TC4钛合金表面超疏水微弧氧化-水热-硅烷复合涂层构筑及耐蚀性研究

金杰, 熊李芳, 尹天晨, 侯广飞, 宋若源, 陈双双

表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 189-199.

PDF(3410 KB)
PDF(3410 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 189-199. DOI: 10.16490/j.cnki.issn.1001-3660.2025.15.017
技术及应用

TC4钛合金表面超疏水微弧氧化-水热-硅烷复合涂层构筑及耐蚀性研究

  • 金杰, 熊李芳, 尹天晨, 侯广飞, 宋若源, 陈双双*
作者信息 +

Construction and Corrosion Resistance of Superhydrophobic Micro-arc Oxidation-hydrothermal-silanization Composite Coatings on Surface of TC4 Titanium Alloy

  • JIN Jie, XIONG Lifang, YIN Tianchen, HOU Guangfei, SONG Ruoyuan, CHEN Shuangshuang*
Author information +
文章历史 +

摘要

目的 在TC4钛合金表面构筑超疏水微弧氧化-水热-硅烷复合涂层,以延长它在海洋环境中的使用寿命。方法 先在硅酸盐电解液体系中对合金进行微弧氧化表面处理,接着选用Al(NO3)3·9H2O溶液对微弧氧化样品进行水热处理,最后将其放入1H,1H,2H,2H-全氟辛基三氯硅烷(PFOTS)-乙醇溶液中进行硅烷化处理。借助XRD、SEM、EDS表征复合涂层的物相组成、表面形貌、截面形貌及化学成分,并利用电化学工作站和接触角测量仪测试涂层的耐蚀性和润湿性。结果 微弧氧化-水热-硅烷复合涂层主要由锐钛矿和金红石型TiO2、Al(OH)3相构成。当水热温度达到160 ℃时,复合涂层的水接触角为158.3°,达到超疏水状态,它在模拟海水环境中的腐蚀电流密度(9.89×10-9 A/cm2)最小。复合涂层在离子溶液和碱性环境中分别保持超疏水性4 h和 6 h。经过240 h的紫外线辐照后,复合涂层保持了超疏水特性。结论 微弧氧化-水热-硅烷复合表面处理可以显著改善TC4合金在模拟海洋环境中的耐蚀性。经水热反应生成的Al(OH)3能够封闭大部分微弧氧化涂层表面的孔洞,减少Cl-等强腐蚀性离子从涂层/基体界面进入合金内部。此外,复合涂层表面疏水特性使得涂层与腐蚀液之间形成了“空气膜”,阻隔了腐蚀介质与涂层的直接接触。

Abstract

In this study, superhydrophobic micro-arc oxidation-hydrothermal-silanization composite coatings are successfully prepared on the surface of TC4 titanium alloy to extend its service life in the marine environment. The titanium alloy is firstly processed via micro-arc oxidation treatment in a weakly alkaline silicate electrolyte system composed of 10 g/L sodium (Na2SiO3·9H2O), 10 g/L sodium hexametaphosphate (Na6O18P6) and 1 g/L potassium hydroxide (KOH). Then, a 0.05 mol/L Al(NO3)3·9H2O solution is selected to perform hydrothermal treatment of the micro-arc oxidation treated specimens at different temperature for 2 h. Finally, the micro-arc oxidation-hydrothermal treated specimens are placed in a 0.01 mol/L 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS)-ethanol solution for silanization treatment for 4 h. The phase compositions, surface morphologies, cross-sectional morphologies, and chemical compositions of the micro-arc oxidation- hydrothermal-silanization composite coatings are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS), and the corrosion resistance and wettability of the composite coatings are tested by electrochemical workstation and contact angle goniometery.

关键词

钛合金 / 微弧氧化 / 水热处理 / 硅烷化 / 超疏水 / 耐蚀性

引用本文

导出引用
金杰, 熊李芳, 尹天晨, 侯广飞, 宋若源, 陈双双. TC4钛合金表面超疏水微弧氧化-水热-硅烷复合涂层构筑及耐蚀性研究[J]. 表面技术. 2025, 54(15): 189-199 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.017
JIN Jie, XIONG Lifang, YIN Tianchen, HOU Guangfei, SONG Ruoyuan, CHEN Shuangshuang. Construction and Corrosion Resistance of Superhydrophobic Micro-arc Oxidation-hydrothermal-silanization Composite Coatings on Surface of TC4 Titanium Alloy[J]. Surface Technology. 2025, 54(15): 189-199 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.017
中图分类号: TG174.4   

参考文献

[1] QIN W T, MAN C, PANG K, et al.Corrosion Behavior of L-PBF Ti6Al4V with Heat Treatments in the F-Containing Environments[J]. Corrosion Science, 2023, 210: 110811.
[2] WANG X Q, ZHANG Y S, HAN W Z.Design of High Strength and Wear-Resistance β-Ti Alloy Via Oxygen- Charging[J]. Acta Materialia, 2022, 227: 117686.
[3] 李友炽, 邓培昌, 王贵, 等. TC4钛合金实海污损生物附着行为与腐蚀机理研究[J]. 表面技术, 2024, 53(24): 110-119.
LI Y C, DENG P C, WANG G, et al.Fouling Organism Attachment Behavior and Corrosion Mechanism of Titanium Alloy in the Sea[J]. Surface Technology, 2024, 53(24): 110-119.
[4] GORYNIN I V.Titanium Alloys for Marine Application[J]. Materials Science and Engineering: A, 1999, 263(2): 112-116.
[5] ZHANG H X, ZHANG F, HAO F Y, et al.Stress Corrosion Behavior and Mechanism of Ti6321 Alloy with Different Microstructures in Stimulated Deep-Sea Environment[J]. Corrosion Science, 2024, 233: 112059.
[6] LI Z, FAN L, MA L, et al.Perspective Review on Factors that Influence the Stress Corrosion of Ti Alloys for Deep-Sea Applications[J]. Journal of Materials Science & Technology, 2025, 222: 228-249.
[7] YANG Y, ZHANG W H, ZHANG K L, et al.Enhanced Wear Resistance, Hydrophobic Properties and Corrosion Resistance of Plasma Electrolyte Oxidation Coatings on Ti6Al4V Alloys Via Addition of ZrO2 Nanoparticles[J]. Journal of Materials Research and Technology, 2025, 34: 463-478.
[8] OLIVEIRA V M C A, AGUIAR C, VAZQUEZ A M, et al. Improving Corrosion Resistance of Ti-6Al-4V Alloy through Plasma-Assisted PVD Deposited Nitride Coatings[J]. Corrosion Science, 2014, 88: 317-327.
[9] PAT S, ÇAKIR F H, ÖTEYAKA M Ö.Corrosion Behavior of Graphene Coated Ti-6Al-4V Alloy by Anodic Plasma Coating Method[J]. Inorganic Chemistry Communications, 2023, 147: 110268.
[10] WENG F, CHEN C Z, YU H J.Research Status of Laser Cladding on Titanium and Its Alloys: a Review[J]. Materials & Design, 2014, 58: 412-425.
[11] RAUTRAY T R, NARAYANAN R, KIM K H.Ion Implantation of Titanium Based Biomaterials[J]. Progress in Materials Science, 2011, 56(8): 1137-1177.
[12] XU C, ZHU M H, GUAN H H, et al.Improvement of Steam Oxidation Resistance of the γ-TiAl Alloy with Microarc Oxidation Coatings at 900-1 200 ℃[J]. Corrosion Science, 2022, 209: 110711.
[13] XI F Q, ZHANG X W, JIANG X Y, et al.Growth Mechanism of Oxide Layer on Ti-6Al-4V Substrate with Different Surface Topographies During the Early Stage of Micro-Arc Oxidation[J]. Surface and Coatings Technology, 2023, 467: 129685.
[14] FATTAH-ALHOSSEINI A, MOLAEI M, BABAEI K.The Effects of Nano- and Micro-Particles on Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Titanium Substrates: a Review[J]. Surfaces and Interfaces, 2020, 21: 100659.
[15] DUARTE L T, BOLFARINI C, BIAGGIO S R, et al.Growth of Aluminum-Free Porous Oxide Layers on Titanium and Its Alloys Ti-6Al-4V and Ti-6Al-7Nb by Micro-Arc Oxidation[J]. Materials Science and Engineering: C, 2014, 41: 343-348.
[16] YU L, WANG J T, SUN N, et al.Effect of Hydrothermal Treatment on the Corrosion Resistance of CO2 Gas- Assisted MAO Coatings[J]. Vacuum, 2024, 221: 112936.
[17] MA F C, LIU P, CHEN Y, et al.Various Morphologies Hydroxyapatite Crystals on Ti MAO Film Prepared by Hydrothermal Treatment[J]. Physics Procedia, 2013, 50: 442-448.
[18] WANG Z H, ZHANG J M, LI Y, et al.Enhanced Corrosion Resistance of Micro-Arc Oxidation Coated Magnesium Alloy by Superhydrophobic Mg-Al Layered Double Hydroxide Coating[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2066-2077.
[19] FAN H Q, LU P, ZHU X, et al.Development of Superhydrophobic and Corrosion Resistant Coatings on Carbon Steel by Hydrothermal Treatment and Fluoroalkyl Silane Self-Assembly[J]. Materials Chemistry and Physics, 2022, 290: 126569.
[20] ZHU J Y, JIA H J, LIAO K J, et al.Improvement on Corrosion Resistance of Micro-Arc Oxidized AZ91D Magnesium Alloy by a Pore-Sealing Coating[J]. Journal of Alloys and Compounds, 2021, 889: 161460.
[21] CHANG L M, TIAN L F, LIU W, et al.Formation of Dicalcium Phosphate Dihydrate on Magnesium Alloy by Micro-Arc Oxidation Coupled with Hydrothermal Treatment[J]. Corrosion Science, 2013, 72: 118-124.
[22] WEI D S, WANG J G, LI S Y, et al.Novel Corrosion- Resistant Behavior and Mechanism of a Biomimetic Surface with Switchable Wettability on Mg Alloy[J]. Chemical Engineering Journal, 2021, 425: 130450.
[23] WANG Y, ZHOU X Y, YIN M H, et al.Superhydrophobic and Self-Healing Mg-Al Layered Double Hydroxide/ Silane Composite Coatings on the Mg Alloy Surface with a Long-Term Anti-Corrosion Lifetime[J]. Langmuir, 2021, 37(27): 8129-8138.
[24] WANG S Q, WANG Y M, CAO G, et al.Highly Reliable Double-Layer Coatings on Magnesium Alloy Surfaces for Robust Superhydrophobicity, Chemical Durability and Electrical Property[J]. Ceramics International, 2021, 47(24): 35037-35047.
[25] JIANG S Q, ZHANG Z Y, WANG D, et al.ZIF-8-Based Micro-Arc Oxidation Composite Coatings Enhanced the Corrosion Resistance and Superhydrophobicity of a Mg Alloy[J]. Journal of Magnesium and Alloys, 2023, 11(4): 1367-1380.
[26] JIANG D, ZHOU H, WAN S, et al.Fabrication of Superhydrophobic Coating on Magnesium Alloy with Improved Corrosion Resistance by Combining Micro-Arc Oxidation and Cyclic Assembly[J]. Surface and Coatings Technology, 2018, 339: 155-166.
[27] KLOPROGGE J T, DUONG L V, WOOD B J, et al.XPS Study of the Major Minerals in Bauxite: Gibbsite, Bayerite and (Pseudo-)Boehmite[J]. Journal of Colloid and Interface Science, 2006, 296(2): 572-576.
[28] WANG L, SHINOHARA T, ZHANG B P.XPS Study of the Surface Chemistry on AZ31 and AZ91 Magnesium Alloys in Dilute NaCl Solution[J]. Applied Surface Science, 2010, 256(20): 5807-5812.
[29] 蒋帆, 赵越, 胡吉明. 超疏水表面在金属防护中应用的研究进展[J]. 表面技术, 2020, 49(2): 109-123.
JIANG F, ZHAO Y, HU J M.Research Advance in Application of Superhydrophobic Surfaces in Corrosion Protection of Metals[J]. Surface Technology, 2020, 49(2): 109-123.
[30] ZHOU X H, OU J F, HU Y T, et al.Robust Superhydrophobic Coating for Photothermal Anti-Icing and De-Icing via Electrostatic Powder Spraying[J]. Progress in Organic Coatings, 2024, 197: 108778.

基金

安徽省高等学校科学研究重点类项目(2023AH051111); 大学生创新创业训练计划(202410360016); 安徽省新时代育人质量工程项目(2023cxcy sj074,2024cxcysj076)

PDF(3410 KB)

Accesses

Citation

Detail

段落导航
相关文章

/