氧化时间对Zr-1Nb合金MAO/Cr复合涂层1 100 ℃蒸汽氧化行为的影响

王兴平, 董小丽, 蔺殊嘉, 王栋堂, 路文娟, 薛文斌, 廖燚钊

表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 145-155.

PDF(6020 KB)
PDF(6020 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 145-155. DOI: 10.16490/j.cnki.issn.1001-3660.2025.15.013
技术及应用

氧化时间对Zr-1Nb合金MAO/Cr复合涂层1 100 ℃蒸汽氧化行为的影响

  • 王兴平1, 2, 董小丽3, 蔺殊嘉4, 王栋堂1, 路文娟1, 薛文斌2, *, 廖燚钊1, 2, *
作者信息 +

Effect of Oxidation Time on the Steam Oxidation Behavior of MAO/Cr-coated Zr-1Nb Alloy at 1 100 ℃

  • WANG Xingping1, 2, DONG Xiaoli3, LIN Shujia4, WANG Dongtang1, LU Wenjuan1, XUE Wenbin2, *, LIAO Yizhao1, 2, *
Author information +
文章历史 +

摘要

目的 研究氧化时间对MAO/Cr复合涂层1 100 ℃蒸汽氧化行为的影响,揭示该涂层在高温环境中的组织结构变化和氧化机制。方法 采用微弧氧化(MAO)技术在Zr-1Nb合金表面制备MAO膜,并借助磁过滤阴极真空弧离子镀(FCVAD)技术沉积Cr层,组成均匀致密的MAO/Cr复合涂层。采用热重分析仪(TGA)评估二者在1 100 ℃蒸汽环境中的抗氧化性,考察复合涂层在氧化前后的截面结构、金相组织、物相组成、成分深度分布。结果 在1 100 ℃蒸汽环境中,当氧化时间从600 s延长至5 400 s时,MAO/Cr复合涂层外表面Cr层完全氧化后,Cr/Zr界面附近的Cr2O3通过Zr的还原作用,形成了还原金属Cr层。在还原Cr层中,微量的ZrO2加速了氧原子向锆合金基体内的扩散速度。MAO膜中间层在高温蒸汽环境中出现了溶解现象,ZrO2转变为Zr3O相,但依然减缓了氧原子向锆合金基体内的扩散。同样,在1 100 ℃氩气中高温退火处理后,MAO膜也出现了溶解现象,随着退火时间的延长,更多的氧原子溶解,并进入锆合金基体和金属Cr层。相对于1 100 ℃氩气环境,高温蒸汽环境加速了MAO膜中间层的溶解。结论 在1 100 ℃蒸汽环境中,MAO/Cr复合涂层提高了Zr-1Nb合金基体的抗氧化能力。

Abstract

The work aims to investigate the effect of oxidation time on the steam oxidation behavior of MAO/Cr-coated Zr-1Nb alloy in 1 100 ℃ steam environment. By micro-arc oxidation (MAO) and filtered cathodic vacuum arc deposition (FCVAD) techniques, a uniform and dense MAO/Cr composite coating was deposited on the surface of Zr-1Nb alloy. The oxidation resistance of bare and MAO/Cr-coated Zr-1Nb alloy in a 1 100 ℃ steam environment was evaluated by a thermogravimetric analyzer (TGA). The cross-sectional microstructures, metallographic microstructures, phase composition and composition depth distribution of the composite coating before and after oxidation were analyzed by scanning electron microscope (SEM), optical microscope (OM), X-ray diffractometer (XRD) and glow discharge optical emission spectrometer (GDOES). In the 1 100 ℃ steam environment, as the oxidation time increased from 600 s to 5 400 s, the outer Cr layer for the composite coating was completely oxidized. Afterwards, the Cr2O3 near the Cr/Zr interface was reduced by Zr, forming a reduced metal Cr layer. The Zr alloy substrate below the composite coating was oxidized to generate an inner ZrO2 layer of approximately 7.0 μm thick again after 5 400 s oxidation. Furthermore, a thin Cr2O3 layer with a thickness of about 0.8 μm was still attached to the coating surface after oxidation for 5 400 s, since the outer surface of Cr layer was directly exposed to the steam environment. Meanwhile, some Zr atoms from Zr alloy substrate diffused outwards into the reduced Cr layer and the top Cr2O3 layer of the composite coating, forming ZrO2 oxide. The trace amounts of ZrO2 in the reduced Cr and Cr2O3 layers accelerated the diffusion of oxygen atoms into Zr alloy substrate. On the other hand, the intermediate MAO layer for the composite coating underwent serious dissolution in the 1 100 ℃ steam environment and the cross-sectional metallographic microstructure of the MAO layer changed from dark black to light gray after exposure from 600 s to 3 600 s. Some oxygen atoms in the MAO layer diffused into Zr alloy substrate and Cr coating, but the phosphorus element was still enriched in the original region of MAO coating after exposure of 600-5 400 s. The ZrO2 in the MAO layer transformed into the Zr3O phase, but it still slowed down the inward oxygen diffusion. Meanwhile, the dissolution phenomenon of the intermediate MAO layer also occurred after annealing in the 1 100 ℃ Ar environment and more oxygen atoms of MAO layer diffused into Zr alloy substrate and metallic Cr layer with the increase of annealing time. Compared to the 1 100 ℃ Ar environment, the high-temperature steam environment accelerated the dissolution of the intermediate MAO layer. Consequently, the ZrO2 phase in the MAO layer disappeared after oxidation of 600-3 600 s and the phase component was only composed of Cr2O3, Cr and trace Zr3O. However, the ZrO2 phase appeared again after 5 400 s oxidation and the Zr alloy substrate was oxidized to form a newborn ZrO2 layer. In addition, the MAO/Cr composite coating effectively prevented hydrogen permeation into Zr alloy substrate during the high-temperature steam oxidation process. As a result, the mass gain of MAO/Cr-coated Zr-1Nb alloy was 41.5% of that of bare Zr alloy after 5 400 s exposure at 1 100 ℃ and the MAO/Cr composite coating excellently improved the oxidation resistance of Zr-1Nb alloy substrate in the 1 100 ℃ steam environment.

关键词

MAO/Cr复合涂层 / 氧化时间 / 高温蒸汽氧化 / 高温退火 / 微弧氧化膜溶解

Key words

MAO/Cr composite coating / oxidation time / high-temperature steam oxidation / high-temperature annealing / dissolution of MAO layer

引用本文

导出引用
王兴平, 董小丽, 蔺殊嘉, 王栋堂, 路文娟, 薛文斌, 廖燚钊. 氧化时间对Zr-1Nb合金MAO/Cr复合涂层1 100 ℃蒸汽氧化行为的影响[J]. 表面技术. 2025, 54(15): 145-155 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.013
WANG Xingping, DONG Xiaoli, LIN Shujia, WANG Dongtang, LU Wenjuan, XUE Wenbin, LIAO Yizhao. Effect of Oxidation Time on the Steam Oxidation Behavior of MAO/Cr-coated Zr-1Nb Alloy at 1 100 ℃[J]. Surface Technology. 2025, 54(15): 145-155 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.013
中图分类号: TG174.442   

参考文献

[1] CHEN Q S, LIU C H, ZHANG R Q, et al.Microstructure and High-Temperature Steam Oxidation Properties of Thick Cr Coatings Prepared by Magnetron Sputtering for Accident Tolerant Fuel Claddings: The Role of Bias in the Deposition Process[J]. Corrosion Science, 2020, 165: 108378.
[2] ZHAO W Q, WEI T G, LIAO J J, et al.High-Temperature Oxidation Behavior of Zr-4 and Zr-Sn-Nb Alloy in Different Oxidation Ambient[J]. Journal of Alloys and Compounds, 2021, 887: 161396.
[3] KO J, KIM J W, MIN H W, et al.Review of Manufacturing Technologies for Coated Accident Tolerant Fuel Cladding[J]. Journal of Nuclear Materials, 2022, 561: 153562.
[4] TERRANI K A.Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30.
[5] WU X C, WANG D, ZHANG Y P, et al.Isothermal Experiments on Eutectic and Oxidation Reactions of Cr-Coated Zr Alloy Cladding in Steam at 1 350?℃: Behavior, Mechanism and Kinetics[J]. Journal of Alloys and Compounds, 2024, 991: 174562.
[6] 杨健乔, 恽迪, 刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报, 2022, 36(1): 102-113.
YANG J Q, YUN D, LIU J K.Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding[J]. Materials Reports, 2022, 36(1): 102-113.
[7] MENG Y, CHEN C, ZENG S, et al.Investigations of Oxidation Behavior and Establishment of Life-Cycle Model during the Steam Oxidation of Cr-Coated Zry-4 at 1 200 ℃[J]. Corrosion Science, 2024, 226: 111694.
[8] WANG Y Q, ZUO J D, XIAO X, et al.High-Temperature Steam Oxidation Behavior and Failure Mechanisms of Al Alloyed Cr Coatings on Zr-4 Alloy[J]. Corrosion Science, 2024, 230: 111898.
[9] LI Z F, LI Y, LIU S N, et al.High-Temperature Steam Oxidation Resistance of CrSi Substitutional Solid Solution Coating on Zr-4[J]. Surface and Coatings Technology, 2023, 474: 130071.
[10] LIU J K, CUI Z X, HAO Z, et al.Steam Oxidation of Cr-Coated Sn-Containing Zircaloy Solid Rod at 1 000?℃[J]. Corrosion Science, 2021, 190: 109682.
[11] XIAO W W, LIU S H, HUANG J H, et al.Oxidation Behavior of Cr-Coated Zr-4 Alloy Prepared by Multi-Arc Ion Plating at 1 000-1 200 ℃[J]. Journal of Nuclear Materials, 2023, 575: 154254.
[12] WEI T G, ZHANG R Q, YANG H Y, et al.Microstructure, Corrosion Resistance and Oxidation Behavior of Cr- Coatings on Zircaloy-4 Prepared by Vacuum Arc Plasma Deposition[J]. Corrosion Science, 2019, 158: 108077.
[13] GOLGOVICI F, DINIAȘI D, DINCĂ P P, et al. Corrosion of Chromium Coating Fabricated on Zircaloy-4 Substrate[J]. Materials, 2024, 17(18): 4445.
[14] JIN D L, NI N, GUO Y, et al.Corrosion of the Bonding at FeCrAl/Zr Alloy Interfaces in Steam[J]. Journal of Nuclear Materials, 2018, 508: 411-422.
[15] SYRTANOV M S, KASHKAROV E B, ABDULMENOVA A V, et al.High-Temperature Oxidation of Zr1Nb Zirconium Alloy with Protective Cr/Mo Coating[J]. Surface and Coatings Technology, 2022, 439: 128459.
[16] YANG J Q, SHANG L L, SUN J Y, et al.Restraining the Cr-Zr Interdiffusion of Cr-Coated Zr Alloys in High Temperature Environment: A Cr/CrN/Cr Coating Approach[J]. Corrosion Science, 2023, 214: 111015.
[17] 王兴平, 廖燚钊, 关浩浩, 等. 锆表面微弧氧化膜1000~1200 ℃高温蒸汽氧化行为研究[J]. 表面技术, 2021, 50(6): 23-31.
WANG X P, LIAO Y Z, GUAN H H, et al.High Temperature Oxidation Behavior of Pure Zr Coated by Microarc Oxidation in 1 000-1 200 ℃ Steam[J]. Surface Technology, 2021, 50(6): 23-31.
[18] GARANIN Y, SHAKIRZYANOV R, BORGEKOV D, et al.Study of Morphology, Phase Composition, Optical Properties, and Thermal Stability of Hydrothermal Zirconium Dioxide Synthesized at Low Temperatures[J]. Scientific Reports, 2024, 14(1): 29398.
[19] LAI P, ZHANG H, ZHANG L F, et al.Effect of Micro-Arc Oxidation on Fretting Wear Behavior of Zirconium Alloy Exposed to High Temperature Water[J]. Wear, 2019, 424: 53-61.
[20] WEI K J, WANG X P, ZHU M H, et al.Effects of Li, B and H Elements on Corrosion Property of Oxide Films on ZIRLO Alloy in 300 ℃/14 MPa Lithium Borate Buffer Solutions[J]. Corrosion Science, 2021, 181: 109216.
[21] 王郑, 王振玉, 汪爱英, 等. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
WANG Z, WANG Z Y, WANG A Y, et al.Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. Acta Metallurgica Sinica, 2024, 60(5): 691-698.
[22] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
WANG X P, XUE W B, WANG W X.High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. Chinese Journal of Materials Research, 2023, 37(10): 759-769.
[23] 王兴平, 魏克俭, 廖斌, 等. 锆表面磁过滤阴极真空弧离子镀Cr涂层高温蒸汽氧化行为研究[J]. 稀有金属材料与工程, 2021, 50(5): 1665-1672.
WANG X P, WEI K J, LIAO B, et al.High Temperature Steam Oxidation Behavior of Cr-Coated Zr Fabricated by Filtered Cathodic Vacuum Arc Ion Deposition[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1665-1672.
[24] BAEK J H, PARK K B, JEONG Y H.Oxidation Kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at Temperatures of 700-1 200 ℃[J]. Journal of Nuclear Materials, 2004, 335(3): 443-456.
[25] NAKAJIMA M, MIURA Y, FUSHIMI K, et al.Spark Anodizing Behaviour of Titanium and Its Alloys in Alkaline Aluminate Electrolyte[J]. Corrosion Science, 2009, 51(7): 1534-1539.
[26] HAN X C, CHEN C, TAN Y Q, et al.A Systematic Study of the Oxidation Behavior of Cr Coatings on Zry4 Substrates in High Temperature Steam Environment[J]. Corrosion Science, 2020, 174: 108826.
[27] WANG X P, GUAN H H, LIAO Y Z, et al.Enhancement of High Temperature Steam Oxidation Resistance of Zr-1Nb Alloy with ZrO2/Cr Bilayer Coating[J]. Corrosion Science, 2021, 187: 109494.
[28] WANG Y, TANG H, HAN X C, et al.Oxidation Resistance Improvement of Zr-4 Alloy in 1 000?℃ Steam Environment Using ZrO2/FeCrAl Bilayer Coating[J]. Surface and Coatings Technology, 2018, 349: 807-815.
[29] SAWARN T K, BANERJEE S, SAMANTA A, et al.Study of Oxide and Α-Zr(O) Growth Kinetics from High Temperature Steam Oxidation of Zircaloy-4 Cladding[J]. Journal of Nuclear Materials, 2015, 467: 820-831.
[30] WANG X P, WEI K J, GUAN H H, et al.High Temperature Oxidation of Zr1Nb Alloy with Plasma Electrolytic Oxidation Coating in 900-1 200 ℃ Steam Environment[J]. Surface and Coatings Technology, 2021, 407: 126768.
[31] 杜培, 闫淑芳, 陈伟东, 等. K2ZrF6含量对ZrH1.8表面微弧氧化阻氢膜层的影响[J]. 稀有金属, 2021, 45(1): 27-33.
DU P, YAN S F, CHEN W D, et al.Micro-Arc Oxidation and Hydrogen Resistance Film on ZrH1.8 Surface with K2ZrF6 Concentration[J]. Chinese Journal of Rare Metals, 2021, 45(1): 27-33.
[32] ABRIATA J P, GARCÉS J, VERSACI R. The O-Zr (Oxygen-Zirconium) System[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(2): 116-124.
[33] YEOM H, MAIER B, JOHNSON G, et al.High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments[J]. Journal of Nuclear Materials, 2019, 526: 151737.
[34] ZHANG J, LIAO J, WEI T, et al.Oxygen Diffusion Behavior of Oxidized Zirconium Alloy during Vacuum Annealing Treatment[J]. Rare Metal Materials and Engineering, 2021, 50: 1590-1595.
[35] STEINBRÜCK M. Hydrogen Absorption by Zirconium Alloys at High Temperatures[J]. Journal of Nuclear Materials, 2004, 334(1): 58-64.
[36] HAYWARD P J, GEORGE I M.Dissolution of ZrO2 in Molten Zircaloy-4[J]. Journal of Nuclear Materials, 1999, 265(1/2): 69-77.
[37] MA X, TOFFOLON-MASCLET C, GUILBERT T, et al.Oxidation Kinetics and Oxygen Diffusion in Low-Tin Zircaloy-4 up to 1523K[J]. Journal of Nuclear Materials, 2008, 377(2): 359-369.
(上接第144页)
[1] RYOU Y, LEE J, CHO S J, et al.Activation of Pd/SSZ-13 Catalyst by Hydrothermal Aging Treatment in Passive NO Adsorption Performance at Low Temperature for Cold Start Application[J]. Applied Catalysis B: Environmental, 2017, 212: 140-149.
[38] MANDAL K, GU Y T, WESTENDORFF K S, et al.Condition-Dependent Pd Speciation and NO Adsorption in Pd/Zeolites[J]. ACS Catalysis, 2020, 10(21): 12801-12818.
[39] KANG R N, WEI X L, BIN F, et al.Reaction Mechanism and Kinetics of CO Oxidation over a CuO/Ce0.75Zr0.25O2-δ Catalyst[J]. Applied Catalysis A: General, 2018, 565: 46-58.
[40] SHI X B, CHU B X, WANG F, et al.Mn-Modified CuO, CuFe2O4, and Γ-Fe2O3 Three-Phase Strong Synergistic Coexistence Catalyst System for NO Reduction by CO with a Wider Active Window[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40509-40522.
[41] TANG Y X, DONG L H, DENG C S, et al.In Situ FT-IR Investigation of CO Oxidation on CuO/TiO2 Catalysts[J]. Catalysis Communications, 2016, 78: 33-36.
[42] LIU T K, YAO Y Y, WEI L Q, et al.Preparation and Evaluation of Copper-Manganese Oxide as a High-Efficiency Catalyst for CO Oxidation and NO Reduction by CO[J]. The Journal of Physical Chemistry C, 2017, 121(23): 12757-12770.

基金

国家自然科学基金(12405329); 甘肃省科技计划(23JRRA1699); 甘肃省教育厅创新基金(2024A-041,2025B-069); 兰州交通大学青年基金(2023002,2024001); 射线束技术教育部重点实验室(北京师范大学)开放研究基金(BEAM2024G03); 兰州交通大学“天佑青年托举人才计划”

PDF(6020 KB)

Accesses

Citation

Detail

段落导航
相关文章

/