钛表面微弧氧化复合碳纳米管负极材料的制备及电化学性能

郝国栋, 陈欣欣, 董宇彪, 田雪, 张涵, 郭昊炎, 秦树森, 杜永欣

表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 78-85.

PDF(4873 KB)
PDF(4873 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (15) : 78-85. DOI: 10.16490/j.cnki.issn.1001-3660.2025.15.007
技术及应用

钛表面微弧氧化复合碳纳米管负极材料的制备及电化学性能

  • 郝国栋1, 2, 陈欣欣1, 董宇彪1, 田雪1, 张涵1, 郭昊炎1, 秦树森1, 杜永欣1, *
作者信息 +

Preparation and Electrochemical Performance of Carbon Nanotube Composite Anode Material via Micro-arc Oxidation on Titanium Surface

  • HAO Guodong1, 2, CHEN Xinxin1, DONG Yubiao1, TIAN Xue1, ZHANG Han1, GUO Haoyan1, QIN Shusen1, DU Yongxin1, *
Author information +
文章历史 +

摘要

目的 通过微弧氧化技术与碳纳米管复合改性制备锂离子电池负极材料,并系统研究它对电池电化学性能的调控机制。方法 采用微弧氧化技术原位制备锐钛矿相二氧化钛多孔膜层,将碳纳米管复合于二氧化钛表面,形成复合电极。通过扫描电镜、X射线衍射和拉曼光谱对材料的微观形貌和晶体结构进行表征,进一步结合恒流充放电循环、循环伏安及电化学阻抗谱测试,系统分析电极材料的储能性能、氧化还原反应特性及界面电荷传输动力学。结果 扫描电镜结果显示,通过微弧氧化制备的TiO2膜层呈多孔结构,孔径为2~50 μm,在复合碳纳米管后,其表面形成了纳米纤维交织的导电网络。电化学测试结果表明,复合电极在电流密度100 mA/g下,第2圈的比容量达到339.26 mA·h/g,在150次循环后其容量保持率为74.3%,显著优于未复合的负极(其容量保持率为45.2%)。倍率性能测试结果显示,在10 C倍率下复合负极仍保持着251.92 mA·h/g的比容量,是0.5 C时初始容量的74.3%。结论 碳纳米管与二氧化钛多孔骨架的协同作用有利于提升电极的电子导电性,抑制体积的膨胀,并通过多级孔道优化了Li+传输动力学。该研究为负极-集流体一体化电极的设计提供了新思路,未来需进一步优化碳纳米管分布均匀性,以提升长期循环稳定性。

Abstract

This study aims to enhance the electrochemical performance of lithium-ion battery anodes by integrating carbon nanotubes with a titanium dioxide porous framework fabricated via micro-arc oxidation. A porous anatase-phase carbon nanotubes layer is in situ synthesized on a titanium substrate using micro-arc oxidation under optimized parameters (current density: 17 A/dm2, frequency: 500 Hz, duty cycle: 45%, processing time: 2 min), followed by uniform carbon nanotubes dispersion onto the carbon nanotubes surface via the blade-coating method. Structural and morphological characterization of the composite electrode (CNTs/MAO-Ti) is performed via Scanning Electron Microscopy (SEM), X-ray diffraction, and Raman spectroscopy. Scanning electron microscopy analysis reveals a hierarchical porous architecture in the MAO-Ti layer with pore sizes ranging from 2 to 50 μm, while carbon nanotubes form an interwoven conductive network on the carbon nanotubes surface, enhancing surface roughness and electronic conductivity. X-ray diffraction patterns confirm the anatase-phase crystallinity of titanium dioxide (PDF#84-1285), with characteristic peaks at 25.3° (101), 37.8° (004), and 48.0° (200), and Raman spectroscopy identifies distinct vibrational modes at 146 cm-1 (Eg), 394 cm-1 (B1g), and 640 cm-1 (Eg), which is consistent with anatase structure. The Raman D/G band intensity ratio indicates that reduced defect density and improved graphitic ordering in the carbon nanotubes composite are attributed to interfacial coupling with titanium dioxide. Electrochemical performance is evaluated through methods including galvanostatic charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. At 100 mA/g, the CNTs/MAO-Ti composite delivers a second-cycle specific capacity of 339.26 mA·h/g, significantly outperforming the pure MAO-Ti electrode (125 mA·h/g), and retains 74.3% of its initial capacity after 150 cycles, compared with 45.2% for the unmodified titanium dioxide. Rate capability tests demonstrate a capacity retention of 74.3% at 10 C (251.92 mA·h/g) relative to 0.5 C, while cyclic voltammetry curves at scan rates of 0.1-2 mV/s reveal pseudocapacitive contributions and high reversibility of Li+ intercalation/deintercalation. EIS analysis reveals a notable decrease in charge-transfer resistance relative to MAO-Ti, demonstrating optimized charge transport kinetics of the composite. Li+ diffusion coefficients, calculated from Warburg impedance slopes, are 6.03×10-15 m2/s for MAO-Ti and 2.21×10-17 m2/s for CNTs/MAO-Ti, indicating that the hierarchical pore structure of titanium dioxide and carbon nanotubes' conductive network synergistically offset limitations in solid-state Li+ diffusion. The initial Coulombic efficiency (47.4%) is attributed to irreversible SEI formation and lithium loss, but it is stabilized near 100% after subsequent cycles, reflecting improved interfacial stability. The enhanced performance is attributed to three key mechanisms: (1) The titanium dioxide porous skeleton provides rapid Li+ transport channels; (2) The carbon nanotubes network reduces electronic resistance and suppresses volume expansion via mechanical interlocking; and (3) Interfacial coupling between carbon nanotubes and titanium dioxide optimizes charge transfer kinetics. This work validates the effectiveness of micro-arc oxidation combined with carbon nanotubes modification for designing integrated anode-current collector systems, where the "porous framework-conductive network- interface coupling" architecture enhances both structural stability and electrochemical activity. However, long-term cycling stability remains limited by uneven carbon nanotubes distribution and SEI dynamic reconstruction. Future studies should focus on optimizing carbon nanotubes dispersion uniformity and engineering interfacial phases to further improve Li+ solid-state diffusion and cyclability. The proposed strategy is applicable to other metal oxide systems, offering a scalable pathway for high-performance lithium-ion battery anodes.

关键词

微弧氧化 / 锂离子电池负极 / 碳纳米管 / 二氧化钛 / 电化学性能

Key words

micro-arc oxidation / lithium-ion battery anode / carbon nanotubes / titanium dioxide / electrochemical performance

引用本文

导出引用
郝国栋, 陈欣欣, 董宇彪, 田雪, 张涵, 郭昊炎, 秦树森, 杜永欣. 钛表面微弧氧化复合碳纳米管负极材料的制备及电化学性能[J]. 表面技术. 2025, 54(15): 78-85 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.007
HAO Guodong, CHEN Xinxin, DONG Yubiao, TIAN Xue, ZHANG Han, GUO Haoyan, QIN Shusen, DU Yongxin. Preparation and Electrochemical Performance of Carbon Nanotube Composite Anode Material via Micro-arc Oxidation on Titanium Surface[J]. Surface Technology. 2025, 54(15): 78-85 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.15.007
中图分类号: TM911   

参考文献

[1] LI W D, SONG B H, MANTHIRAM A.High-Voltage Positive Electrode Materials for Lithium-Ion Batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
[2] WU L, ZHENG J, WANG L, et al.PPy-Encapsulated SnS2 Nanosheets Stabilized by Defects on a TiO2 Support as a Durable Anode Material for Lithium-Ion Batteries[J]. Angewandte Chemie (International Ed), 2019, 58(3): 811-815.
[3] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
YAN J D.Current Status and Development Analysis of Lithium-Ion Batteries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775.
[4] SARKAR A, SHROTRIYA P, NLEBEDIM I C.Parametric Analysis of Anodic Degradation Mechanisms for Fast Charging Lithium Batteries with Graphite Anode[J]. Computational Materials Science, 2022, 202: 110979.
[5] WANG G Y, XIONG J, YANG J, et al.Graphite Anode of Lithium-Ion Batteries for Fast Charging Application[J]. ECS Meeting Abstracts, 2021, 2(4): 471.
[6] CHE G L, LAKSHMI B B, FISHER E R, et al.Carbon Nanotubule Membranes for Electrochemical Energy Storage and Production[J]. Nature, 1998, 393: 346-349.
[7] WU X W, XIE H, DENG Q, et al.Three-Dimensional Carbon Nanotubes Forest/Carbon Cloth as an Efficient Electrode for Lithium-Polysulfide Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1553-1561.
[8] 孙梦璐, 陆萍, 张亦凡, 等. 钛表面硅复合微弧氧化膜负极的制备及其电化学性能研究[J]. 表面技术, 2021, 50(9): 120-127.
SUN M L, LU P, ZHANG Y F, et al.Preparation of Silicon-Containing Micro-Arc Oxidation Film on Titanium and Related Electrochemical Performance Research[J]. Surface Technology, 2021, 50(9): 120-127.
[9] 刘爱莲, 郑文志, 王振廷, 等. CuO纳米片原位修饰TiO2复合电极材料的制备及其性能[J]. 黑龙江科技大学学报, 2023, 33(5): 704-709.
LIU A L, ZHENG W Z, WANG Z T, et al.Preparation and Properties of CuO Nanosheet In-Situ Modified TiO2 Composite Electrode Material[J]. Journal of Heilongjiang University of Science and Technology, 2023, 33(5): 704-709.
[10] 王振廷, 谭婧, 尹吉勇, 等. 微弧氧化三氧化钨负极材料制备及电化学性能研究[J]. 广州化工, 2022, 50(8): 67-70.
WANG Z T, TAN J, YIN J Y, et al.Preparation and Electrochemical Properties of Micro Arc Oxide Tungsten Trioxide Anode Materials[J]. Guangzhou Chemical Industry, 2022, 50(8): 67-70.
[11] WU H, PI J C, LIU Q, et al.All-Inorganic Lead Free Double Perovskite Li-Battery Anode Material Hosting High Li+ Ion Concentrations[J]. The Journal of Physical Chemistry Letters, 2021, 12(17): 4125-4129.
[12] QIU L, YANG W, HU X B, et al.High Performance Study of Lithium Carboxymethylcellulose as Water- Soluble Binder for Lithium Supplementation in Lithium Batteries[J]. Starch - Stärke, 2022, 74(7/8): 2200049.
[13] ZHANG M M, CHEN J Y, LI H, et al.Recent Progress in Li-Ion Batteries with TiO2 Nanotube Anodes Grown by Electrochemical Anodization[J]. Rare Metals, 2021, 40(2): 249-271.
[14] BAYATI M R, GOLESTANI-FARD F, MOSHFEGH A Z, et al.In Situ Derivation of Sulfur Activated TiO2 Nano Porous Layers through Pulse-Micro Arc Oxidation Technology[J]. Materials Research Bulletin, 2011, 46(10): 1642-1647.
[15] 齐玉明, 彭振军, 刘百幸, 等. 钛合金表面高硬度微弧氧化膜的制备和耐磨性研究[J]. 表面技术, 2019, 48(7): 81-88.
QI Y M, PENG Z J, LIU B X, et al.Fabrication and Wear Resistance of Hard Micro Arc Oxidation Coatings on Ti Alloys[J]. Surface Technology, 2019, 48(7): 81-88.
[16] WU J, LU P, DONG L, et al.Combination of Plasma Electrolytic Oxidation and Pulsed Laser Deposition for Preparation of Corrosion-Resisting Composite Film on Zirconium Alloys[J]. Materials Letters, 2020, 262: 127080.
[17] 李响, 姚忠平, 李雪健, 等. 微弧氧化技术在热控涂层中的应用[J]. 表面技术, 2019, 48(7): 24-36.
LI X, YAO Z P, LI X J, et al.Application of Micro-Arc Oxidation Technology in Thermal Control Coating[J]. Surface Technology, 2019, 48(7): 24-36.
[18] FIDAN S, MUHAFFEL F, RIOOL M, et al.Fabrication of Oxide Layer on Zirconium by Micro-Arc Oxidation: Structural and Antimicrobial Characteristics[J]. Materials Science and Engineering: C, 2017, 71: 565-569.
[19] CHEN J S, TAN Y L, LI C M, et al.Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage[J]. Journal of the American Chemical Society, 2010, 132(17): 6124-6130.
[20] YANG W E, HSU M L, LIN M C, et al.Nano/Submicron- Scale TiO2 Network on Titanium Surface for Dental Implant Application[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 642-647.
[21] JUN Z, CAO X Q, YANG X Y, et al.Instant Micro-Arc Oxidation Constructing the Ultrafine Nanoparticles as High-Performance Catalyst and Mechanism Study[J]. Materials Chemistry and Physics, 2023, 301: 127654.
[22] WAN C F, WEN B, DAI J G, et al.Experimental Study on Force Sensitivity of the Conductivity of Carbon Nanotubes-Modified Epoxy Resins[J]. Materials, 2018, 11(7): 1174.
[23] LIANG Y R, XIONG X, XU Z J, et al.Ultrathin 2D Mesoporous TiO2/rGO Heterostructure for High-Performance Lithium Storage[J]. Small, 2020, 16(26): 2000030.
[24] PANESAR M J, CAROL T T T, KUMAR P, et al. Varistor Response and Structural Analysation of Silver Mixed TiO2 (Anatase) Nanoparticles[J]. Indian Journal of Physics, 2025, 99(2): 563-579.
[25] LEE S M, LEE S H, ROH J S.Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis[J]. Crystals, 2021, 11(2): 153.
[26] OHSAKA T, IZUMI F, FUJIKI Y.Raman Spectrum of Anatase, TiO2[J]. Journal of Raman Spectroscopy, 1978, 7(6): 321-324.
[27] ZHANG W F, LAN T B, DING T L, et al.Carbon Coated Anatase TiO2 Mesocrystals Enabling Ultrastable and Robust Sodium Storage[J]. Journal of Power Sources, 2017, 359: 64-70.
[28] 罗军明, 吴小红, 徐吉林. TiC含量对微波烧结TiC/TC4复合材料组织和性能的影响[J]. 稀有金属材料与工程, 2017, 46(11): 3416-21.
LUO J M, WU X H, XU J L.Effect of TiC Contents on the Microstructure and Propertiesof TiC/TC4 Composites Prepared by Microwave Sintering[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3416-21.
[29] WANG J X, TU J G, LEI H P, et al.The Effect of Graphitization Degree of Carbonaceous Material on the Electrochemical Performance for Aluminum-Ion Batteries[J]. RSC Advances, 2019, 9(67): 38990-38997.
[30] 陈琳, 申来法, 聂平, 等. TiO2@MWNTs纳米复合材料的制备及其储锂性能[J]. 化学学报, 2012, 70(1): 15-20.
CHEN L, SHEN L F, NIE P, et al.Preparation and Electrochemical Lithium Storage of Titanium Dioxide@Multi- Walled Carbon Nanotubes(TiO2@MWNTs) Nanocomposites[J]. Acta Chimica Sinica, 2012, 70(1): 15-20.
[31] 文敏, 徐子其, 张克, 等. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能[J]. 有色金属科学与工程, 2021, 12(4): 58-65.
WEN M, XU Z Q, ZHANG K, et al.Preparation of Tungsten Oxide/Carbon Nanotube Film Composite Anodes and Their Lithium Storage Performance[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 58-65.
[32] SAFAVIPOUR M, MOKHTARI H, MAHMOUDI M, et al.TiO2 Nanotube/Chitosan-Bioglass Nanohybrid Coating: Fabrication and Corrosion Evaluation[J]. Journal of Applied Electrochemistry, 2023, 53(1): 177-189.
[33] LEVI M D, LEVI E A, AURBACH D.The Mechanism of Lithium Intercalation in Graphite Film Electrodes in Aprotic Media. Part 2. Potentiostatic Intermittent Titration and in Situ XRD Studies of the Solid-State Ionic Diffusion[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 89-97.
[34] YI T F, LI C Y, ZHU Y R, et al.Electrochemical Intercalation Kinetics of Lithium Ions for Spinel LiNi0.5Mn1.5O4 Cathode Material[J]. Russian Journal of Electrochemistry, 2010, 46(2): 227-232.
[35] 李勇. 纳米二氧化钛负极材料的制备及其电化学性能研究[D]. 北京: 清华大学, 2017: 19-20.
LI Y.Preparation and Electrochemical Properties of Nano-TiO2 anode materials[D]. Beijing: Tsinghua University, 2017: 19-20.
[36] CAI C, YAO Z J, XIANG J Y, et al.Rational Construction of Metal-Organic Framework Derived Dual-Phase Doping N-TiO2 Plus S-Carbon Yolk-Shell Nanodisks for High-Performance Lithium Ion Batteries[J]. Electrochimica Acta, 2023, 452: 142323.
[37] WANG G Z, GAO W, ZHAN Z L, et al.Defect- Engineered TiO2 Nanocrystals for Enhanced Lithium-Ion Battery Storage Performance[J]. Applied Surface Science, 2022, 598: 153869.
[38] GABBETT C, BOLAND C S, HARVEY A, et al.The Effect of Network Formation on the Mechanical Properties of 1D: 2D Nano: Nano Composites[J]. Chemistry of Materials, 2018, 30(15): 5245-5255.

基金

国家自然科学基金(51672120); 黑龙江省自然科学基金(LH2023E101); 黑龙江省教学改革项目(SJGYB2024687)

PDF(4873 KB)

Accesses

Citation

Detail

段落导航
相关文章

/