J]. Additive Manufacturing, 2020, 31: 100925.
[50] WU P F, GAN K F, YAN D S, et al.A Non-Equiatomic FeNiCoCr High-Entropy Alloy with Excellent Anti- Corrosion Performance and Strength-Ductility Synergy[J]. Corrosion Science, 2021, 183: 109341.
[51] HAN L L, MACCARI F, SOUZA FILHO I R, et al. A Mechanically Strong and Ductile Soft Magnet with Extremely Low Coercivity[J]. Nature, 2022, 608(7922): 310-316.
[52] KHODASHENAS H, MIRZADEH H.Post-Processing of Additively Manufactured High-Entropy Alloys - a Review[J]. Journal of Materials Research and Technology, 2022, 21: 3795-3814.
[53] 徐金涛, 周庆军, 严振宇, 等. 激光选区熔化NbMoTaW系难熔高熵合金组织韧化与性能研究(特邀)[J]. 中国激光, 2024, 51(10): 1002309.
XU J T, ZHOU Q J, YAN Z Y, et al.Microstructure Toughening and Properties of Selective Laser Melted NbMoTaW Refractory High-Entropy Alloys(Invited)[J]. Chinese Journal of Lasers, 2024, 51(10): 1002309.
[54] LI Q Y, ZHANG H, LI D C, et al.Manufacture of WNbMoTa High Performance High-Entropy Alloy by Laser Additive Manufacturing[J]. Journal of Mechanical Engineering, 2019, 55(15): 10.
[55] LIU C, ZHU K Y, DING W W, et al.Additive Manufacturing of WMoTaTi Refractory High-Entropy Alloy by Employing Fluidised Powders[J]. Powder Metallurgy, 2022, 65(5): 413-425.
[56] 吴昊, 于佳石, 贾志强, 等. 难熔高熵合金研究进展[J]. 航空材料学报, 2024, 44(2): 45-59.
WU H, YU J S, JIA Z Q, et al.Progress of Refractory High Entropy Alloys[J]. Journal of Aeronautical Materials, 2024, 44(2): 45-59.
[57] 谷朋飞, 齐腾博, 陈兰, 等. 选区激光熔化成形VNbMoTaW难熔高熵合金工艺研究[J]. 激光与光电子学进展, 2023, 60(5): 141-148.
GU P F, QI T B, CHEN L, et al.Selective Laser Melting and Forming VNbMoTaW Refractory High Entropy Alloy[J]. Laser & Optoelectronics Progress, 2023, 60(5): 141-148.
[58] CUI D C, ZHANG Y Y, LIU L X, et al.Oxygen-Assisted Spinodal Structure Achieves 1.5 GPa Yield Strength in a Ductile Refractory High-Entropy Alloy[J]. Journal of Materials Science & Technology, 2023, 157: 11-20.
[59] ZHANG D Y, PRASAD A, BERMINGHAM M J, et al.Grain Refinement of Alloys in Fusion-Based Additive Manufacturing Processes[J]. Metallurgical and Materials Transactions A, 2020, 51(9): 4341-4359.
[60] WANG F, YUAN T C, LI R D, et al.Comparative Study on Microstructures and Mechanical Properties of Ultra Ductility Single-Phase Nb40Ti40Ta20 Refractory Medium Entropy Alloy by Selective Laser Melting and Vacuum Arc Melting[J]. Journal of Alloys and Compounds, 2023, 942: 169065.
[61] 朱鹏. 激光选区熔化3D打印难熔高熵合金裂纹抑制与力学性能研究[D]. 武汉: 华中科技大学, 2023.
ZHU P.Study on Crack Suppression and Mechanical Properties of Refractory High Entropy Alloy Printed by Laser Selective Melting 3D Printing[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[62] LI B, ZHANG L, XU Y, et al.Selective Laser Melting of CoCrFeNiMn High Entropy Alloy Powder Modified with Nano-TiN Particles for Additive Manufacturing and Strength Enhancement: Process, Particle Behavior and Effects[J]. Powder Technology, 2020, 360: 509-521.
[63] ZHANG H, CAI J L, GENG J L, et al.Study on Annealing Treatment of NbMoTaTiNi High-Entropy Alloy with Ultra-High Strength Disordered-Ordered Transition Structure for Additive Manufacturing[J]. Journal of Alloys and Compounds, 2023, 941: 168810.
[64] XU Y F, YI D Q, LIU H Q, et al.Age-Hardening Behavior, Microstructural Evolution and Grain Growth Kinetics of Isothermal ω Phase of Ti-Nb-Ta-Zr-Fe Alloy for Biomedical Applications[J]. Materials Science and Engineering: A, 2011, 529: 326-334.
[65] LI Z, CUI Y N, YAN W T, et al.Enhanced Strengthening and Hardening via Self-Stabilized Dislocation Network in Additively Manufactured Metals[J]. Materials Today, 2021, 50: 79-88.
[66] ZHANG H, ZHAO Y Z, CAI J L, et al.High-Strength NbMoTaX Refractory High-Entropy Alloy with Low Stacking Fault Energy Eutectic Phase via Laser Additive Manufacturing[J]. Materials & Design, 2021, 201: 109462.
[67] BONNERIC M, BRUGGER C, SAINTIER N.Investigation of the Sensitivity of the Fatigue Resistance to Defect Position in Aluminium Alloys Obtained by Selective Laser Melting Using Artificial Defects[J]. International Journal of Fatigue, 2020, 134: 105505.
[68] AHMADI M, TABARY S A A B, RAHMATABADI D, et al. Review of Selective Laser Melting of Magnesium Alloys: Advantages, Microstructure and Mechanical Characterizations, Defects, Challenges, and Applications[J]. Journal of Materials Research and Technology, 2022, 19: 1537-1562.
[69] LEUNG C L A, LUCZYNIEC D, GUO E Y, et al. Quantification of Interdependent Dynamics during Laser Additive Manufacturing Using X-Ray Imaging Informed Multi-Physics and Multiphase Simulation[J]. Advanced Science, 2022, 9(36): 2203546.
[70] BRAUN J, KASERER L, STAJKOVIC J, et al.Molybdenum and Tungsten Manufactured by Selective Laser Melting: Analysis of Defect Structure and Solidification Mechanisms[J]Journal of Refractory Metals and Hard Materials, 2019, 84: 104999.
[71] SHAMSAEI N, YADOLLAHI A, BIAN L K, et al.An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control[J]. Additive Manufacturing, 2015, 8: 12-35.
[72] NIU P D, LI R D, GAN K F, et al.Microstructure, Properties, and Metallurgical Defects of an Equimolar CoCrNi Medium Entropy Alloy Additively Manufactured by Selective Laser Melting[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 753-766.
[73] JEON J M, PARK J M, YU J H, et al.Effects of Microstructure and Internal Defects on Mechanical Anisotropy and Asymmetry of Selective Laser-Melted 316L Austenitic Stainless Steel[J]. Materials Science and Engineering: A, 2019, 763: 138152.
[74] GUAN J R, WANG Q P.The Effect of a Remelting Treatment Scanning Strategy on the Surface Morphology, Defect Reduction Mechanism, and Mechanical Properties of a Selective Laser-Melted Al-Based Alloy[J]. Journal of Materials Science, 2022, 57(21): 9807-9817.
[75] TANG H Z, LI R D, WANG F, et al.Effect of Zr on the Morphology, Microstructure and Mechanical Properties of NbTa0.5TiZrX Refractory High Entropy Alloy Fabricated by Selective Laser Melting[J]. Materials Characterization, 2024, 209: 113676.
[76] YANG F, WANG L L, WANG Z J, et al.Ultra Strong and Ductile Eutectic High Entropy Alloy Fabricated by Selective Laser Melting[J]. Journal of Materials Science & Technology, 2022, 106: 128-132.
[77] SALEM H, CARTER L N, ATTALLAH M M, et al.Influence of Processing Parameters on Internal Porosity and Types of Defects Formed in Ti6Al4V Lattice Structure Fabricated by Selective Laser Melting[J]. Materials Science and Engineering: A, 2019, 767: 138387.
[78] KONG W H, COX S C, LU Y, et al.The Influence of Zirconium Content on the Microstructure, Mechanical Properties, and Biocompatibility of In-Situ Alloying Ti-Nb-Ta Based β Alloys Processed by Selective Laser Melting[J]. Materials Science and Engineering: C, 2021, 131: 112486.
[79] GE J G, YUAN B, ZHAO L, et al.Effect of Volume Energy Density on Selective Laser Melting Niti Shape Memory Alloys: Microstructural Evolution, Mechanical and Functional Properties[J]. SSRN Electronic Journal, 2022, 20: 2872-2888.
[80] ZHANG L, LI Y T, ZHANG S, et al.Selective Laser Melting of IN738 Superalloy with a Low Mn+Si Content: Effect of Energy Input on Characteristics of Molten Pool, Metallurgical Defects, Microstructures and Mechanical Properties[J]. Materials Science and Engineering: A, 2021, 826: 141985.
[81] GU P F, QI T B, CHEN L, et al.Manufacturing and Analysis of VNbMoTaW Refractory High-Entropy Alloy Fabricated by Selective Laser Melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105834.
[82] SANAEI N, FATEMI A.Defects in Additive Manufactured Metals and Their Effect on Fatigue Performance: A State-of-the-Art Review[J]. Progress in Materials Science, 2021, 117: 100724.
[83] HUBER F, BARTELS D, SCHMIDT M.In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF- LB/M)[J]. Materials, 2021, 14(11): 3095.
[84] ZHANG H, XU W, XU Y J, et al.The Thermal- Mechanical Behavior of WTaMoNb High-Entropy Alloy via Selective Laser Melting (SLM): Experiment and Simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 461-474.
[85] QIAO Y T, TANG Y, LI S, et al.Preparation of TiZrNbTa Refractory High-Entropy Alloy Powder by Mechanical Alloying with Liquid Process Control Agents[J]. Intermetallics, 2020, 126: 106900.
[86] LIU Y, YANG Y Q, WANG D.A Study on the Residual Stress during Selective Laser Melting (SLM) of Metallic Powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 647-656.
[87] TONG Z P, LIU H L, JIAO J F, et al.Microstructure, Microhardness and Residual Stress of Laser Additive Manufactured CoCrFeMnNi High-Entropy Alloy Subjected to Laser Shock Peening[J]. Journal of Materials Processing Technology, 2020, 285: 116806.
[88] MAROLA S, BOSIA S, VELTRO A, et al.Residual Stresses in Additively Manufactured AlSi10Mg: Raman Spectroscopy and X-Ray Diffraction Analysis[J]. Materials & Design, 2021, 202: 109550.
[89] KALENTICS N, SOHRABI N, TABASI H G, et al.Healing Cracks in Selective Laser Melting by 3D Laser Shock Peening[J]. Additive Manufacturing, 2019, 30: 100881.
[90] 赵懿臻, 张航, 蔡江龙, 等. 激光增材制造BCC基难熔高熵合金组织与性能研究[J]. 中国激光, 2022, 49(14): 1402105.
ZHAO Y Z, ZHANG H, CAI J L, et al.Microstructure and Properties of BCC-Based Refractory High-Entropy Alloy by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 1402105.
[91] KUMAR P, RAMAMURTY U.Microstructural Optimization through Heat Treatment for Enhancing the Fracture Toughness and Fatigue Crack Growth Resistance of Selective Laser Melted Ti6Al4V Alloy[J]. Acta Materialia, 2019, 169: 45-59.
[92] CLOOTS M, UGGOWITZER P J, WEGENER K.Investigations on the Microstructure and Crack Formation of IN738LC Samples Processed by Selective Laser Melting Using Gaussian and Doughnut Profiles[J]. Materials & Design, 2016, 89: 770-784.
[93] HARRISON N J, TODD I, MUMTAZ K.Reduction of Micro-Cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach[J]. Acta Materialia, 2015, 94: 59-68.
[94] ZHU P, YU Y, ZHANG C, et al.V0.5Nb0.5ZrTi Refractory High-Entropy Alloy Fabricated by Laser Addictive Manufacturing Using Elemental Powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106220.
[95] SUN Z, TAN X P, DESCOINS M, et al.Revealing Hot Tearing Mechanism for an Additively Manufactured High-Entropy Alloy via Selective Laser Melting[J]. Scripta Materialia, 2019, 168: 129-133.
[96] 武俊霞, 李培友, 董洪峰, 等. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33-47.
WU J X, LI P Y, DONG H F, et al.Research Progress in Composition Design, Microstructure and Properties of Refractory High Entropy Alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 33-47.
[97] 陈仁顺. 激光选区熔化难熔中/高熵合金的开裂机制及抑制策略研究[D]. 武汉: 华中科技大学, 2022.
CHEN R S.Study on Cracking Mechanism and Inhibition Strategy of Refractory Medium/high Entropy Alloy by Laser Selective Melting[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[98] ISHIMOTO T, OZASA R, NAKANO K, et al.Development of TiNbTaZrMo Bio-High Entropy Alloy (BioHEA) Super-Solid Solution by Selective Laser Melting, and Its Improved Mechanical Property and Biocompatibility[J]. Scripta Materialia, 2021, 194: 113658.
[99] FENG J Y, TANG Y J, LIU J, et al.Bio-High Entropy Alloys: Progress, Challenges, and Opportunities[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 977282.
[100] TODAI M, NAGASE T, HORI T, et al.Novel TiNbTaZrMo High-Entropy Alloys for Metallic Biomaterials[J]. Scripta Materialia, 2017, 129: 65-68.
[101] JENSEN J K, WELK B A, WILLIAMS R E A, et al. Characterization of the Microstructure of the Compositionally Complex Alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1[J]. Scripta Materialia, 2016, 121: 1-4.
[102] QIU Y, THOMAS S, GIBSON M A, et al.Corrosion of High Entropy Alloys[J]. NPJ Materials Degradation, 2017, 1: 15.
[103] SONG Q T, XU J.(TiZrNbTa)90Mo10 High-Entropy Alloy: Electrochemical Behavior and Passive Film Characterization under Exposure to Ringer's Solution[J]. Corrosion Science, 2020, 167: 108513.
[104] 孙博, 夏铭, 张志彬, 等. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
SUN B, XIA M, ZHANG Z B, et al.Property Tuning and Additive Manufacturing of Refractory High-Entropy Alloys[J]. Journal of Materials Engineering, 2020, 48(10): 1-16.
[105] TSENG K K, JUAN C C, TSO S, et al.Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys[J]. Entropy, 2018, 21(1): 15.
[106] WANG Z Q, WU H H, WU Y, et al.Solving Oxygen Embrittlement of Refractory High-Entropy Alloy via Grain Boundary Engineering[J]. Materials Today, 2022, 54: 83-89.
[107] SUN Y Z, CHEN L, LI L, et al.High-Temperature Oxidation Behavior and Mechanism of Inconel 625 Super-Alloy Fabricated by Selective Laser Melting[J]. Optics & Laser Technology, 2020, 132: 106509.
[108] LEE J L, YEH A C, MURAKAMI H.Oxidation Properties of Additively Manufactured High Entropy Alloys: A Short Review[J]. High Temperature Corrosion of Materials, 2024, 101(6): 1369-1379.
[109] 谷朋飞. 选区激光熔化成形VNbMoTaW难熔高熵合金组织及性能研究[D]. 镇江: 江苏大学, 2022.
GU P F.Study on Microstructure and Properties of VNbMoTaW Refractory High Entropy Alloy Formed by Selective Laser Melting[D]. Zhenjiang: Jiangsu University, 2022.
[110] ASHBY M F, HALLAM NÉE COOKSLEY S D. The Failure of Brittle Solids Containing Small Cracks under Compressive Stress States[J]. Acta Metallurgica, 1986, 34(3): 497-510.
[111] HUANG L J, GENG L, FU Y, et al.Oxidation Behavior of in Situ TiCp/Ti6Al4V Composite with Self-Assembled Network Microstructure Fabricated by Reaction Hot Pressing[J]. Corrosion Science, 2013, 69: 175-180.
[112] CHEN L, YANG Z W, LU L K, et al.Effect of TiC on the High-Temperature Oxidation Behavior of WMoTaNbV Refractory High Entropy Alloy Fabricated by Selective Laser Melting[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 106027.
[113] 杨永强, 宋长辉, 王迪. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报, 2014, 50(21): 140-151.
YANG Y Q, SONG C H, WANG D.Selective Laser Melting and Its Applications on Personalized Medical Parts[J]. Journal of Mechanical Engineering, 2014, 50(21): 140-151.
[114] FENG J Y, WEI D X, ZHANG P L, et al.Preparation of TiNbTaZrMo High-Entropy Alloy with Tunable Young’s Modulus by Selective Laser Melting[J]. Journal of Manufacturing Processes, 2023, 85: 160-165.
[115] YAN L, CHEN Y T, LIOU F.Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition[J]. Additive Manufacturing, 2020, 31: 100901.
[116] LOH G H, PEI E, HARRISON D, et al.An Overview of Functionally Graded Additive Manufacturing[J]. Additive Manufacturing, 2018, 23: 34-44.
[117] RODRIGUES T A, CIPRIANO FARIAS F W, ZHANG K P, et al. Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization[J]. Journal of Materials Research and Technology, 2022, 21: 237-251.
[118] ZHANG C, CHEN F, HUANG Z F, et al.Additive Manufacturing of Functionally Graded Materials: A Review[J]. Materials Science and Engineering: A, 2019, 764: 138209.
[119] ZHAO S Y, ZHAO Z, YANG Z C, et al.Functionally Graded Graphene Reinforced Composite Structures: A Review[J]. Engineering Structures, 2020, 210: 110339.
[120] SALEH B, JIANG J H, FATHI R, et al.30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges[J]. Composites Part B: Engineering, 2020, 201: 108376.
[121] WANG Z C, CHEN S Y, YANG S L, et al.Light-Weight Refractory High-Entropy Alloys: A Comprehensive Review[J]. Journal of Materials Science & Technology, 2023, 151: 41-65.
[122] PLOCHER J, PANESAR A.Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures[J]. Materials & Design, 2019, 183: 108164.
[123] JUNK S, KLERCH B, HOCHBERG U.Structural Optimization in Lightweight Design for Additive Manufacturing[J]. Procedia CIRP, 2019, 84: 277-282.
[124] 谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进, 2023, 49(4): 1-16.
TAN Y H, ZHAO J, ZHANG W K, et al.Innovative Design Method and Application of Liquid Rocket Engine Integrated Additive Manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 1-16.
[125] 张莎莎, 张宝鹏, 张文奇, 等. 激光选区熔化成形高铜合金致密化行为及其组织性能[J]. 中国激光, 2022, 49(16): 1602005.
ZHANG S S, ZHANG B P, ZHANG W Q, et al.Densification Behavior and Microstructure of High Strength and High Conductivity Copper Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(16): 1602005.

基金

新疆维吾尔自治区自然科学基金(2023D01C193); 新疆大学2025优秀研究生创新项目(XJDX2025YJS203)

PDF(15216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/