碳化硅辅助增效化学机械抛光材料去除机理研究进展

徐腾飞, 刘伟, 邓朝晖, 陈根, 朱德财

表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 1-17.

PDF(14453 KB)
PDF(14453 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (16) : 1-17. DOI: 10.16490/j.cnki.issn.1001-3660.2025.16.001
研究综述

碳化硅辅助增效化学机械抛光材料去除机理研究进展

  • 徐腾飞1, 刘伟1,*, 邓朝晖2, 陈根1, 朱德财2
作者信息 +

Research Progress on Material Removal Mechanism of SiC by Auxiliary Enhanced Chemical Mechanical Polishing

  • XU Tengfei1, LIU Wei1,*, DENG Zhaohui2, CHEN Gen1, ZHU Decai2
Author information +
文章历史 +

摘要

碳化硅具有优异的物理和化学特性,是典型的第三代半导体材料。但碳化硅具有高硬度和化学惰性,导致其精密抛光加工面临材料难去除、表面易损伤和加工成本高等问题,无法满足高效低损伤平坦化加工的迫切需求。目前,化学机械抛光是实现碳化硅衬底全局平坦化的关键技术,但碳化硅化学机械抛光及其辅助增效的研究主要注重实验和技术方法开发,而在其化学反应和机械去除过程中材料去除机理的深层次研究方面存在一定的不足。针对碳化硅典型的晶型结构特点,简述了不同晶型结构的碳化硅材料性能差异,以及材料特性对抛光去除的影响;综述了碳化硅化学机械抛光的原理、材料去除机理及其微观去除机制;分析了几种较为典型的辅助增效化学机械抛光技术,揭示了碳化硅在多能量场耦合作用下的材料去除机理,以及多能量场的耦合效应对其抛光过程中机械作用和化学反应的促进作用。并展望了提高碳化硅抛光材料去除率和表面质量的未来发展方向,以期为碳化硅的高效高质量、低损伤、低成本加工提供新的研究方法和思路。

Abstract

Silicon carbide has excellent physical and chemical properties and is a typical third-generation semiconductor material. Chemical mechanical polishing is the key technology to achieve global planarization of silicon carbide substrates, but silicon carbide has high hardness and chemical inertness, which leads to the problems of difficult material removal, easy surface damage and high processing costs, failing to meet the urgent needs of efficient and low damage planarization processing. At present, the research of chemical mechanical polishing of silicon carbide and its auxiliary enhancement mainly focuses on the development of experiments and technical methods, while there are some deficiencies in the in-depth research of material removal mechanism in the chemical reaction and mechanical removal process. According to the typical crystalline structure characteristics of silicon carbide, the work aims to discuss the properties of silicon carbide materials with different crystalline structures and the effects of material properties on polishing removal. The material removal mechanism and micro-removal mechanism of chemical mechanical polishing of SiC were reviewed. Several typical auxiliary enhanced chemical mechanical polishing techniques were analyzed to reveal the material removal mechanism of SiC under multi-energy field coupling, as well as the facilitation of multi-energy field coupling effect on the mechanical and chemical reaction in the polishing process. The future development direction of improving the material removal rate and surface quality of SiC polishing was also prospected. It was expected to provide new research methods and ideas for silicon carbide processing with high efficiency, high quality, low damage and low cost.
During the CMP process of single-crystal SiC, the acidity or alkalinity of the polishing liquid had a significant impact on the material removal mechanism and surface chemical reactions. Among them, in an alkaline environment, the oxidation reaction of SiC was more intense, generating soluble SiO32- and CO32-, which led to a higher MRR and an excellent polishing surface. The oxidation capacity of the oxidant in the polishing liquid determined the quantity of oxidation products on the surface of SiC. When the concentration of the oxidant was relatively high, there was an atomic step configuration on the surface of the wafer, which was flat. Through molecular dynamics simulation studies, it was found that the material removal during the SiC polishing process was the combined effect of different atomic-level removal mechanisms. The formation of Si—O—Si interface bridge bonds and the insertion of O atoms on the surface led to the breakage of Si—C bonds. The removal of Si atoms disrupted the lattice, and the removal of Si atoms had a significant impact on the removal of C atoms.
SiC auxiliary enhanced chemical mechanical polishing mainly included two types: chemical auxiliary enhanced polishing and energy auxiliary enhanced polishing. Chemical mechanical polishing mainly increased the concentration of highly oxidizing —OH through photocatalysts and Fenton reagent. The —OH produced during polishing broke the C—Si and C—C bonds of SiC into C and Si atoms, and C and Si atoms reacted with O atoms respectively to form CO2 and SiO2 oxide layers, causing oxidation corrosion of the SiC substrate. Energy auxiliary enhanced polishing could reduce the damage caused by the mechanical behavior of abrasives, promote chemical reactions, and increase the atomic removal rate. However, the effect of auxiliary enhanced chemical mechanical polishing in optimizing the surface quality of the processed surface was limited. In the future, the synergy mechanism of the multi-energy field should be further optimized to achieve more efficient and stable ultra-precision polishing.

关键词

碳化硅 / 化学机械抛光 / 晶型结构 / 辅助增效 / 材料去除机理

Key words

silicon carbide / chemical mechanical polishing / crystalline structure / auxiliary enhancement / material removal mechanism

引用本文

导出引用
徐腾飞, 刘伟, 邓朝晖, 陈根, 朱德财. 碳化硅辅助增效化学机械抛光材料去除机理研究进展[J]. 表面技术. 2025, 54(16): 1-17 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.001
XU Tengfei, LIU Wei, DENG Zhaohui, CHEN Gen, ZHU Decai. Research Progress on Material Removal Mechanism of SiC by Auxiliary Enhanced Chemical Mechanical Polishing[J]. Surface Technology. 2025, 54(16): 1-17 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.16.001
中图分类号: TG580   

参考文献

[1] YAN Z F, LIU R Z, LIU B, et al.Molecular Dynamics Simulation Studies of Properties, Preparation, and Performance of Silicon Carbide Materials: A Review[J]. Energies, 2023, 16(3): 1176.
[2] WU Z H, LIU W D, ZHANG L C, et al.Amorphization and Dislocation Evolution Mechanisms of Single Crystalline 6H-SiC[J]. Acta Materialia, 2020, 182: 60-67.
[3] KUMAR A, MORADPOUR M, LOSITO M, et al.Wide Band Gap Devices and Their Application in Power Electronics[J]. Energies, 2022, 15(23): 9172.
[4] LAGUDU U R K, ISONO S, KRISHNAN S, et al. Role of Ionic Strength in Chemical Mechanical Polishing of Silicon Carbide Using Silica Slurries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 119-127.
[5] HORNBERGER J, LOSTETTER A B, OLEJNICZAK K J, et al.Silicon-Carbide (SiC) Semiconductor Power Electronics for Extreme High-Temperature Environments[C]// 2004 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA. IEEE, 2004: 2538-2555.
[6] HU Q Y.Advancements and Prospects in Third- Generation Semiconductor Materials: A Comprehensive Analysis[J]. Highlights in Science, Engineering and Technology, 2024, 81: 631-636.
[7] YANG X, YANG X Z, KAWAI K, et al.Highly Efficient Planarization of Sliced 4H-SiC (0001) Wafer by Slurryless Electrochemical Mechanical Polishing[J]. International Journal of Machine Tools and Manufacture, 2019, 144: 103431.
[8] LI W J, LIU Q, CHEN S L, et al.Single-Crystalline Integrated 4H-SiC Nanochannel Array Electrode: Toward High-Performance Capacitive Energy Storage for Robust Wide-Temperature Operation[J]. Materials Horizons, 2018, 5(5): 883-889.
[9] SEO J.A Review on Chemical and Mechanical Phenomena at the Wafer Interface during Chemical Mechanical Planarization[J]. Journal of Materials Research, 2021, 36(1): 235-257.
[10] 肖强, 李言, 李淑娟. SiC单晶片CMP超精密加工技术现状与趋势[J]. 宇航材料工艺, 2010, 40(1): 9-13.
XIAO Q, LI Y, LI S J.Situation and Development Trends of CMP for SiC Monocrystal Slice[J]. Aerospace Materials & Technology, 2010, 40(1): 9-13.
[11] 罗求发, 陈杰铭, 程志豪, 等. 碳化硅衬底磨抛加工技术的研究进展与发展趋势[J]. 湖南大学学报(自然科学版), 2024, 51(4): 140-152.
LUO Q F, CHEN J M, CHENG Z H, et al.Grinding and Polishing Technology for Silicon Carbide Substrate: State-of-the-Art and Prospective[J]. Journal of Hunan University (Natural Sciences), 2024, 51(4): 140-152.
[12] LIU D F, YAN R M, CHEN T.Material Removal Model of Ultrasonic Elliptical Vibration-Assisted Chemical Mechanical Polishing for Hard and Brittle Materials[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 81-99.
[13] ZHAO Q L, SUN Z Y, GUO B.Material Removal Mechanism in Ultrasonic Vibration Assisted Polishing of Micro Cylindrical Surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39.
[14] HARA H, SANO Y, MIMURA H, et al.Novel Abrasive- Free Planarization of 4H-SiC (0001) Using Catalyst[J]. Journal of Electronic Materials, 2006, 35(8): L11-L14.
[15] ARIMA K, HARA H, MURATA J, et al.Atomic-Scale Flattening of SiC Surfaces by Electroless Chemical Etching in HF Solution with Pt Catalyst[J]. Applied Physics Letters, 2007, 90(20): 202106.
[16] YU X, ZHANG B G, WANG R, et al.Effect of Photocatalysts on Electrochemical Properties and Chemical Mechanical Polishing Rate of GaN[J]. Materials Science in Semiconductor Processing, 2021, 121: 105387.
[17] DENG H, HOSOYA K, IMANISHI Y, et al.Electro- Chemical Mechanical Polishing of Single-Crystal SiC Using CeO2 Slurry[J]. Electrochemistry Communications, 2015, 52: 5-8.
[18] YANG H P, JIN Z J, NIU L, et al.Visible-Light Catalyzed Assisted Chemical Mechanical Polishing of Single Crystal Diamond[J]. Diamond and Related Materials, 2022, 125: 108982.
[19] ZHANG W, YAMASHITA S, KITA H.Progress in Tribological Research of SiC Ceramics in Unlubricated Sliding-a Review[J]. Materials & Design, 2020, 190: 108528.
[20] MÉLINON P, MASENELLI B, TOURNUS F, et al. Playing with Carbon and Silicon at the Nanoscale[J]. Nature Materials, 2007, 6(7): 479-490.
[21] TENG Y Y, LIU D Z, LI Q, et al.Research Progress on Application in Energy Conversion of Silicon Carbide- Based Catalyst Carriers[J]. Catalysts, 2023, 13(2): 236.
[22] DO T T, FANG T H.Deep Insights into Interaction Behaviour and Material Removal of Β-SiC Wafer in Nanoscale Polishing[J]. Tribology International, 2023, 186: 108639.
[23] E P, B P K, B C, et al.A Comprehensive Review of Recent Progress, Prospect and Challenges of Silicon Carbide and Its Applications[J]. Silicon, 2022, 14(18): 12887-12900.
[24] PEIVASTE I, ALAHYARIZADEH G, MINUCHEHR A, et al.Comparative Study on Mechanical Properties of Three Different SiC Polytypes (3C, 4H and 6H) under High Pressure: First-Principle Calculations[J]. Vacuum, 2018, 154: 37-43.
[25] WANG W T, LU X S, WU X K, et al.Chemical- Mechanical Polishing of 4H Silicon Carbide Wafers[J]. Advanced Materials Interfaces, 2023, 10(13): 2202369.
[26] GUO X R, XUN Q, LI Z X, et al.Silicon Carbide Converters and MEMS Devices for High-Temperature Power Electronics: A Critical Review[J]. Micromachines, 2019, 10(6): 406.
[27] YANG B, DENG Q B, SU Y, et al.The Effects of Atomic Arrangements on Mechanical Properties of 2H, 3C, 4H and 6H-SiC[J]. Computational Materials Science, 2022, 203: 111114.
[28] LIN W Q, HU Z W, CHEN Y, et al.Comparison of Vibration-Assisted Scratch Characteristics of SiC Polytypes (3C-, 4H- and 6H-SiC)[J]. Micromachines, 2022, 13(4): 640.
[29] LIU X S, WANG R, ZHANG J R, et al.Anisotropic Deformation of 4H-SiC Wafers: Insights from Nanoindentation Tests[J]. Journal of Physics D: Applied Physics, 2022, 55(49): 494001.
[30] TIAN Z G, CHEN X, XU X P.Molecular Dynamics Simulation of the Material Removal in the Scratching of 4H-SiC and 6H-SiC Substrates[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 045104.
[31] 徐慧敏, 王建彬, 李庆安, 等. 碳化硅晶片的化学机械抛光技术研究进展[J]. 现代制造工程, 2022(6): 153-161.
XU H M, WANG J B, LI Q A, et al.Research Progress of Chemical Mechanical Polishing Technology of Silicon Carbide Wafer[J]. Modern Manufacturing Engineering, 2022(6): 153-161.
[32] MA G L, LI S J, LIU F L, et al.A Review on Precision Polishing Technology of Single-Crystal SiC[J]. Crystals, 2022, 12(1): 101.
[33] SHI X L, PAN G S, ZHOU Y, et al.Characterization of Colloidal Silica Abrasives with Different Sizes and Their Chemical-Mechanical Polishing Performance on 4H-SiC (0001)[J]. Applied Surface Science, 2014, 307: 414-427.
[34] GONG J T, WANG W L, LIU W L, et al.Polishing Mechanism of CMP 4H-SiC Crystal Substrate (0001) Si Surface Based on an Alumina (Al2O3) Abrasive[J]. Materials, 2024, 17(3): 679.
[35] ZHANG P J, LEI H, ZHANG Z F, et al.Synthesis of Al2O3@MnO2 Composite Abrasives and Their Chemical Mechanical Polishing Performance on Silicon Carbide (SiC)[J]. Ceramics International, 2024, 50(11): 19935-19944.
[36] LEE H S, KIM D I, AN J H, et al.Hybrid Polishing Mechanism of Single Crystal SiC Using Mixed Abrasive Slurry (MAS)[J]. CIRP Annals, 2010, 59(1): 333-336.
[37] 高飞, 李晖, 徐永宽. 氧化剂浓度对4H-SiC化学机械抛光效果的影响[J]. 功能材料, 2016, 47(10): 10189-10192.
GAO F, LI H, XU Y K.Influence of Oxidant Concentration on 4H-SiC Chemical Mechanical Polishing Result[J]. Journal of Functional Materials, 2016, 47(10): 10189-10192.
[38] 滕康, 陈国美, 倪自丰, 等. 催化剂浓度对6H-SiC晶片Si面化学机械抛光性能的影响[J]. 表面技术, 2019, 48(3): 291-296.
TENG K, CHEN G M, NI Z F, et al.Effect of Catalyst Concentration on Chemical Mechanical Polishing Performance of Si Surface of 6H-SiC Wafer[J]. Surface Technology, 2019, 48(3): 291-296.
[39] 倪自丰, 陈国美, 徐来军, 等. 不同氧化剂对6H-SiC化学机械抛光的影响[J]. 机械工程学报, 2018, 54(19): 224-231.
NI Z F, CHEN G M, XU L J, et al.Effect of Different Oxidizers on Chemical Mechanical Polishing of 6H-SiC[J]. Journal of Mechanical Engineering, 2018, 54(19): 224-231.
[40] WANG W T, LU X S, WU X K, et al.Oxidation Anisotropy of 4H-SiC Wafers during Chemical- Mechanical Polishing[J]. Materials Science in Semiconductor Processing, 2025, 185: 109014.
[41] LIU H K, CHEN C A, CHEN C J.Effect of Graphene Additions on Polishing of Silicon Carbide Wafer with Functional PU/Silica Particles in CMP Slurry[J]. Functional Materials Letters, 2019, 12(5): 1950066.
[42] YANG X, SUN R Y, KAWAI K, et al.Surface Modification and Microstructuring of 4H-SiC(0001) by Anodic Oxidation with Sodium Chloride Aqueous Solution[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2535-2542.
[43] LI G L, DU S C, HUANG D L, et al.Dynamics Modeling-Based Optimization of Process Parameters in Face Milling of Workpieces with Discontinuous Surfaces[J]. Journal of Manufacturing Science and Engineering, 2019, 141(10): 101009.
[44] 翟文杰, 杨德重. 立方碳化硅CMP过程中机械作用分子动力学仿真[J]. 材料科学与工艺, 2018, 26(3): 10-15.
ZHAI W J, YANG D Z.Molecular Dynamics Simulations of the Mechanical Process in the Chemical Mechanical Polishing of Cubic Silicon Carbide[J]. Materials Science and Technology, 2018, 26(3): 10-15.
[45] LI X, WU P F, ZHU N N, et al.Effects of Chemical Action of Polishing Medium on the Material Removal of SiC[J]. Precision Engineering, 2024, 89: 91-102.
[46] YEON J, CHOWDHURY S C, GILLESPIE J W Jr. Hydroxylation and Water-Surface Interaction for S-Glass and Silica Glass Using ReaxFF Based Molecular Dynamics Simulations[J]. Applied Surface Science, 2023, 608: 155078.
[47] MAN Q, SUN Q, WANG Y, et al.Atomistic Removal Mechanisms of SiC in Hydrogen Peroxide Solution[J]. Micromachines, 2024, 15(6): 754.
[48] 孙强. 碳化硅化学机械抛光微观去除机理的研究[D]. 上海: 上海海洋大学, 2021.
SUN Q.Study on Micro-removal Mechanism of Silicon Carbide by Chemical Mechanical Polishing[D]. Shanghai: Shanghai Ocean University, 2021.
[49] 苑泽伟, 唐美玲, 郎玲琪, 等. 使用反应分子动力学模拟碳化硅的原子去除机理[J]. 沈阳工业大学学报, 2021, 43(1): 42-47.
YUAN Z W, TANG M L, LANG L Q, et al.Simulation of Atomic Removal Mechanism of Silicon Carbide Using Reactive Molecular Dynamics[J]. Journal of Shenyang University of Technology, 2021, 43(1): 42-47.
[50] 甘阳, 张飞虎. 单晶碳化硅和蓝宝石基片化学机械抛光的表面反应层形成机制的研究进展[J]. 科学通报, 2016, 61(36): 3930-3939.
GAN Y, ZHANG F H.Review on Formation Mechanism of Chemical Reaction Layer during Chemical Mechanical Polishing of Monocrystalline SiC and Sapphire Substrates[J]. Chinese Science Bulletin, 2016, 61(36): 3930-3939.
[51] 路家斌, 熊强, 阎秋生, 等. 紫外光催化辅助SiC抛光过程中化学反应速率的影响[J]. 表面技术, 2019, 48(11): 148-158.
LU J B, XIONG Q, YAN Q S, et al.Effect of Chemical Reaction Rate in Ultraviolet Photocatalytic Auxiliary SiC Polishing Process[J]. Surface Technology, 2019, 48(11): 148-158.
[52] OHNISHI O, DOI T, KUROKAWA S, et al. Effects of Atmosphere and Ultraviolet Light Irradiation on Chemical Mechanical Polishing Characteristics of SiC Wafers[J]. Japanese Journal of Applied Physics, 2012, 51(5S): 05EF05.
[53] PELAEZ M, NOLAN N T, PILLAI S C, et al.A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications[J]. Applied Catalysis B: Environmental, 2012, 125: 331-349.
[54] 夏永. 紫外光辅助碳化硅化学机械抛光机理研究[D]. 无锡: 江南大学, 2020.
XIA Y.Study on Mechanism of UV-assisted Chemical Mechanical Polishing of Silicon Carbide[D]. Wuxi: Jiangnan University, 2020.
[55] 王鑫. 单晶6H-SiC紫外光催化辅助化学机械抛光机理研究[D]. 广州: 广东工业大学, 2020.
WANG X.Study on Mechanism of UV-assisted Chemical Mechanical Polishing of Single Crystal 6H-SiC[D]. Guangzhou: Guangdong University of Technology, 2020.
[56] YUAN Z W, HE Y, SUN X W, et al.UV-TiO2 Photocatalysis-Assisted Chemical Mechanical Polishing 4H-SiC Wafer[J]. Materials and Manufacturing Processes, 2018, 33(11): 1214-1222.
[57] HE Y, YUAN Z W, SONG S Y, et al.Investigation on Material Removal Mechanisms in Photocatalysis-Assisted Chemical Mechanical Polishing of 4H-SiC Wafers[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(5): 951-963.
[58] 王万堂, 张保国, 周佳凯, 等. 长余辉发光粒子与光催化剂在SiC晶圆化学机械抛光中的协同作用[J]. 表面技术, 2022, 51(9): 251-259.
WANG W T, ZHANG B G, ZHOU J K, et al.Synergistic Effect of Long-Afterglow Phosphor Particles and Photocatalyst in Chemical Mechanical Polishing of SiC Wafers[J]. Surface Technology, 2022, 51(9): 251-259.
[59] LU J, WANG Y G, LUO Q F, et al.Photocatalysis Assisting the Mechanical Polishing of a Single-Crystal SiC Wafer Utilizing an Anatase TiO2-Coated Diamond Abrasive[J]. Precision Engineering, 2017, 49: 235-242.
[60] ZHU X X, GUI Y, FU H, et al.Photocatalytic Assisted Chemical Mechanical Polishing for Silicon Carbide Using Developed Ceria Coated Diamond Core-Shell Abrasives[J]. Tribology International, 2024, 197: 109827.
[61] 马磊. 碳化硅光学材料芬顿辅助抛光机理与工艺研究[D]. 长沙: 国防科学技术大学, 2012.
MA L.Study on Mechanism and Process of Fenton- assisted Polishing of Silicon Carbide Optical Material[D]. Changsha: National University of Defense Technology, 2012.
[62] 王磊. 基于芬顿反应的单晶SiC化学机械抛光液研究[D]. 广州: 广东工业大学, 2015.
WANG L.Study on Chemical Mechanical Polishing Solution of Single Crystal SiC Based on Fenton Reaction[D]. Guangzhou: Guangdong University of Technology, 2015.
[63] LU J B, CHEN R, LIANG H Z, et al.The Influence of Concentration of Hydroxyl Radical on the Chemical Mechanical Polishing of SiC Wafer Based on the Fenton Reaction[J]. Precision Engineering, 2018, 52: 221-226.
[64] DENG J Y, PAN J S, ZHANG Q X, et al.The Mechanism of Fenton Reaction of Hydrogen Peroxide with Single Crystal 6H-SiC Substrate[J]. Surfaces and Interfaces, 2020, 21: 100730.
[65] WANG X H, CHEN J P, BU Z Z, et al.Accelerated C-Face Polishing of Silicon Carbide by Alkaline Polishing Slurries with Fe3O4 Catalysts[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106863.
[66] HAO X D, CHEN J P, WU X J, et al.Application of the Fenton Reaction in Silicon Carbide Polishing and Its Oxidative Active Center[J]. Ceramics International, 2024, 50(18): 34357-34370.
[67] LIANG H Z, LU J B, YAN Q S, et al.Chemical Catalysts of Fenton Reaction for Single-Crystal SiC Based on Nanoindentation[J]. International Journal of Abrasive Technology, 2018, 8(3): 232.
[68] 徐少平, 路家斌, 阎秋生, 等. 单晶SiC化学机械抛光液的固相催化剂研究[J]. 机械工程学报, 2017, 53(21): 167-173.
XU S P, LU J B, YAN Q S, et al.Solid Catalysts Based on Fenton Reaction for Si C Wafer in Chemical Mechanical Polishing[J]. Journal of Mechanical Engineering, 2017, 53(21): 167-173.
[69] XU L X, FENG K P, ZHAO L, et al.Polishing Performance and Material Removal Mechanism in the Solid-Phase Fenton Reaction Based Polishing Process of SiC Wafer Using Diamond Gel Disc[J]. Journal of Materials Processing Technology, 2024, 330: 118486.
[70] ZHOU M F, CHENG Y Y, ZHONG M, et al.Macro and Micro-Nano Machining Mechanism for Ultrasonic Vibration Assisted Chemical Mechanical Polishing of Sapphire[J]. Applied Surface Science, 2023, 640: 158343.
[71] 郝晓丽. 超声振动辅助光催化抛光碳化硅工艺研究[D]. 沈阳: 沈阳工业大学, 2022.
HAO X L.Study on Ultrasonic Vibration-assisted Photocatalytic Polishing of Silicon Carbide[D]. Shenyang: Shenyang University of Technology, 2022.
[72] HSIEH C H, CHANG C Y, HSIAO Y K, et al.Recent Advances in Silicon Carbide Chemical Mechanical Polishing Technologies[J]. Micromachines, 2022, 13(10): 1752.
[73] CHEN X, ZHANG C, MENG F W, et al.Polishing Mechanism Analysis of Silicon Carbide Ceramics Combined Ultrasonic Vibration and Hydroxyl[J]. Tribology International, 2023, 179: 108187.
[74] HU Y, SHI D, HU Y, et al.Investigation on the Material Removal and Surface Generation of a Single Crystal SiC Wafer by Ultrasonic Chemical Mechanical Polishing Combined with Ultrasonic Lapping[J]. Materials, 2018, 11(10): 2022.
[75] BAN X X, ZHU J H, SUN G N, et al.Molecular Simulation of Ultrasonic Assisted Diamond Grit Scratching 4H-SiC Single-Crystal[J]. Tribology International, 2024, 192: 109330.
[76] HE Y, TANG W Z, GAO P, et al.Nano-Polishing Characteristics in Vibration-Assisted CMP of Single-Crystal Silicon Carbide via Molecular Dynamics Simulations[J]. Materials Science in Semiconductor Processing, 2023, 164: 107637.
[77] 王磊, 吴润泽, 牛林, 等. 碳化硅晶体电化学机械抛光工艺研究[J]. 金刚石与磨料磨具工程, 2022, 42(4): 504-510.
WANG L, WU R Z, NIU L, et al.Study on Electrochemical Mechanical Polishing Process of Silicon Carbide Crystal[J]. Diamond & Abrasives Engineering, 2022, 42(4): 504-510.
[78] LI C H, BHAT I B, WANG R J, et al.Electro-Chemical Mechanical Polishing of Silicon Carbide[J]. Journal of Electronic Materials, 2004, 33(5): 481-486.
[79] WANG W T, ZHANG B G, SHI Y H, et al.Improvement in Chemical Mechanical Polishing of 4H-SiC Wafer by Activating Persulfate through the Synergistic Effect of UV and TiO2[J]. Journal of Materials Processing Technology, 2021, 295: 117150.
[80] SPEED D E.Environmental Aspects of Planarization Processes[M]//Advances in Chemical Mechanical Planarization (CMP). Amsterdam: Elsevier, 2022: 257-320.
[81] YANG X Z, YANG X, YAMAMURA K.Effects of Electrolyte Type and Concentration on the Anodic Oxidation of 4H-SiC (0001) in Slurryless Electrochemical Mechanical Polishing[J]. Electrochimica Acta, 2024, 474: 143531.
[82] INADA N, TAKIZAWA M, ADACHI M, et al.Sustainable Electrochemical Mechanical Polishing (ECMP) for 4H-SiC Wafer Using Chemical-Free Polishing Slurry with Hydrocarbon-Based Solid Polymer Electrolyte[J]. Applied Surface Science, 2024, 664: 160241.
[83] YANG X Z, YANG X, KAWAI K, et al.Dominant Factors and Their Action Mechanisms on Material Removal Rate in Electrochemical Mechanical Polishing of 4H-SiC (0001) Surface[J]. Applied Surface Science, 2021, 562: 150130.
[84] YANG X, SUN R Y, OHKUBO Y, et al.Investigation of Anodic Oxidation Mechanism of 4H-SiC (0001) for Electrochemical Mechanical Polishing[J]. Electrochimica Acta, 2018, 271: 666-676.
[85] MURATA J, YODOGAWA K, BAN K.Polishing-Pad- Free Electrochemical Mechanical Polishing of Single- Crystalline SiC Surfaces Using Polyurethane-CeO2 Core- Shell Particles[J]. International Journal of Machine Tools and Manufacture, 2017, 114: 1-7.
[86] YANG X, YANG X Z, AOKI K, et al.Slurryless Electrochemical Mechanical Polishing of 4-Inch 4H-SiC (0001) and (000-1) Surfaces[J]. Precision Engineering, 2023, 83: 237-249.
[87] WU M, HUANG H, LUO Q F, et al.A Novel Approach to Obtain near Damage-Free Surface/Subsurface in Machining of Single Crystal 4H-SiC Substrate Using Pure Metal Mediated Friction[J]. Applied Surface Science, 2022, 588: 152963.
[88] LUO Y R, XIONG Q, LU J B, et al.Chemical Mechanical Polishing Exploiting Metal Electrochemical Corrosion of Single-Crystal SiC[J]. Materials Science in Semiconductor Processing, 2022, 152: 107067.
[89] 胡达, 路家斌, 阎秋生, 等. 基于金属电化学腐蚀的单晶SiC表面腐蚀和磨损性能研究[J]. 湖南大学学报(自然科学版), 2024, 51(4): 123-131.
HU D, LU J B, YAN Q S, et al.Study on Surface Corrosion and Wear Performance of Single-Crystal SiC Based on Metal Electrochemical Corrosion[J]. Journal of Hunan University (Natural Sciences), 2024, 51(4): 123-131.
[90] LU J B, HUANG Y F, FU Y Z, et al.Synergistic Effect of Photocatalysis and Fenton on Improving the Removal Rate of 4H-SiC during CMP[J]. Journal of Solid State Science and Technology, 2021, 10(4): 044001.
[91] 黄远福. 单晶SiC紫外光催化—芬顿反应CMP协同作用机理研究[D]. 广州: 广东工业大学, 2021.
HUANG Y F.Study on Synergistic Mechanism of CMP in Ultraviolet Catalysis-Fenton Reaction of Single Crystal SiC[D]. Guangzhou: Guangdong University of Technology, 2021.
[92] ZHANG Y Q, ZHANG Q Z, ZUO S J, et al.A Highly Efficient Flow-through Electro-Fenton System Enhanced with Nitrilotriacetic Acid for Phenol Removal at Neutral pH[J]. Science of the Total Environment, 2019, 697: 134173.
[93] LI D, ZHENG T, LIU Y L, et al.A Novel Electro-Fenton Process Characterized by Aeration from Inside a Graphite Felt Electrode with Enhanced Electrogeneration of H2O2 and Cycle of Fe3+/Fe2+[J]. Journal of Hazardous Materials, 2020, 396: 122591.
[94] DENG J Y, LU J B, YAN Q S, et al.Basic Research on Chemical Mechanical Polishing of Single-Crystal SiC— Electro-Fenton: Reaction Mechanism and Modelling of Hydroxyl Radical Generation Using Condition Response Modelling[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104954.
[95] DENG J Y, LU J B, YAN Q S, et al.Enhancement Mechanism of Chemical Mechanical Polishing for Single- Crystal 6H-SiC Based on Electro-Fenton Reaction[J]. Diamond and Related Materials, 2021, 111: 108147.
[96] YIN X C, WANG Y L, LIU J H, et al.Study on Enhancement Mechanisms in Ultrasonic-Assisted Plasma Electrochemical Oxidation for SiC Single Crystal[J]. Arabian Journal for Science and Engineering, 2024, 49(1): 599-611.
[97] CHEN X, LIANG Y D, CUI Z J, et al.Study on Material Removal Mechanism in Ultrasonic Chemical Assisted Polishing of Silicon Carbide[J]. Journal of Manufacturing Processes, 2022, 84: 1463-1477.
[98] CHEN G P, PAN L Y, LUO H M, et al.Chemical Mechanical Polishing of Silicon Carbide (SiC) Based on Coupling Effect of Ultrasonic Vibration and Catalysis[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111080.

基金

国家自然科学基金联合基金重点项目(U23A20634); 湖南省自然科学基金面上项目(2023JJ30251); 湖南省学位与研究生教学改革研究项目(2023JGSZ091)

PDF(14453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/