目的 普通微弧氧化涂层存在微孔裂纹等缺陷,难以有效保护镁合金,研究封孔处理对其耐蚀性的影响。方法 ZIF-8 是一种典型的金属有机框架(MOF)材料,具有优异的化学稳定性和孔隙结构,可以通过增加MAO涂层的厚度来阻碍腐蚀进程,从而提高涂层的耐腐蚀性。通过磁控溅射在MAO涂层上沉积一层ZnO,形成含Zn2+的复合涂层,并通过原位生长法制备ZIF-8膜封闭MAO涂层,得到MAO/ZIF-8复合涂层,研究ZIF-8原位生长过程中配体二甲基咪唑浓度和水浴反应时间对MAO/ZIF-8涂层耐蚀性的影响。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)及X射线光电子能谱(XPS)分别表征涂层的微观形貌和物相组成,通过电化学交流阻抗(EIS)检测涂层的耐蚀性,通过抗菌测试检测复合涂层的抗菌性能。结果 在MAO涂层基础上,通过磁控溅射提供Zn源,并引入不同配比的有机配体(2-甲基咪唑),通过调节水浴反应时间,能够改善涂层的孔隙填充程度,形成更加均匀致密的涂层结构,促进ZIF-8层在MAO层上的生长,从而提升复合涂层的耐腐蚀性(阻抗模量提升至10 kΩ·cm²)和疏水性(提升至112°),并增强其抗菌性能(抗菌率达到98.52%)。结论 复合涂层的耐腐蚀性主要来源于ZIF-8层的物理阻隔作用,同时ZIF-8纳米粒子在腐蚀性介质中的水解反应可填充MAO涂层的微孔,防止腐蚀性电解质的渗入,显著减缓腐蚀进程。此外,抗菌性能源于Zn2+的释放及其引发的氧化应激反应,同时ZIF-8的纳米结构也可以直接破坏细胞,因此MAO与MOF的结合能够有效提升涂层的耐腐蚀性和抗菌性能。
Abstract
The ordinary micro-arc oxidation (MAO) coating has microporous cracks and defects, making it ineffective in protecting magnesium alloy. Sealing is required to enhance the corrosion resistance of the coating. ZIF-8, a typical metal-organic framework (MOF) material, offers excellent chemical stability and a well-defined pore structure, making it widely applicable. It can increase the thickness of the MAO coating, extend the corrosion pathway, and improve its corrosion resistance. This study aims to enhance the in-situ growth of ZIF-8 on the metal surface by first depositing a ZnO layer on the original MAO coating through magnetron sputtering, resulting in a Zn²+-containing MAO composite coating. On this basis, the zeolite imidazolium ester skeleton material (ZIF-8) film prepared by in-situ growth method is used to seal the micro-arc oxidation layer, and a MAO/ZIF-8 composite coating is obtained. The effects of ligand dimethylimidazole concentration and water bath reaction time on the corrosion resistance of the MAO/ZIF-8 coatings during the in situ growth process of ZIF-8 are investigated, and the corrosion resistance of the composite coatings is further improved by filling the defects of the micro-arc oxidation micropores with ZIF-8 nanoparticles, which results in the active corrosion protection of the coatings. A scanning electron microscopy (SEM), an energy spectrometry (EDS), an X-ray diffraction (XRD) and an X-ray photoelectron spectroscopy (XPS) are used to characterise the microscopic morphology and phase composition of the coatings, respectively, to detect the corrosion resistance of the coatings by electrochemical alternating current impedance (EIS), and to detect the antimicrobial properties of the composite coatings by antibacterial test. The results show that on the basis of the micro-arc oxidation coating, providing a Zn source by magnetron sputtering, while introducing different ratios of organic ligands (2-methylimidazole) and adjusting the reaction time of the water bath to regulate the degree of filling of the pores of the coating helps to form a more homogeneous and dense coating structure covering the defects of the micro-arc oxidation coatings, which in turn affects the corrosion resistance of the composite coatings. With the introduction of dimethylimidazole 0.55 g and a water bath reaction time of 6 h, the impedance modulus of the coating is increased to 104 Ω·cm², the hydrophobicity is increased to 112°, and the antimicrobial performance is improved (the antimicrobial rate reaches 98.52%). The introduction of ZIF-8 enhances the physical barrier performance of the MAO layer and fills up the micropores of the MAO, which can effectively prevent the penetration of the corrosive electrolytes and slow down the erosion of corrosive media, thus significantly affecting the corrosion resistance of the composite coatings. At the same time, the release of Zn²+ ions in ZIF-8 and its oxidative stress reaction, the nanostructure of ZIF-8 can optimize the antimicrobial performance of the coating. Magnetron sputtering technology, as an emerging thin film deposition method, in combination with micro-arc oxidation, becomes a unique means of surface modification in order to introduce ZIF-8 to metal surfaces and endow them with multiple possibilities.
关键词
微弧氧化 /
金属有机框架 /
磁控溅射 /
耐蚀性 /
抗菌性
Key words
micro-arc oxidation /
metal-organic frameworks /
magnetron sputtering /
corrosion resistance /
antimicrobial properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PRASAD S V S, PRASAD S B, VERMA K, et al. The Role and Significance of Magnesium in Modern Day Research-a Review[J]. Journal of Magnesium and Alloys, 2022, 10(1): 1-61.
[2] WANG H, LUO X C, ZHANG D T, et al.High-Strength Extruded Magnesium Alloys: a Critical Review[J]. Journal of Materials Science & Technology, 2024, 199: 27-52.
[3] MULDOON J, BUCUR C B, GREGORY T.Fervent Hype Behind Magnesium Batteries: an Open Call to Synthetic Chemists-Electrolytes and Cathodes Needed[J]. Angewandte Chemie International Edition, 2017, 56(40): 12064-12084.
[4] YANG G L, OUYANG Y, XIE Z H, et al.Nickel Interlayer Enables Indirect Corrosion Protection of Magnesium Alloy by Photoelectrochemical Cathodic Protection[J]. Applied Surface Science, 2021, 558: 149840.
[5] QI M, WEI L, XU Y, et al.Effect of Trace Yttrium on the Microstructure, Mechanical Property and Corrosion Behavior of Homogenized Mg-2Zn-0.1Mn-0.3Ca-XY Biological Magnesium Alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(9): 1746-1754.
[6] OUYANG Y, LI L X, XIE Z H, et al.A Self-Healing Coating Based on Facile pH-Responsive Nanocontainers for Corrosion Protection of Magnesium Alloy[J]. Journal of Magnesium and Alloys, 2022, 10(3): 836-849.
[7] ALIYU A, GUPTA A, SRIVASTAVA C.Correlation between Texture, Grain Boundary Constitution, and Corrosion Behavior of Ni-Cu Coatings[J]. Metallurgical and Materials Transactions A, 2022, 53(4): 1440-1449.
[8] LIU Y, PENG F, YANG G L, et al.Coupling a Titanium Dioxide Based Heterostructure Photoanode with Electroless- Deposited Nickel-Phosphorus Alloy Coating on Magnesium Alloy for Enhanced Corrosion Protection[J]. Journal of Materials Science & Technology, 2022, 126: 252-265.
[9] SAMADIANFARD R, SEIFZADEH D, HABIBI- YANGJEH A.Sol-Gel Coating Filled with SDS-Stabilized Fullerene Nanoparticles for Active Corrosion Protection of the Magnesium Alloy[J]. Surface and Coatings Technology, 2021, 419: 127292.
[10] WU W X, WANG W P, LIN H C.A Study on Corrosion Behavior of Micro-Arc Oxidation Coatings Doped with 2-Aminobenzimidazole Loaded Halloysite Nanotubes on AZ31 Magnesium Alloys[J]. Surface and Coatings Technology, 2021, 416: 127116.
[11] WU T C, JOSHI S S, HO Y H, et al.Microstructure and Surface Texture Driven Improvement in In-Vitro Response of Laser Surface Processed AZ31B Magnesium Alloy[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1406-1418.
[12] SHANG W, WU F, WANG Y, et al.Corrosion Resistance of Micro-Arc Oxidation/Graphene Oxide Composite Coatings on Magnesium Alloys[J]. ACS Omega, 2020, 5(13): 7262-7270.
[13] SARAN D, KUMAR A, BATHULA S, et al.Review on the Phosphate-Based Conversion Coatings of Magnesium and Its Alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(7): 1435-1452.
[14] LI Y, OUYANG Y, FANG R, et al.A Nickel-Underlayer/ LDH-Midlayer/Siloxane-Toplayer Composite Coating for Inhibiting Galvanic Corrosion between Ni Layer and Mg Alloy[J]. Chemical Engineering Journal, 2022, 430: 132776.
[15] HU T, OUYANG Y, XIE Z H, et al.One-Pot Scalable in Situ Growth of Highly Corrosion-Resistant MgAl-LDH/MBT Composite Coating on Magnesium Alloy under Mild Conditions[J]. Journal of Materials Science & Technology, 2021, 92: 225-235.
[16] IGNJATOVIĆ S, BLAWERT C, SERDECHNOVA M, et al.Formation of Multi-Functional TiO2 Surfaces on AA2024 Alloy Using Plasma Electrolytic Oxidation[J]. Applied Surface Science, 2021, 544: 148875.
[17] YU K, LI P, HAN Q, et al.Investigation of Biodegradability, Cytocompatibility and Antibacterial Property of Plasma Electrolytic Oxidation Coating on Mg[J]. Surfaces and Interfaces, 2022, 30: 101840.
[18] ALIOFKHAZRAEI M, MACDONALD D D, MATYKINA E, et al.Review of Plasma Electrolytic Oxidation of Titanium Substrates: Mechanism, Properties, Applications and Limitations[J]. Applied Surface Science Advances, 2021, 5: 100121.
[19] NADARAIA K V, SUCHKOV S N, IMSHINETSKIY I M, et al.Some New Aspects of the Study of Dependence of Properties of PEO Coatings on the Parameters of Current in Potentiodynamic Mode[J]. Surface and Coatings Technology, 2021, 426: 127744.
[20] BABAEI K, FATTAH-ALHOSSEINI A, CHAHARMAHALI R.A Review on Plasma Electrolytic Oxidation (PEO) of Niobium: Mechanism, Properties and Applications[J]. Surfaces and Interfaces, 2020, 21: 100719.
[21] LIU R, LIU Y, YONG Q, et al.Highly Corrosion- Resistant ZIF-8-Integrated Micro-Arc Oxidation Coating on Mg Alloy[J]. Surface and Coatings Technology, 2023, 463: 129505.
[22] LI W, TIAN A, LI T, et al.Ag/ZIF-8/Mg-Al LDH Composite Coating on MAO Pretreated Mg Alloy as a Multi-Ion-Release Platform to Improve Corrosion Resistance, Osteogenic Activity, and Photothermal Antibacterial Properties[J]. Surface and Coatings Technology, 2023, 464: 129555.
[23] AL ZOUBI W, KO Y G.Flowerlike Organic-Inorganic Coating Responsible for Extraordinary Corrosion Resistance via Self-Assembly of an Organic Compound[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3546-3555.
[24] KAUR H, MOHANTA G C, GUPTA V, et al.Synthesis and Characterization of ZIF-8 Nanoparticles for Controlled Release of 6-Mercaptopurine Drug[J]. Journal of Drug Delivery Science and Technology, 2017, 41: 106-112.
[25] KOUSER S, HEZAM A, KHADRI M J, et al.A Review on Zeolite Imidazole Frameworks: Synthesis, Properties, and Applications[J]. Journal of Porous Materials, 2022, 29(3): 663-681.
[26] BEH J J, LIM J K, NG E P, et al.Synthesis and Size Control of Zeolitic Imidazolate Framework-8 (ZIF-8): From the Perspective of Reaction Kinetics and Thermodynamics of Nucleation[J]. Materials Chemistry and Physics, 2018, 216: 393-401.
[27] ŁUCZAK J, KROCZEWSKA M, BALUK M, et al.Morphology Control through the Synthesis of Metal- Organic Frameworks[J]. Advances in Colloid and Interface Science, 2023, 314: 102864.
[28] LEE J H, KIM D, SHIN H, et al.Zeolitic Imidazolate Framework ZIF-8 Films by ZnO to ZIF-8 Conversion and Their Usage as Seed Layers for Propylene-Selective ZIF-8 Membranes[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 374-379.
[29] DE PAULA A S, AROEIRA B M, SOUZA L H, et al. Influence of Organic Coating Thickness on Electrochemical Impedance Spectroscopy Response[J]. Coatings, 2024, 14(3): 285.
[30] IKANI N, PU J H, COOKE K.Analytical Modelling and Electrochemical Impedance Spectroscopy (EIS) to Evaluate Influence of Corrosion Product on Solution Resistance[J]. Powder Technology, 2024, 433: 119252.
[31] NYBY C, GUO X, SAAL J E, et al.Electrochemical Metrics for Corrosion Resistant Alloys[J]. Scientific Data, 2021, 8(1): 58.
[32] FARSHID S, KHARAZIHA M.Micro and Nano-Enabled Approaches to Improve the Performance of Plasma Electrolytic Oxidation Coated Magnesium Alloys[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1487-1504.
[33] ZHANG H, ZHAO M, LIN Y S.Stability of ZIF-8 in Water under Ambient Conditions[J]. Microporous and Mesoporous Materials, 2019, 279: 201-210.
[34] REN B, CHEN Y, LI Y, et al.Rational Design of Metallic Anti-Corrosion Coatings Based on Zinc Gluconate@ZIF-8[J]. Chemical Engineering Journal, 2020, 384: 123389.