镁表面微弧氧化/CuO纳米粒子/聚氨酯复合涂层的构建及耐腐蚀性能研究

王何瀛, 孟欣雨, 马佳莉, 赵弘源, 王仕鹏, 马鸣远, 许林倩, 王云思

表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 108-119.

PDF(10468 KB)
PDF(10468 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 108-119. DOI: 10.16490/j.cnki.issn.1001-3660.2025.15.010
技术及应用

镁表面微弧氧化/CuO纳米粒子/聚氨酯复合涂层的构建及耐腐蚀性能研究

  • 王何瀛1, 孟欣雨1, 马佳莉1, 赵弘源1, 王仕鹏1, 马鸣远1, 许林倩2, *, 王云思1, 2, *
作者信息 +

Construction and Corrosion Resistance of Micro-arc Oxidation/CuO Nanoparticles/Polyurethane Composite Coatings on Magnesium Surface

  • WANG Heying1, MENG Xinyu1, MA Jiali1, ZHAO Hongyuan1, WANG Shipeng1, MA Mingyuan1, XU Linqian2, *, WANG Yunsi1, 2, *
Author information +
文章历史 +

摘要

目的 针对AZ31B镁合金耐蚀性差的问题,通过构建“微弧氧化(MAO)-纳米粒子封孔-热可逆自修复聚氨酯(PU-DA)”复合涂层体系,探究多层协同防护机制,突破单一涂层的性能局限,为镁合金表面长效防腐提供新策略。方法 首先对AZ31B镁合金进行微弧氧化处理,生成陶瓷基底;随后通过调控电泳电压(15~50 V)和时间(30~120 s)制备CuO纳米粒子封孔样品,采用SEM/EDS分析涂层的形貌和元素分布,利用电化学测试和电化学阻抗图谱筛选出最优防腐性能的电泳参数,通过XRD/XPS解析相组成、化学态。在此基础上,针对优选样品涂覆可修复聚氨酯涂层,通过划格法(ASTMD3359)测试聚氨酯涂层的结合力,并通过盐雾实验验证其抗腐蚀能力。结果 微弧氧化层主要由MgO构成,电泳优化参数为30 V/60 s,所得涂层均匀致密,表面元素分散均匀,厚度增至41.6 μm,电化学测试结果表明,其腐蚀电流密度(Jcorr)最低约为7×10-9 A/cm2,且容抗弧半径达到最大值。在复合聚氨酯涂层后,表面聚氨酯具有较强的结合力,达到5B级。经过480 h盐雾试验后,复合涂层表面无明显腐蚀迹象,通过光学显微镜观察到聚氨酯成功完成自修复。结论 通过MAO/纳米粒子/PU-DA三级涂层设计,成功实现了镁合金表面腐蚀防护与功能化集成。通过优化电泳参数(30 V/60 s),显著提升了封闭性和CuO纳米粒子封孔均匀性,聚氨酯层为其提供了有效的物理屏障,且具有一定的自修复能力,延长了涂层的寿命。

Abstract

To address the inherent issue of poor corrosion resistance in AZ31B magnesium alloys, the work aims to propose an innovative composite coating system comprising "micro-arc oxidation (MAO)-nanoparticle pore-sealing-thermally reversible self-healing polyurethane (PU-DA)" to explore synergistic multi-layered protection mechanisms, overcome the performance limitations inherent to single-layer coatings, and establish a novel strategy for achieving long-term corrosion resistance on magnesium alloy surfaces. The experimental methodology began with the micro-arc oxidation treatment of AZ31B magnesium alloy to create a ceramic-like oxide substrate, followed by the electrophoretic deposition of CuO nanoparticles under systematically controlled voltage (15-50 V) and time (30-120 s) parameters to fabricate pore-sealed samples. Comprehensive characterization techniques were employed to evaluate the coating properties and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) was utilized to analyze the surface morphology and elemental distribution. Electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were conducted to identify the optimal electrophoretic parameters for corrosion resistance. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were applied to determine the phase composition and chemical states of the coating. Subsequently, the selected electrophoretic sample exhibiting the highest anti-corrosion performance was further coated with a self-healing polyurethane layer, and the adhesion strength of the polyurethane coating was rigorously assessed with the cross-cut test method (ASTMD3359). The corrosion resistance was validated through standardized salt spray testing. The results demonstrated that the micro-arc oxidation layer was predominantly composed of MgO, and the optimized electrophoretic parameters (30 V for 60 s) yielded a uniform, densely packed CuO nanoparticle-sealed coating with a total thickness of 41.6 μm, which exhibited the lowest corrosion current density (Jcorr≈7×10-9 A/cm2) and the largest impedance loop radius in electrochemical tests, signifying exceptional corrosion inhibition. Upon the application of the self-healing polyurethane topcoat, the composite system displayed robust interfacial adhesion, achieving the highest adhesion rating of Grade 5B, and maintained structural integrity with no visible signs of corrosion on the polyurethane surface after prolonged exposure to salt spray conditions for 480 h, thereby confirming its enhanced durability under aggressive environments. The successful self-healing process of the polyurethane was confirmed through optical microscopy analysis. In conclusion, the tri-layered MAO/nanoparticle/PU-DA coating architecture successfully integrates corrosion protection and functionalization on magnesium alloy surfaces through a hierarchical design. Optimization of electrophoretic deposition parameters (30 V/60 s) demonstrates enhanced sealing efficacy and improves pore-sealing uniformity of CuO nanoparticles, while the polyurethane coating provides an effective physical barrier with demonstrated self-healing capability. This multi-scale protective system synergistically combines the ceramic foundation of MAO for initial passivation, the pore-blocking functionality of CuO nanoparticles to suppress localized corrosion initiation, and the dynamic self-healing capability of PU-DA to autonomously heal micro-damage, collectively establishing a comprehensive defense mechanism against both electrochemical degradation and mechanical wear. The successful integration of these layers not only addresses the intrinsic susceptibility of magnesium alloys to corrosion but also demonstrates the feasibility of combining inorganic and polymeric phases to create functionally graded coatings, offering a scalable and industrially viable solution for enhancing the longevity of lightweight metallic components in demanding operational conditions.

关键词

镁合金 / 微弧氧化 / 纳米粒子封孔 / 电泳沉积 / 耐腐蚀 / 自修复聚氨酯

Key words

magnesium alloy / micro-arc oxidation / nanoparticle pore-sealing / electrophoretic deposition / corrosion resistance / self-healing polyurethane

引用本文

导出引用
王何瀛, 孟欣雨, 马佳莉, 赵弘源, 王仕鹏, 马鸣远, 许林倩, 王云思. 镁表面微弧氧化/CuO纳米粒子/聚氨酯复合涂层的构建及耐腐蚀性能研究[J]. 表面技术. 2025, 54(15): 108-119 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.010
WANG Heying, MENG Xinyu, MA Jiali, ZHAO Hongyuan, WANG Shipeng, MA Mingyuan, XU Linqian, WANG Yunsi. Construction and Corrosion Resistance of Micro-arc Oxidation/CuO Nanoparticles/Polyurethane Composite Coatings on Magnesium Surface[J]. Surface Technology. 2025, 54(15): 108-119 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.010
中图分类号: TG174   

参考文献

[1] 夏先朝, 潘玥, 袁杏, 等. 镁合金表面腐蚀防护技术研究进展[J]. 表面技术, 2023, 52(5): 37-50.
XIA X C, PAN Y, YUAN X, et al.Research Progress of Surface Corrosion Protection Technology for Mg Alloys[J]. Surface Technology, 2023, 52(5): 37-50.
[2] 吴瑜, 李月樵, 洪伟, 等. 镁合金微弧氧化膜致密化技术研究进展[J]. 电镀与精饰, 2024, 46(11): 76-85.
WU Y, LI Y Q, HONG W, et al.Research Advance in Densification for Micro-Arc Oxidation Film on Magnesium Alloy[J]. Plating and Finishing, 2024, 46(11): 76-85.
[3] 马安博. 镁合金微弧氧化技术的研发途径与应用前景[J]. 电镀与环保, 2017, 37(6): 50-52.
MA A B.Development Approach and Application Prospect of Micro-Arc Oxidation Technology for Magnesium Alloy[J]. Electroplating & Pollution Control, 2017, 37(6): 50-52.
[4] 姚妍. 镁合金微弧氧化陶瓷层耐蚀性能及成膜机理研究[J]. 机电元件, 2024, 44(3): 43-45.
YAO Y.Research of Corrosion Resistance and Forming Mechanism of Ceramic Coating Prepared by Micro-Arc Oxidation on Magnesium Alloy[J]. Electromechanical Components, 2024, 44(3): 43-45.
[5] 岳学峥, 刘恒言, 陆诗怡, 等. 电解液体系对镁合金微弧氧化涂层的影响[J]. 上海理工大学学报, 2024, 46(2): 179-189.
YUE X Z, LIU H Y, LU S Y, et al.Effect of Different Electrolyte Systems on the Micro-Arc Oxidation Coatings of Magnesium Alloy[J]. Journal of University of Shanghai for Science and Technology, 2024, 46(2): 179-189.
[6] 张慧杰, 向午渊, 杨胜, 等. 有色金属表面微弧氧化膜层封孔技术研究进展[J]. 材料保护, 2021, 54(1): 154-161.
ZHANG H J, XIANG W Y, YANG S, et al.Research Progress of Micro-Arc Oxidation Coating Sealing Technology in Non-Ferrous Metal Surface Treatment[J]. Materials Protection, 2021, 54(1): 154-161.
[7] 马吉睿. AM50镁合金微弧氧化涂层的封孔后处理研究[D]. 沈阳: 东北大学, 2022: 9-10.
MA J R.Study on Post-Treatment of Micro-Arc Oxidation Coating on AM50 Magnesium Alloy after Hole Sealing[D]. Shenyang: Northeastern University, 2022: 9-10.
[8] 刘颖. 微弧氧化-电泳沉积技术协同制备MAO-MoS2复合膜层及性能研究[D]. 秦皇岛: 燕山大学, 2023: 37-49.
LIU Y.MAO-MoS2 Composite Film Prepared by Micro-Arc Oxidation-Electrophoretic Deposition Technology and Its Properties[D]. Qinhuangdao: Yanshan University, 2023: 37-49.
[9] 刘佳琳. 微弧氧化-电泳电镀复合膜层的制备与摩擦学性能研究[D]. 秦皇岛: 燕山大学, 2023: 5-7.
LIU J L.Preparation and Tribological Properties of Micro-Arc Oxidation-Electrophoretic Plating Composite Film[D]. Qinhuangdao: Yanshan University, 2023: 5-7.
[10] 时惠英, 杨巍, 蒋百灵. AZ31镁合金微弧-电泳复合膜层制备工艺及其耐蚀性[J]. 中国腐蚀与防护学报, 2008, 28(3): 155-160.
SHI H Y, YANG W, JIANG B L.Composite Technology and Coatings Obtained by Micro-Arc Oxidation and Electrophoresis of AZ31 Mg-Based Alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28(3): 155-160.
[11] 陈偲偲, 周建, 朱健. 自修复聚氨酯的研究进展[J]. 功能高分子学报, 2024, 37(6): 526-548.
CHEN S S, ZHOU J, ZHU J.Research Progress of Self- Healing Polyurethanes[J]. Journal of Functional Polymers, 2024, 37(6): 526-548.
[12] 黄文涛, 褚杰, 蔡微波, 等. VW63Z镁合金微弧氧化-电泳复合膜层的制备及其性能研究[J]. 电镀与涂饰, 2024, 43(2): 45-52.
HUANG W T, CHU J, CAI W B, et al.Preparation and Properties of Microarc Oxidation-Electrophoretic Deposition Composite Film on VW63Z Magnesium Alloy[J]. Electroplating & Finishing, 2024, 43(2): 45-52.
[13] 都怡佩. AZ31B镁合金微弧氧化—涂装复合层制备工艺及其性能研究[D]. 西安: 西安理工大学, 2021: 15-26.
DU Y P.Study on Preparation Technology and Properties of Micro-Arc Oxidation-Coating Composite Layer on AZ31B Magnesium Alloy[D]. Xi'an: Xi'an University of Technology, 2021: 15-26.
[14] 杨晓禹. 铸造稀土镁合金微弧氧化—电泳复合膜工艺研究[D]. 太原: 中北大学, 2015: 63-67.
YANG X Y.Study on Micro-Arc Oxidation-Electrophoresis Composite Film Technology of Cast Rare Earth Magnesium Alloy[D]. Taiyuan: North University of China, 2015: 63-67.
[15] 尚少伟, 朱新河, 马春生, 等. 铝合金微弧氧化/电泳复合涂层耐蚀减摩性能[J]. 大连海事大学学报, 2022, 48(1): 113-119.
SHANG S W, ZHU X H, MA C S, et al.Corrosion Resistance and Antifriction Properties of Aluminum Alloy Micro-Arc Oxidation-Electrophoretic Composite Coating[J]. Journal of Dalian Maritime University, 2022, 48(1): 113-119.
[16] 杜佳恒, 范鑫丽, 肖东琴, 等. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448.
DU J H, FAN X L, XIAO D Q, et al.Electrophoretic Coating of Magnesium Oxide on Microarc-Oxidized Titanium and Its Biological Properties[J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448.
[17] 熊勇, 姜昀良, 董育民, 等. 基于分级氢键的自修复聚氨酯弹性体的微相分离结构与性能研究[J]. 高分子学报, 2025, 56(3): 487-500.
XIONG Y, JIANG Y L, DONG Y M, et al.Microphase Separation Structure and Properties of Self-Healing Polyurethane Elastomers Based on Hierarchical Hydrogen Bonds[J]. Acta Polymerica Sinica, 2025, 56(3): 487-500.
[18] ASTM International. (2023). ASTM D3359-23: Standard Test Methods for Rating Adhesion by Tape Test[S]. https://doi.org/10.1520/D3359-23.
[19] LI D L, CHEN W, LI C W, et al.Effect of Voltage on Two-Step Micro-Arc Oxide Film of Mg-13Gd-4Y-2Zn- 0.5Zr Alloy[J]. Crystal Research and Technology, 2025, 60(2): 2400214.
[20] ZHI Q, GAO J, DONG C F, et al.Corrosion Behavior of Microarc Oxidation Film on AZ91D Magnesium Alloy[J]. Acta Metall Sin, 2008, 44(8): 986-990.
[21] LI Z Y, CAI Z B, CUI X J, et al.Influence of Nanoparticle Additions on Structure and Fretting Corrosion Behavior of Micro-Arc Oxidation Coatings on Zirconium Alloy[J]. Surface and Coatings Technology, 2021, 410: 126949.
[22] WU M, GUO Y H, XU G L, et al.Effects of Deposition Thickness on Electrochemical Behaviors of AZ31B Magnesium Alloy with Composite Coatings Prepared by Micro-Arc Oxidation and Electrophoretic Deposition[J]. International Journal of Electrochemical Science, 2020, 15(2): 1378-1390.
[23] CARBONELL-BLASCO M P, MOYANO M A, HERNÁNDEZ-FERNÁNDEZ C, et al. Polyurethane Adhesives with Chemically Debondable Properties via Diels-Alder Bonds[J]. Polymers, 2023, 16(1): 21.
[24] WANG R T, XU H, YAO Z P, et al.Adhesion and Corrosion Resistance of Micro-Arc Oxidation/Polyurethane Composite Coating on Aluminum Alloy Surface[J]. Applied Sciences, 2020, 10(19): 6779.
[25] LIANG K, WANG C L, FAN H Y, et al.Fast Room- Temperature and Water-Insensitive Self-Healing Polyurethane for Superior Composite Anti-Corrosion Coating on Mg Alloys[J]. Progress in Organic Coatings, 2025, 198: 108876.
[26] LIEN P W, JIAN S Y, HUNG J C, et al.Characterization of Additively Manufactured Titanium-Based Alloy with a Micro-Arc Oxidation Coating and Overlying Polyurethane Layer[J]. Coatings, 2025, 15(2): 137.
(上接第77页)
[1] BABU S G, KARTHIK P, JOHN M C, et al.Synergistic Effect of Sono-Photocatalytic Process for the Degradation of Organic Pollutants Using CuO-TiO2/rGO[J]. Ultrasonics Sonochemistry, 2019, 50: 218-223.
[27] YAN Y F, ZHANG C H, JIA T, et al.Efficient Hydrogen Production by an rGO/TiO2 Composite Material from Ammonia Borane Hydrolysis in a Photocatalytic Reactor[J]. Energy & Fuels, 2021, 35(19): 16065-16074.
[28] ALWAN S H, SALEM K H, ALSHAMSI H A.Visible Light-Driven Photocatalytic Degradation of Rhodamine B Dye Onto TiO2/rGO Nanocomposites[J]. Materials Today Communications, 2022, 33: 104558.
[29] PENG X M, WANG M, HU F P, et al.Facile Fabrication of Hollow Biochar Carbon-Doped TiO2/CuO Composites for the Photocatalytic Degradation of Ammonia Nitrogen from Aqueous Solution[J]. Journal of Alloys and Compounds, 2019, 770: 1055-1063.
[30] YITAGESU G B, LEKU D T, SEYUME A M, et al.Biosynthesis of TiO2/CuO and Its Application for the Photocatalytic Removal of the Methylene Blue Dye[J]. ACS Omega, 2024, 9(40): 41301-41313.
[31] DIB N, SAUVAGE F, QUÉHON L, et al. Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation[J]. Molecules, 2025, 30(1): 13.

基金

青海省科技厅自然科学青年基金(2023-ZJ-986Q); 青海理工学院“昆仑英才”人才引进科研项目(2023-QLGKLYCZX-019); 青海大学大学生科研训练计划(SRT202449,SRT202549); 青海大学大学生创新训练计划(2024-QX-22)

PDF(10468 KB)

Accesses

Citation

Detail

段落导航
相关文章

/