目的 针对齿轮滚磨光整加工表面完整性基础数据缺乏、工艺控制规律不清的问题,探索主轴式滚磨光整工艺参数对齿轮表面完整性的影响规律,并进行预测建模和工艺参数优化。方法 采用单因素和响应曲面试验方法,对8620RH齿轮钢直齿圆柱齿轮进行主轴式滚磨光整工艺试验,测试加工后齿面表面粗糙度、表面几何形貌、残余应力场、显微硬度场和表层微观组织,讨论工艺参数对表面完整性的影响规律;采用多元线性回归方法,建立表面完整性特征与工艺参数的映射关系模型;基于改进的灰色关联度分析方法,以最大灰色关联度为目标优化滚磨光整工艺参数,并进行试验验证。结果 主轴式滚磨光整加工后齿面三维表面粗糙度Sa由0.280 μm降低至0.089 μm,表面几何形貌和表面纹理均匀一致;随着埋入深度、主轴转速和加工时间的增大,表面粗糙度逐渐减小并趋于稳定;齿高方向残余压应力大于齿宽方向残余压应力,残余压应力影响层深度约为40 μm;表面显微硬度最大硬化程度约为9.9%,硬化层深度约为40 μm,表层微观组织塑性变形层深度约为5 μm。表面完整性预测模型的P值小于0.000 1,决定系数R2大于0.94;最佳主轴式滚磨光整工艺参数组合为埋入深度166 mm、主轴转速130 r/min、加工时间80 min,该工艺参数下模型预测误差在7%以内。结论 主轴式滚磨光整可去除齿轮磨削纹理,降低表面粗糙度,提高表面下20 μm范围内的残余压应力和显微硬度。获得了主轴式滚磨光整工艺参数对表面完整性的影响规律,建立了表面完整性特征预测模型,为齿轮高表面完整性控制提供了基础数据和工艺方法支撑。
Abstract
Gear parts are the core basic components in many different application areas, such as aviation, aerospace, shipbuilding, rail transportation and marine equipment. The surface integrity characteristics of gears are crucial for their long life, low noise, and high operational performance. Barrel finishing is widely used as the last process to improve the surface integrity of gear parts. Regarding the issue of the lack of basic data on surface integrity and unclear process control rules in spindle barrel finishing, the work aims to explore the effects of different spindle barrel finishing parameters on the surface integrity of gears, and optimize the process parameters. With single factor and response surface methodology, the spindle barrel finishing experiments were carried out to 8620RH cylindrical spur gears. Then, the surface roughness, surface topography, residual stress, microhardness, and microstructure of the tooth surface were measured and the effects of spindle barrel finishing parameters on the surface integrity characteristics were discussed. The relationship between the surface integrity characteristics and the spindle barrel finishing parameters was established through multiple linear regression analysis. Spindle barrel finishing parameters were optimized with improved grey correlation degree analysis method, and verified by experiments. The 3D surface roughness Sa of the tooth surface after spindle barrel finishing was reduced from 0.280 μm to 0.089 μm. The surface roughness decreased and tended to be stable with the increase of the embedding depth, spindle speed, and finishing time. The surface topography and surface texture were uniform and consistent after spindle barrel finishing process. The residual stress states of processed gears were compressive, with the maximum value on the surface. The compressive residual stress along the tooth height direction was larger than that along the tooth width direction, and the depth of the compressive residual stress affected layer was approximate 40 μm. The surface of gear was hardened and the maximum degree of hardening was 9.9%. The depth of the hardened layer and plastic deformation layer was appropriate 40 μm and 5 μm, respectively. Spindle barrel finishing could enlarge the compressive residual stress and microhardness values within a range of 20 μm below the surface, but had not significant effect on the depth of the affected layer. Prediction models of surface integrity characteristics were established through multiple linear regression analysis, the P value of these models was less than 0.000 1, and the coefficient of determination R2 was more than 0.94. Based on the grey correlation analysis method, an improved model of the relationship between grey correlation and process parameters was established. The optimal combination of spindle barrel finishing parameters was obtained with the goal of maximizing grey correlation, which was the embedding depth of 166 mm, spindle speed of 130 r/min, and finishing time of 80 min. The optimized parameters were experimentally validated, and the prediction error of the surface integrity characteristics was less than 7%. It can be seen that spindle barrel finishing can remove the gear grinding traces, reduce the surface roughness and improve the compressive residual stress and microhardness in the range of 0~20 μm below the surface. The effects of spindle barrel finishing process parameters on the surface integrity characteristics and establishes the prediction models of surface integrity characteristics are clarified, which can provide basis data and process method for controlling high surface integrity of gears.
关键词
齿轮 /
主轴式滚磨光整 /
表面完整性 /
表面粗糙度 /
残余应力 /
灰色关联度 /
工艺参数优化
Key words
gear /
spindle barrel finishing /
surface integrity /
surface roughness /
residual stress /
grey correlation degree /
optimization of parameters
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘怀举, 张博宇, 朱才朝, 等. 齿轮接触疲劳理论研究进展[J]. 机械工程学报, 2022, 58(3): 95-120.
LIU H J, ZHANG B Y, ZHU C C, et al.State of Art of Gear Contact Fatigue Theories[J]. Journal of Mechanical Engineering, 2022, 58(3): 95-120.
[2] 高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理, 2014, 39(4): 1-6.
GAO Y K, ZHAO Z Y.Development Trend of Surface Integrity and Anti-Fatigue Manufacture of Gears[J]. Heat Treatment of Metals, 2014, 39(4): 1-6.
[3] KARPUSCHEWSKI B, BEUTNER M, ECKEBRECHT J, et al.Surface Integrity Aspects in Gear Manufacturing[J]. Procedia CIRP, 2020, 87: 3-12.
[4] 杨英波, 李文辉, 李东祥, 等. 齿轮类零件滚磨光整加工技术现状及发展思考[J]. 表面技术, 2021, 50(12): 1-16.
YANG Y B, LI W H, LI D X, et al.Research Status and Development Thinking of Mass Finishing for Gear Parts[J]. Surface Technology, 2021, 50(12): 1-16.
[5] 张金梦, 陈永祥, 张琰. 滚磨光整技术在大型齿轮加工中的应用[J]. 现代制造工程, 2020(7): 42-45.
ZHANG J M, CHEN Y X, ZHANG Y.Application of Tumbling Finishing Technology in Machining of Large Gears[J]. Modern Manufacturing Engineering, 2020(7): 42-45.
[6] 赵光辉, 刘世军, 李继强, 等. 各向同性滚磨光整齿轮接触疲劳强度研究[J]. 机械强度, 2017, 39(3): 540-544.
ZHAO G H, LIU S J, LI J Q, et al.Study of Contact Fatigue Strength for Isotropic Barrel Finishing Gear[J]. Journal of Mechanical Strength, 2017, 39(3): 540-544.
[7] KRANTZ T L, ALANOU M P, EVANS H P, et al.Surface Fatigue Lives of Case-Carburized Gears with an Improved Surface Finish[J]. Journal of Tribology, 2001, 123(4): 709-716.
[8] MAKIUCHI Y, HASHIMOTO F, BEAUCAMP A.Model of Material Removal in Vibratory Finishing, Based on Preston's Law and Discrete Element Method[J]. CIRP Annals, 2019, 68(1): 365-368.
[9] DA SILVA MACIEL L, SPELT J K. Measurements of Wall-Media Contact Forces and Work in a Vibratory Finisher[J]. Powder Technology, 2020, 360: 911-920.
[10] FRECHETTE M, MERSHON C, SROKA G.Superfinishing Rear Axle Gears: A Significant Step Toward Reducing Automotive Greenhouse Gas Emissions[C]//Volume 5: 25th International Conference on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing Conference. Portland, Oregon, USA. American Society of Mechanical Engineers, 2013: V005T11A039.
[11] 李秀红, 李文辉, 王程伟, 等. TC4钛合金滚磨光整加工的表面完整性与抗疲劳性能[J]. 中国表面工程, 2018, 31(1): 15-25.
LI X H, LI W H, WANG C W, et al.Surface Integrity and Anti-Fatigue Performance of TC4 Titanium Alloy by Mass Finishing[J]. China Surface Engineering, 2018, 31(1): 15-25.
[12] 李文辉, 杨胜强, 李秀红, 等. 一种大中型圆柱齿轮垂直交叉主轴式滚磨光整加工方法: CN105728858B[P].2018-02-16.
LI W H, YANG S Q, LI X H, et al. A Vertical Cross- spindle Barrel Finishing Method for Medium/Large Cylindrical Gears: CN105728858B[P].2018-02-16.
[13] 张演, 李文辉, 杨胜强, 等. 垂直交叉主轴式滚磨光整加工方案的理论分析[J]. 机械科学与技术, 2020, 39(6): 865-872.
ZHANG Y, LI W H, YANG S Q, et al.Theoretical Analysis of Vertical Cross-Spindle Rolling Finishing Technique[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(6): 865-872.
[14] PETARE A C, JAIN N K.A Critical Review of Past Research and Advances in Abrasive Flow Finishing Process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1): 741-782.
[15] SAMBHARIA J, MALI H S.Recent Developments in Abrasive Flow Finishing Process: A Review of Current Research and Future Prospects[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(2): 388-399.
[16] HASHIMOTO F, CHAUDHARI R G, MELKOTE S N.Characteristics and Performance of Surfaces Created by Various Finishing Methods (Invited Paper)[J]. Procedia CIRP, 2016, 45: 1-6.
[17] BAGEHORN S, WEHR J, MAIER H J.Application of Mechanical Surface Finishing Processes for Roughness Reduction and Fatigue Improvement of Additively Manufactured Ti-6Al-4V Parts[J]. International Journal of Fatigue, 2017, 102: 135-142.
[18] MALLIPEDDI D, NORELL M, SOSA M, et al.The Effect of Manufacturing Method and Running-in Load on the Surface Integrity of Efficiency Tested Ground, Honed and Superfinished Gears[J]. Tribology International, 2019, 131: 277-287.
[19] 乔金维, 武志斐, 王铁, 等. 振动光饰对齿轮振动特性的影响[J]. 机械传动, 2017, 41(5): 101-105.
QIAO J W, WU Z F, WANG T, et al.Effect of Vibratory Finishing on the Vibration Characteristic of Gear[J]. Journal of Mechanical Transmission, 2017, 41(5): 101-105.
[20] 王嘉明, 石慧婷, 高志森, 等. 滚抛磨块物理性能及其对7075铝合金滚磨光整加工的影响[J]. 表面技术, 2021, 50(7): 358-366.
WANG J M, SHI H T, GAO Z S, et al.The Effect of the Physical Properties of the Granular Media on the Finishing of 7075 Aluminum Alloy[J]. Surface Technology, 2021, 50(7): 358-366.
[21] 杨树峰, 黄红涛, 文韬略, 等. 航空弧齿锥齿轮光整加工理论分析及实验研究[J]. 机械传动, 2022, 46(8): 167-171.
YANG S F, HUANG H T, WEN T L, et al.Theoretical Analysis and Experimental Research on Finishing Cut of Aviation Spiral Bevel Gears[J]. Journal of Mechanical Transmission, 2022, 46(8): 167-171.
[22] 刘静怡, 李文辉, 李秀红, 等. 航空零部件的金属增材制造光整加工技术研究进展[J]. 表面技术, 2023, 52(12): 20-41.
LIU J Y, LI W H, LI X H, et al.Research Progress of Finishing Technology for Aviation Parts Built by Metal Additive Manufacturing[J]. Surface Technology, 2023, 52(12): 20-41.
[23] 田涛, 李文辉, 温学杰, 等. 水平振动式滚磨光整加工残余应力离散元-有限元耦合仿真与实验研究[J]. 中国机械工程, 2024, 35(9): 1667-1676.
TIAN T, LI W H, WEN X J, et al.DEM-FEM Coupling Simulation and Experimental Study on Residual Stress of Horizontal Vibration Roller Finishing[J]. China Industrial Economics, 2024, 35(9): 1667-1676.
[24] 王庆志, 陈易明, 吴吉展, 等. 高性能渗碳齿轮表面完整性特征的试验研究[J]. 表面技术, 2025, 54(5): 233-244.
WANG Q Z, CHEN Y M, WU J Z, et al.Experimental Study on Surface Integrity Characteristics of High-Performance Carburized Gears[J]. Surface Technology, 2025, 54(5): 233-244.
[25] 侯圣文, 谭靓, 钟华, 等. 滚磨光整对齿轮表面完整性和性能的影响[J]. 机械科学与技术, 2024, 43(6): 1024-1030.
HOU S W, TAN L, ZHONG H, et al.Effect of Roll Finishing on Surface Integrity and Performance of Gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(6): 1024-1030.
[26] BERGSTEDT E, LIN J C, OLOFSSON U.Influence of Gear Surface Roughness on the Pitting and Micropitting Life[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(24): 4953-4961.
[27] 吴吉展, 魏沛堂, 刘怀举, 等. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报, 2024, 60(4): 284-295.
WU J Z, WEI P T, LIU H J, et al.Study on the Correlation between Surface Integrity and Rolling Contact Fatigue Performance of Aviation Gear Steel[J]. Journal of Mechanical Engineering, 2024, 60(4): 284-295.
[28] 付征宇, 刘青松, 邓明明, 等. 航空齿轮主轴式滚磨光整表面完整性试验研究[J]. 机械传动, 2023, 47(6): 88-93.
FU Z Y, LIU Q S, DENG M M, et al.Experimental Study on the Surface Integrity of Aircraft Gears in Spindle Barrel Finishing[J]. Journal of Mechanical Transmission, 2023, 47(6): 88-93.
[29] 王明明, 魏晨阳, 郭广顺, 等. 超高强度马氏体基钢强韧化及疲劳性能研究进展[J]. 材料热处理学报, 2023, 44(3): 17-27.
WANG M M, WEI C Y, GUO G S, et al.Research Progress on Strengthening, Toughening and Fatigue Properties of Ultra-High-Strength Martensitic-Based Steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(3): 17-27.
[30] 徐芝纶. 弹性力学-上册[M]. 5版. 北京: 高等教育出版社, 2016.
XU Z L.Elasticity-Volume I[M]. 5th ed. Beijing: Higher Education Press, 2016.
[31] 钱隼驰, 仇蕾. 灰色关联分析中分辨系数取值的定量研究[J]. 统计与决策, 2019, 35(10): 10-14.
QIAN S C, QIU L.Quantitative Study on Value of Distinguishing Coefficient in Grey Correlation Analysis[J]. Statistics & Decision, 2019, 35(10): 10-14.
基金
陕西省重点研发计划(2024PT-ZCK-63,2021ZDLGY10-06)