CVD金刚石薄膜与涂层制备技术及关键领域应用研究进展

吴勇, 郭于洋, 孙清云, 陈辉, 杨甫, 夏思瑶

表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 18-38.

PDF(11501 KB)
PDF(11501 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 18-38. DOI: 10.16490/j.cnki.issn.1001-3660.2025.16.002
研究综述

CVD金刚石薄膜与涂层制备技术及关键领域应用研究进展

  • 吴勇1,2, 郭于洋1,2, 孙清云1,2,*, 陈辉1,2, 杨甫1,2, 夏思瑶1,2
作者信息 +

Research Progress on Preparation Technologies and Key Field Applications of CVD Diamond Films and Coatings

  • WU Yong1,2, GUO Yuyang1,2, SUN Qingyun1,2,*, CHEN Hui1,2, YANG Fu1,2, XIA Siyao1,2
Author information +
文章历史 +

摘要

金刚石因其优异的理化性质,在众多领域都有着广阔的应用前景,化学气相沉积则是金刚石薄膜与涂层常用的制备技术之一。详细阐述了CVD金刚石的生长机理,包括气体输送与活化、表面吸附与分解、成核与生长等过程。介绍了多种CVD金刚石制备技术,如热丝化学气相沉积、微波等离子体化学气相沉积和直流等离子体增强化学气相沉积,并对其原理与特点进行了比较。在工艺调控方面,分析了气源体系选择、沉积参数调控等对金刚石膜质量和性能的影响。通过优化碳源气体种类、浓度、反应气氛以及沉积气压和温度等参数,可以显著提升金刚石膜的生长速率和质量,精准调控这些参数是实现高质量金刚石生长的关键。在应用方面,阐述并分析了金刚石薄膜在量子技术、光学、能源领域,以及金刚石涂层在机械加工、生物医学、航天领域的应用场景。尽管CVD金刚石技术已实现多领域突破应用,但其仍面临规模化生产、长期生物安全性验证及复杂工况性能优化等挑战。未来研究将聚焦多功能涂层开发、低成本制备、生物安全性验证及极端环境性能突破,进一步攻克大尺寸单晶生长、低温高质量沉积及智能化工艺控制等关键技术,以满足高端制造与科技发展需求。

Abstract

Diamond, due to its exceptional physical and chemical properties, holds vast application prospects in fields such as mechanical processing, biomedicine, quantum technology, optics, energy, and aerospace. Chemical Vapor Deposition (CVD) is one of the most commonly used techniques for preparing diamond films and coatings. This paper elaborates on the growth mechanisms of CVD diamonds, including gas delivery and activation, surface adsorption and decomposition, nucleation, and growth processes. The CVD technique dynamically controls the film deposition process, utilizing high temperature and specific atmospheric conditions to decompose gaseous carbon sources and form diamond structures. The article also introduces various CVD diamond preparation techniques, such as Hot Filament Chemical Vapor Deposition, Microwave Plasma Chemical Vapor Deposition, and Direct Current Plasma Enhanced Chemical Vapor Deposition, and compares their principles and characteristics.
In terms of process control, the analysis covers the impact of gas source system selection and deposition parameter control on the quality and performance of diamond films. By optimizing parameters such as types and concentration of carbon source gases, reaction atmosphere, deposition pressure, and temperature, the growth rate and quality of diamond films can be significantly enhanced. Precise control of these parameters is crucial for achieving high-quality diamond growth.
The article explores the application of CVD diamond films and coatings in quantum technology, optics, energy, mechanical processing, biomedicine, and aerospace. In the quantum technology field, diamond films are widely used in quantum sensing, computing, and communication due to their excellent optical and electronic properties. In optics, diamond films are ideal materials for ultraviolet laser windows and infrared optical components due to their high transparency and wear resistance. In the energy sector, diamond films show significant potential in nuclear radiation detectors and electrode materials. Diamond coatings are extensively used in mechanical processing for cutting, drilling, and grinding due to their extreme hardness and wear resistance. In the biomedical field, diamond coatings are widely applied in medical devices and biosensors due to their high hardness, wear resistance, excellent chemical inertness, and biocompatibility. In aerospace, diamond coatings significantly enhance the reliability of key components under extreme conditions.
Despite the breakthrough applications of CVD diamond techniques in various fields, challenges remain in terms of large-scale production, long-term biosafety, and performance optimization under complex conditions. Future research should focus on the development of multifunctional coatings, low-cost production and large-scale application, biosafety verification and long-term stability, and performance limits under extreme conditions. The review points out that although chemical vapor deposition diamond coatings face some challenges, their unique properties and broad application prospects make them an important research direction in future materials science and engineering. Further breakthroughs in large-size single crystal growth, low-temperature high-quality deposition, and intelligent process control are needed to meet the diverse needs of high-end manufacturing and technological development.

关键词

金刚石薄膜 / 金刚石涂层 / 化学气相沉积 / 热丝化学气相沉积 / 微波等离子体化学气相沉积 / CVD金刚石应用

Key words

diamond films / diamond coatings / chemical vapor deposition / hot filament chemical vapor deposition / microwave plasma chemical vapor deposition / applications of CVD diamonds

引用本文

导出引用
吴勇, 郭于洋, 孙清云, 陈辉, 杨甫, 夏思瑶. CVD金刚石薄膜与涂层制备技术及关键领域应用研究进展[J]. 表面技术. 2025, 54(16): 18-38 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.002
WU Yong, GUO Yuyang, SUN Qingyun, CHEN Hui, YANG Fu, XIA Siyao. Research Progress on Preparation Technologies and Key Field Applications of CVD Diamond Films and Coatings[J]. Surface Technology. 2025, 54(16): 18-38 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.002
中图分类号: TQ163   

参考文献

[1] 范舒瑜, 匡同春, 林松盛, 等. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 28-37.
FAN S Y, KUANG T C, LIN S S, et al.Research Progress on Cutting Tools Made from WC-Co Cemented Carbide Substrates and Coated with CVD Diamond[J]. Materials Reports, 2023, 37(8): 28-37.
[2] 王鹏, 时凯华, 顾金宝, 等. WC-Co基体预处理工艺对HFCVD金刚石涂层附着性能的影响[J]. 硬质合金, 2020, 37(5): 390-399.
WANG P, SHI K H, GU J B, et al.Effect of WC-Co Substrate Pretreatment Process on Adhesion Properties of HFCVD Diamond Coatings[J]. Cemented Carbide, 2020, 37(5): 390-399.
[3] 王光祖, 张相法, 位星, 等. 金刚石薄膜制备及加工技术研究进展[J]. 超硬材料工程, 2024, 36(2): 58-60.
WANG G Z, ZHANG X F, WEI X, et al.Research Progress on Diamond Film Preparation and Processing Technology[J]. Superhard Material Engineering, 2024, 36(2): 58-60.
[4] 赵志岩, 邓福铭, 卢学军, 等. CVD金刚石刀具的研究进展与应用现状[J]. 工具技术, 2010, 44(2): 8-11.
ZHAO Z Y, DENG F M, LU X J, et al.Research Development and Application Status of Chemical Vapor Deposition Diamond Tools[J]. Tool Engineering, 2010, 44(2): 8-11.
[5] LIU X W, ZHANG H, LIN G L, et al.Advances in Deposition of Diamond Films on Cemented Carbide and Progress of Diamond Coated Cutting Tools[J]. Vacuum, 2023, 217: 112562.
[6] ZHANG C Y, VISPUTE R D, FU K, et al.A Review of Thermal Properties of CVD Diamond Films[J]. Journal of Materials Science, 2023, 58(8): 3485-3507.
[7] WANG L, LIU Y, Chen H, et al.Modification Methods of Diamond like Carbon Coating and the Performance in Machining Applications: A Review[J]. Coatings, 2022, 12(2): 224.
[8] PAN F, KHAN M, RAGAB A H, et al.Recent Advances in the Structure and Biomedical Applications of Nanodiamonds and Their Future Perspectives[J]. Materials & Design, 2023, 233: 112179.
[9] PEI J X, YU X, ZHANG Z Q, et al.In-Situ Graphene Modified Self-Supported Boron-Doped Diamond Electrode for Pb(II) Electrochemical Detection in Seawater[J]. Applied Surface Science, 2020, 527: 146761.
[10] GUO Z F, GUO B, ZHANG J F, et al.CVD Diamond Processing Tools: A Review[J]. Journal of Advanced Research, 2025, 74: 333-358.
[11] 靖克, 谢一进, 蓝子桁, 等. 基于金刚石氮-空位色心的磁测量技术[J]. 计测技术, 2023, 43(4): 15-32.
JING K, XIE Y J, LAN Z H, et al.Magnetometry Based on Nitrogen-Vacancy Center in Diamond[J]. Metrology & Measurement Technology, 2023, 43(4): 15-32.
[12] CHENG Z, MU F W, YATES L, et al.Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8376-8384.
[13] SILVA E L, PRATAS S, NETO M A, et al.Multilayer Diamond Coatings Applied to Micro-End-Milling of Cemented Carbide[J]. Materials, 2021, 14(12): 3333.
[14] AMARAL M, MARU M M, RODRIGUES S P, et al.Extremely Low Wear Rates in Hip Joint Bearings Coated with Nanocrystalline Diamond[J]. Tribology International, 2015, 89: 72-77.
[15] NEBEL C E.CVD Diamond: A Review on Options and Reality[J]. Functional Diamond, 2023, 3(1): 2201592.
[16] WEI Q P, YU Z M, ASHFOLD M N R, et al. Synthesis of Micro- or Nano-Crystalline Diamond Films on WC-Co Substrates with Various Pretreatments by Hot Filament Chemical Vapor Deposition[J]. Applied Surface Science, 2010, 256(13): 4357-4364.
[17] BLAMIRE M G, MACMANUS-DRISCOLL J L, MATHUR N D, et al. The Materials Science of Functional Oxide Thin Films[J]. Advanced Materials, 2009, 21(38/39): 3827-3839.
[18] SHU G Y, DAI B, BOLSHAKOV A, et al.Coessential- Connection by Microwave Plasma Chemical Vapor Deposition: A Common Process towards Wafer Scale Single Crystal Diamond[J]. Functional Diamond, 2021, 1(1): 47-62.
[19] ALI M, ALI F, YANG B X, et al.A Comprehensive Account of Biomedical Applications of CVD Diamond Coatings[J]. Journal of Physics D Applied Physics, 2021, 54(44): 443001.
[20] 黄磊, 王陶, 唐永炳. 金刚石薄膜的制备研究综述[J]. 集成技术, 2017, 6(4): 70-79.
HUANG L, WANG T, TANG Y B.Review on the Synthesis of Diamond Films[J]. Journal of Integration Technology, 2017, 6(4): 70-79.
[21] KAMO M, SATO Y, MATSUMOTO S, et al.Diamond Synthesis from Gas Phase in Microwave Plasma[J]. Journal of Crystal Growth, 1983, 62(3): 642-644.
[22] ISMAGILOV R, MALYKHIN S, PUZYR A, et al.Single-Crystal Diamond Needle Fabrication Using Hot-Filament Chemical Vapor Deposition[J]. Materials, 2021, 14(9): 2320.
[23] ANUPAM K C, SAHA R, ANDERSON J, et al.Effect of Seeding Density on the Growth of Diamond Films by Hot-Filament Chemical Vapor Deposition from Sparse to Dense Range[J]. Journal of Applied Physics, 2021, 130(22): 225302.
[24] AHMAD RESHI B, KUMAR S, MISRA A, et al.Multivariable Study on Growth of Diamond on Diamond Substrates by Microwave Plasma Chemical Vapour Deposition[J]. Materials Research Express, 2019, 6(4): 046407.
[25] LEE W S, BAIK Y J, CHAE K W.Diamond Thick Film Deposition in Wafer Scale Using Single-Cathode Direct Current Plasma Assisted Chemical Vapour Deposition[J]. Thin Solid Films, 2003, 435(1/2): 89-94.
[26] CHOY K L. Chemical Vapour Deposition (CVD): Advances, Technology and Applications[M]. London: CRC Press, 2019.
[27] 李成明, 任飞桐, 邵思武, 等. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(5): 759-780.
LI C M, REN F T, SHAO S W, et al.Progress of Chemical Vapor Deposition (CVD) Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 759-780.
[28] ANUAR N A B, NOR N H M, AWANG R B, et al. Low-Temperature Growth of Graphene Nanoplatelets by Hot-Wire Chemical Vapour Deposition[J]. Surface and Coatings Technology, 2021, 411: 126995.
[29] RISTIĆ G S, BOGDANOV Ž D, ZEC S, et al.Effect of the Substrate Material on Diamond CVD Coating Properties[J]. Materials Chemistry and Physics, 2003, 80(2): 529-536.
[30] LIU Y J, HE J W, ZHANG N, et al.Advances of Microwave Plasma-Enhanced Chemical Vapor Deposition in Fabrication of Carbon Nanotubes: A Review[J]. Journal of Materials Science, 2021, 56(22): 12559-12583.
[31] TOMINAGA Y, HUNGE Y M, KUBOTA N, et al.Ultra-High Growth Rate of Boron-Doped Diamond Films with Optimized Growth Parameters Using In-Liquid Microwave Plasma CVD[J]. Diamond and Related Materials, 2023, 140: 110543.
[32] 赵彦君, 何莲, 阳硕, 等. 提高MPCVD金刚石薄膜均匀性的研究[J]. 硬质合金, 2015, 32(3): 213-220.
ZHAO Y J, HE L, YANG S, et al.Study on Improving the Uniformity of MPCVD Diamond Films[J]. Cemented Carbide, 2015, 32(3): 213-220.
[33] YI K Y, LIU D H, CHEN X S, et al.Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications[J]. Accounts of Chemical Research, 2021, 54(4): 1011-1022.
[34] WAN B Q, SUN X Y, MA H T, et al.Plasma Enhanced Chemical Vapor Deposition of Diamond Coatings on Cu-W and Cu-WC Composites[J]. Surface and Coatings Technology, 2015, 284: 133-138.
[35] MATSUO Y, SUZUKI S.Chemical Vapor Deposition of Silicon Nitride and Silicon Carbide Using a DC Plasma[J]. Journal of Applied Physics, 1968, 39(5): 2341-2346.
[36] LI X L, PERKINS J, COLLAZO R, et al.Investigation of the Effect of the Total Pressure and Methane Concentration on the Growth Rate and Quality of Diamond Thin Films Grown by MPCVD[J]. Diamond and Related Materials, 2006, 15(11/12): 1784-1788.
[37] LARSON J M, GIRSHICK S L.The Effect of Substrate Temperature on the Morphology of Diamond Films Grown under Acetylene-Lean and Acetylene-Rich Conditions[J]. Diamond and Related Materials, 2003, 12(9): 1584-1593.
[38] PLOTNIKOV M Y, GORBACHEV Y E, EMELYANOV A A, et al.Gas-Jet HFCVD Synthesis of Diamonds from Mixtures of Hydrogen with Ethylene and Methane[J]. Diamond and Related Materials, 2022, 130: 109505.
[39] PARAMANIK B, DAS D.Synthesis of Nanocrystalline Diamond Embedded Diamond-Like Carbon Films on Untreated Glass Substrates at Low Temperature Using (C2H2 + H2) Gas Composition in Microwave Plasma CVD[J]. Applied Surface Science, 2022, 579: 152132.
[40] CHEN Y H, TANG J, QIN L C.Formation of Diamonds from Acetone and Chlorides in Solution[J]. Chemistry of Materials, 2023, 35(10): 3835-3840.
[41] ELLIOTT M A, MAY P W, PETHERBRIDGE J, et al.Optical Emission Spectroscopic Studies of Microwave Enhanced Diamond CVD Using CH4/CO2 Plasmas[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 311-316.
[42] KIM H Y, KIM D S, KIM K S, et al.Various Allotropes of Diamond Nanoparticles Generated in the Gas Phase during Hot Filament Chemical Vapor Deposition[J]. Nanomaterials, 2020, 10(12): 2504.
[43] POPOV M Y, CHURKIN V D, KULNITSKIY B A, et al.Transformation of Diamond to Fullerene-type Onions at Pressure 70 GPa and Temperature 2 400 K[J]. Nanotechnology, 2020, 31(31): 315602.
[44] SONG X, WANG H, WANG X C, et al.Coupling Effects of Methane Concentration and Nitrogen Addition Level on Morphologies and Properties of MPCVD Diamond Films on WC-Co Substrates[J]. Diamond and Related Materials, 2021, 117: 108487.
[45] 刘军伟. 沉积条件对CVD金刚石膜生长及其掺杂影响的研究[D]. 长春: 吉林大学, 2011: 28-34.
LIU J W.Study on the Influence of Deposition Conditions on the Growth and Doping of CVD Diamond Films[D]. Changchun: Jilin University, 2011: 28-34.
[46] ZHAO Y, LI C M, LIU J L, et al.The Interface and Mechanical Properties of a CVD Single Crystal Diamond Produced by Multilayered Nitrogen Doping Epitaxial Growth[J]. Materials, 2019, 12(15): 2492.
[47] ROUZBAHANI R, SANKARAN J K, POBEDINSAKAS P, et al.Advances in n-type Chemical Vapor Deposition Diamond Growth: Morphology and Dopant Control[J]. Accounts of Materials Research, 2024, 5(7): 775-785.
[48] NAKANO Y, ZHANG X F, KOBAYASHI K, et al.Impact of Nitrogen Doping on Homoepitaxial Diamond (111) Growth[J]. Diamond and Related Materials, 2022, 125: 108997.
[49] PENG J H, XIONG C, LIAO J C, et al.Study on the Effect of Ar-Containing Work Gas on the Microstructure and Tribological Behavior of Nanocrystalline Diamond Coatings[J]. Tribology International, 2021, 153: 106667.
[50] 简小刚, 黄新, 何嘉诚, 等. 氢、氧原子刻蚀CVD金刚石涂层石墨相的机理研究[J]. 金刚石与磨料磨具工程, 2020, 40(2): 17-21.
JIAN X G, HUANG X, HE J C, et al.Mechanism of Hydrogen and Oxygen Etching Graphite Phase in CVD Diamond Coatings[J]. Diamond & Abrasives Engineering, 2020, 40(2): 17-21.
[51] 熊江. 热丝CVD法生长纳米金刚石膜及其生长机理研究[D]. 武汉: 武汉工程大学, 2015: 42-48.
XIONG J.Growth of Nano-diamond Films by Hot Filament CVD and Its Growth Mechanism[D]. Wuhan: Wuhan Institute of Technology, 2015: 42-48.
[52] 王新昶. 高性能金刚石薄膜的制备、摩擦学性能及其在内孔表面的应用研究[D]. 上海: 上海交通大学, 2015.
WANG X C.Preparation, Tribological Properties and Application of High Performance Diamond Films on Inner Hole Surface[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[53] BUTLER J E, SUMANT A V.The CVD of Nanodiamond Materials[J]. Chemical Vapor Deposition, 2008, 14(7/8): 145-160.
[54] DAS D, ROY A.Growth of Nanostructured Diamond Films on Glass Substrates by Low-Temperature Microwave Plasma-Enhanced Chemical Vapor Deposition for Applications in Nanotribology[J]. ACS Applied Nano Materials, 2022, 5(3): 3558-3571.
[55] ANGUS J C.Diamond and Diamond-Like Films[J]. Thin Solid Films, 1992, 216(1): 126-133.
[56] ANGUS J C, ARGOITIA A, GAT R, et al.Chemical Vapour Deposition of Diamond[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1993, 342(1664): 195-208.
[57] ALI M, QAZI I A.Effect of Substrate Temperature on Hot-Filament CVD Grown Diamond Films at Constant Filament Current[J]. International Journal of Surface Science and Engineering, 2012, 6(3): 214.
[58] MISTRIK J, JANICEK P, TAYLOR A, et al.Spectroscopic Ellipsometry Characterization of Nano-Crystalline Diamond Films Prepared at Various Substrate Temperatures and Pulsed Plasma Frequencies Using Microwave Plasma Enhanced Chemical Vapor Deposition Apparatus with Linear Antenna Delivery[J]. Thin Solid Films, 2014, 571: 230-237.
[59] CHEN N, ZHANG G Q, LI R, et al.Defect and Stress Reduction in High-Pressure and High-Temperature Synthetic Diamonds Using Gradient Cooling Technology[J]. Crystal Growth & Design, 2020, 20(5): 3358-3364.
[60] BALMER R S, BRANDON J R, CLEWES S L, et al.Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications[J]. Journal of Physics Condensed Matter, 2009, 21(36): 364221.
[61] YARAGALLA S, MISHRA R, THOMAS S, et al.Carbon-Based Nanofillers and Their Rubber Nanocomposites[M]. Amsterdam: Elsevier, 2019: 123-181.
[62] FAN S Y, KUANG T C, XU W, et al.Effect of Pretreatment Strategy on the Microstructure, Mechanical Properties and Cutting Performance of Diamond Coated Hardmetal Tools Using HFCVD Method[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105687.
[63] TAN G L, TANG D, DASTAN D, et al.Effect of Heat Treatment on Electrical and Surface Properties of Tungsten Oxide Thin Films Grown by HFCVD Technique[J]. Materials Science in Semiconductor Processing, 2021, 122: 105506.
[64] WANG H, WANG C C, WANG X C, et al.Effects of Carbon Concentration and Gas Pressure with Hydrogen- Rich Gas Chemistry on Synthesis and Characterizations of HFCVD Diamond Films on WC-Co Substrates[J]. Surface and Coatings Technology, 2021, 409: 126839.
[65] PENG J H, ZENG J W, XIONG C, et al.The Effect of Interlayer Reactivity on the Quality of Diamond Coating by HFCVD Deposition[J]. Journal of Alloys and Compounds, 2020, 835: 155035.
[66] BOLSHAKOV A P, RALCHENKO V G, SHU G Y, et al.Single Crystal Diamond Growth by MPCVD at Subatmospheric Pressures[J]. Materials Today Communications, 2020, 25: 101635.
[67] YANG B, LI H N, YU B, et al.Bright Silicon Vacancy Centers in Diamond/SiC Composite Films Synthesized by a MPCVD Method[J]. Carbon, 2021, 171: 455-463.
[68] WANG B, WENG J, WANG Z T, et al.Investigation on the Influence of the Gas Flow Mode around Substrate on the Deposition of Diamond Films in an Overmoded MPCVD Reactor Chamber[J]. Vacuum, 2020, 182: 109659.
[69] KWAK T, LEE J, YOO G, et al.Boron-Doped Single-Crystal Diamond Growth on Heteroepitaxial Diamond Substrate Using Microwave Plasma Chemical Vapor Deposition[J]. Physica Status Solidi (a), 2020, 217(12): 1900973.
[70] ASGARY S, VAGHRI E, RAMEZANI A H.Investigation of Vacuum Annealing Temperature Effects on the Microstructure Properties of DC-PECVD Grown Diamond Nanoparticles[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(4): 1704-1712.
[71] KIM S W, KAWAMATA Y, TAKAYA R, et al.Growth of High-Quality One-Inch Free-Standing Heteroepitaxial (001) Diamond on (112¯0) Sapphire Substrate[J]. Applied Physics Letters, 2020, 117(20): 202102.
[72] LIU P, SHAO S W, YANG Z L, et al.The Uniform and Robust 8-Inch CVD Diamond Plate Generated by Dual-Magnetic Field Controlled DC Jet CVD[J]. Diamond and Related Materials, 2024, 141: 110670.
[73] SHAO S W, LIU P, YE S, et al.Comparison and Analysis of Properties of Transparent and Translucent Diamonds Prepared via DC Arc Plasma Jet CVD[J]. Diamond and Related Materials, 2024, 142: 110710.
[74] WU X B, YU Z M, YOU X L, et al.Characterization of Diamond Films Deposited on Re Substrate by Magnetic Field-Assisted Hot Filament Chemical Vapor Deposition[J]. Applied Surface Science, 2012, 258(6): 2117-2120.
[75] SANG L W.Diamond as the Heat Spreader for the Thermal Dissipation of GaN-Based Electronic Devices[J]. Functional Diamond, 2021, 1(1): 174-188.
[76] PAN X C, ZHOU B, YU S W, et al.Preparation and Properties of Anti-Reflective and Anti-Thermal Shock of Y2O3/AlN Composite Films on CVD Diamond[J]. Ceramics International, 2024, 50(13): 23999-24007.
[77] HAO C, DENG F M, GUO Z H, et al.Study of Preparation and Cutting Performance of a Chemical Vapor Deposition Diamond Coated Cutting Tool[J]. Thin Solid Films, 2023, 771: 139801.
[78] LI W, GAO J, MA Y, et al.Undoped and Diamond- Doped MAO Coatings Prepared on Ti6Al4V: Microstructure, Wear, Corrosion, and Biocompatibility Properties[J]. Surface and Coatings Technology, 2023, 458: 129340.
[79] TERRANOVA M L.Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects[J]. Biomedicines, 2022, 10(12): 3149.
[80] ALI A M, EGIZA M, MURASAWA K, et al.Effects of Substrate Temperature and Intermediate Layer on Adhesion, Structural and Mechanical Properties of Coaxial Arc Plasma Deposition Grown Nanodiamond Composite Films on Si Substrates[J]. Surface and Coatings Technology, 2021, 417: 127185.
[81] YUAN Z Y, LIU L S, SONG H Z, et al.Improvement in the Universality of High-Performance CVD Diamond Coatings on Different WC-Co Substrates by Introducing Multilayered Diamond/β-SiC Composite[J]. Diamond and Related Materials, 2021, 116: 108369.
[82] SEDOV V, MARTYANOV A, ASHKINAZI E, et al.Effect of Diamond Seeds Size on the Adhesion of CVD Diamond Coatings on WC-Co Instrument[J]. Surfaces and Interfaces, 2023, 38: 102861.
[83] YAN G Y, WU Y H, CRISTEA D, et al.Mechanical Properties and Wear Behavior of Multi-Layer Diamond Films Deposited by Hot-Filament Chemical Vapor Deposition[J]. Applied Surface Science, 2019, 494: 401-411.
[84] ALMEIDA L S, SOUZA A M, COSTA L H, et al.Effect of Nitrogen in the Properties of Diamond-Like Carbon (DLC) Coating on Ti6Al4V Substrate[J]. Materials Research Express, 2020, 7(6): 065601.
[85] CHEN Q Y, ZENG C, XU M, et al.Effect of SiN x Interlayer Thickness on Adhesion and Friction Properties of Diamond-Like Carbon Films[J]. Diamond and Related Materials, 2019, 94: 186-193.
[86] YANG B, LI H N, YU B, et al.Deposition of Highly Adhesive Nanocrystalline Diamond Films on Ti Substrates via Diamond/SiC Composite Interlayers[J]. Diamond and Related Materials, 2020, 108: 107928.
[87] FEI H Z, SANG D D, ZOU L R, et al.Research Progress of Optoelectronic Devices Based on Diamond Materials[J]. Frontiers in Physics, 2023, 11: 1226374.
[88] CAO Y J, LIU Y, LIN J J, et al.Detection of Electron Spin Resonance of a Single Nitrogen-Vacancy Center in Diamond Using the Excited-State Lifetime[J]. Journal of Luminescence, 2025, 277: 120965.
[89] DOHERTY M.Quantum Accelerators: A New Trajectory of Quantum Computers[J]. Digitale Welt, 2021, 5(2): 74-79.
[90] XUE J J, LIU K, LIU B J, et al.UV-Blue Photodetectors Based on N-SnOx/p-Diamond Heterojunctions[J]. Materials Letters, 2019, 257: 126621.
[91] LIU Z C, ZHAO D, AO J P, et al.Enhanced Ultraviolet Photoresponse of Diamond Photodetector Using Patterned Diamond Film and Two-Step Growth Process[J]. Materials Science in Semiconductor Processing, 2019, 89: 110-115.
[92] ZHOU Y, RAMANETI R, ANAYA J, et al.Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs[J]. Applied Physics Letters, 2017, 111(4): 041901.
[93] GIROLAMI M, BELLUCCI A, CALVANI P, et al.Large Single-Crystal Diamond Substrates for Ionizing Radiation Detection[J]. Physica Status Solidi (a), 2016, 213(10): 2634-2640.
[94] ESPINOZA-MONTERO P J, ALULEMA-PULLUPAXI P, FRONTANA-URIBE B A, et al. Electrochemical Production of Hydrogen Peroxide on Boron-Doped Diamond (BDD) Electrode[J]. Current Opinion in Solid State and Materials Science, 2022, 26(3): 100988.
[95] EINAGA Y.Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications[J]. Accounts of Chemical Research, 2022, 55(24): 3605-3615.
[96] KIM T T, KIM H, KENNEY M, et al.Amplitude Modulation of Anomalously Refracted Terahertz Waves with Gated-Graphene Metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507.
[97] LIU H, DANDY D S.Diamond Chemical Vapor Deposition: Nucleation and Early Growth Stages[J]. Noyes Publications, 1995, 54(13): 134104.
[98] LIU X X, NATSUME K, MAEGAWA S, et al. Micromachining of Polycrystalline CVD Diamond-Coated Cutting Tool with Femtosecond Laser[J]. Journal of Advanced Mechanical Design, Systems,Manufacturing, 2020, 14(4): JAMDSM0059.
[99] SOLDATOV A.Development of Advanced Polycrystalline Diamond Coatings on Cutting Tools for CFRP Composites[D]. Okayama: Okayama University, 2023.
[100] PRAKASH R, KRISHNARAJ V.Cutting Tools for Machining Composites[M]//Advances in Machining of Composite Materials. Cham: Springer International Publishing, 2021: 485-515.
[101] 尹超, 毛善文. CVD金刚石涂层硬质合金刀具研究进展[J]. 硬质合金, 2016, 33(4): 275-282.
YIN C, MAO S W.Research Progress of CVD Diamond Coating for Cemented Carbide Cutting Tool[J]. Cemented Carbide, 2016, 33(4): 275-282.
[102] GARCIA M A, RAMIREZ C, MARTINEZ J, Enhanced Performance of Cutting Tools with CVD Diamond Coatings[J]. Surface and Coatings Technology, 2023(353): 223-230.
[103] ZHANG J J, ZHANG G Q, FAN G H.Effects of Tool Coating Materials and Coating Thickness on Cutting Temperature Distribution with Coated Tools[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 2276-2284.
[104] XIAN G, XIONG J, FAN H Y, et al.Investigations on Microstructure, Mechanical and Tribological Properties of TiN Coatings Deposited on Three Different Tool Materials[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105700.
[105] BAKALOVA T, SVOBODOVÁ L, PETKOV N, et al.The Effect of the Process Gas Mixture Ratio on the Structure and Composition of TiC and TiCN Thin Layers Prepared by Cathodic Arc Deposition on Tool Steel[J]. Journal of Manufacturing Processes, 2023, 93: 90-100.
[106] TILLMANN W, GRISALES D, STANGIER D, et al.Residual Stresses and Tribomechanical Behaviour of TiAlN and TiAlCN Monolayer and Multilayer Coatings by DCMS and HiPIMS[J]. Surface and Coatings Technology, 2021, 406: 126664.
[107] CHOWDHURY M S I, BOSE B, FOX-RABINOVICH G, et al. Investigation of the Wear Performance of TiB2 Coated Cutting Tools during the Machining of Ti6Al4V Alloy[J]. Materials, 2021, 14(11): 2799.
[108] BJERKE A, LENRICK F, NORGREN S, et al.Understanding Wear and Interaction between CVD Α-Al2O3 Coated Tools, Steel, and Non-Metallic Inclusions in Machining[J]. Surface and Coatings Technology, 2022, 450: 128997.
[109] CHEN H, WANG Y G, JIAO J L, et al.Combined Post- Treatment Approach for Improving the Surface Integrity of CVD Α-Al2O3 Coating and the Tool Wear Resistance[J]. Ceramics International, 2023, 49(23): 39488-39498.
[110] ASHKINAZI E E, SEDOV V S, PETRZHIK M I, et al.Effect of Crystal Structure on the Tribological Properties of Diamond Coatings on Hard-Alloy Cutting Tools[J]. Journal of Friction and Wear, 2017, 38(3): 252-258.
[111] APARCO R H, TAPIA-TADEO F, ASCARZA Y B, et al.A Machine Learning Approach for Analyzing Residual Stress Distribution in Cold Spray Coatings[J]. Journal of Thermal Spray Technology, 2024, 33(5): 1292-1307.
[112] SEIN H, AHMED W, JACKSON M, et al.Performance and Characterisation of CVD Diamond Coated, Sintered Diamond and WC-Co Cutting Tools for Dental and Micromachining Applications[J]. Thin Solid Films, 2004, 447: 455-461.
[113] SKOOG S A, MILLER P R, BOEHM R D, et al.Nitrogen-Incorporated Ultrananocrystalline Diamond Microneedle Arrays for Electrochemical Biosensing[J]. Diamond and Related Materials, 2015, 54: 39-46.
[114] TIAN B Z, LIU J, DVIR T, et al.Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues[J]. Nature Materials, 2012, 11(11): 986-994.
[115] VERMEEREN V, WENMACKERS S, WAGNER P, et al.DNA Sensors with Diamond as a Promising Alternative Transducer Material[J]. Sensors, 2009, 9(7): 5600-5636.
[116] FAN B, RUSINEK C A, THOMPSON C H, et al.Flexible, Diamond-Based Microelectrodes Fabricated Using the Diamond Growth Side for Neural Sensing[J]. Microsystems & Nanoengineering, 2020, 6: 42.
[117] LIU W N, ALAM M N A, LIU Y, et al. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry[J]. Nano Letters, 2022, 22(7): 2881-2888.
[118] ZHANG L, MAHRUKH M, WANG D, et al.Oxidation Protection Dynamics of NiAl Droplet by Inflight In-Situ Carbon Deoxidation during Atmospheric Plasma Spraying for High Performance NiAl Coatings[J]. Journal of Materials Processing Technology, 2023, 319: 118088.
[119] WHEELER D W.Applications of Diamond to Improve Tribological Performance in the Oil and Gas Industry[J]. Lubricants, 2018, 6(3): 84.
[120] SANTUCCI R G, TOSUNOĞLU Z, CILBIZ M, et al. Assessing Codend Mesh Selectivity: Comparing Diamond and Square Mesh Codend in the Red Sea Shrimp Trawl Fishery of Saudi Arabia[J]. Journal of Marine Science and Engineering, 2024, 12(10): 1848.

基金

国家自然科学基金面上基金项目(52175182); 国家科技重大专项(2024ZD0712801); 湖北省自然科学基金(2022CFB936)

PDF(11501 KB)

Accesses

Citation

Detail

段落导航
相关文章

/