热镀铝锌硅镀层的显微组织及弯曲对镀层裂纹形成的影响

黄全新, 王银军, 张杰

表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 105-115.

PDF(14193 KB)
PDF(14193 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 105-115. DOI: 10.16490/j.cnki.issn.1001-3660.2025.14.010
腐蚀与防护

热镀铝锌硅镀层的显微组织及弯曲对镀层裂纹形成的影响

  • 黄全新1, 王银军2,*, 张杰3
作者信息 +

Effect of Microstructure and Bending on the Formation of Cracks in Hot-dip Al-Zn-Si Coating

  • HUANG Quanxin1, Wang Yinjun2,*, ZHANG Jie3
Author information +
文章历史 +

摘要

目的 研究热镀铝锌硅镀层显微组织、弯曲对镀层裂纹形成的影响,探讨镀层裂纹的形成机制,为拓展热镀铝锌硅镀层钢板在冲压成形领域的应用提供依据。方法 采用高温热台装置,制备600 ℃保温时间为0.5、1、1.5 min的热镀铝锌硅镀层合金化试样,研究了镀层、镀层/钢基体界面合金层的显微组织,测试了τ5相的显微硬度,采用钢板弯曲试验,研究了热镀铝锌硅镀层裂纹的形成规律。结果 热镀铝锌硅镀层的凝固层显微组织为α(Al)富铝相、α(Al)+β(Zn)富锌相、少量针状Si析出相、微量Al-V-Ti相,基体界面主要是τ5相(Al8Fe2Si)、Fe3Al金属间化合物合金层;随着保温时间增加,金属间化合物合金层厚度增加,形成多层梯度分布结构,自内向外依次为Fe3Al、FeAl3、τ5相;Al-Zn-Si合金、Al-V-Ti相、τ5相的显微硬度分别为85、390、733HV0.2;厚度为1、2 mm的DC51D+AZ热镀铝锌硅镀层钢板界面合金层厚度为1~2 μm,1.5a180°、0a180°弯曲时,钢板外表面镀层裂纹最大宽度分别约为55、77 μm。结论 热镀铝锌硅镀层界面合金层中的高硬度τ5相是镀层形成裂纹的关键因素;600 ℃时τ5相的生长动力学表达式为y=8.06x0.2-8.92,符合抛物线关系;随着弯曲角度增加,折弯钢板间隙逐渐减小,弯曲的应变量增加,金属间化合物合金层、镀层弯曲外表面的裂纹宽度增加;镀层弯曲变形时,界面合金层的τ5相柱状晶首先开裂,形成有高密度纹理特征的微裂纹,有利于吸附胶状腐蚀产物,仍具有较好的耐蚀性,通过镀层的显微组织调控,能够兼顾实现热镀铝锌硅镀层钢板的成形性与耐蚀性。

Abstract

The work aims to investigate the effects of microstructure and bending deformation of hot-dip aluminum-zinc- silicon coated steel plate on coating cracks, and then explore the formation mechanism of coating cracks, so as to provide a basis for expanding the application of hot-dip aluminum-zinc-silicon coated steel plate in the field of stamping and forming. The hot-dip Al-Zn-Si coating alloyed samples with holding time of 0.5, 1 and 1.5 min at 600 ℃ were prepared by high-temperature hot stage experiment device, the microstructure of the coating and interface and the microhardness of τ5 phase were studied. Furthermore, bending tests were carried out to explore the formation of Al-Zn-Si coating cracks. The hot-dip Al-Zn-Si coating consisted of intermetallic alloy layer and solidification layer from inside to outside, the solidification layer consisted of α(Al)-rich phases, α(Al)+β(Zn) zinc-rich phases, a small amount of acicular Si precipitated phases and micro phases of Al-V-Ti, the intermetallic alloy layer mainly consisted of τ5 phases (Al8Fe2Si) and diffusion layer of Fe3Al. The thickness of the intermetallic alloy layer increased with the increasing holding time at 600 ℃, the multi-layer gradient distribution structure formed and the growth kinetic expression of of τ5 phases at 600 ℃ was y=8.06x0.2-8.92, which conformed to the parabolic relationship. The microhardness of Al-Zn-Si alloy, Al-V-Ti phases and τ5 phases were 85, 390 and 733HV0.2 respectively. The high hardness τ5 phase in the interface alloy layer of the hot-dip aluminum-zinc-silicon coating was the key factor for the formation of cracks in the coating. The thickness of the interface alloy layer of the hot-dip aluminum-zinc-silicon coated steel plate with the thickness of 1 and 2 mm was about 1-1.5 and 1.5-2 μm respectively. For bending at 1.5a180°, the maximum crack gap width of the coating on the outer surface of the DC51D+AZ coated steel plate with a thickness of 2 mm was about 55 μm. For bending at 0a180°, the crack gap width of the interface alloy layer was about 1-3 μm, and the maximum crack gap width of the outer surface coating was respectively about 75 and 77 μm, respectively. With the increase of the bending angle, the gap of curved steel plate decreased, the bending strain increased, and the width of cracks on the curved outer surface of intermetallic compound alloy layer and coating increased gradually. When the coating was bent and deformed, cracking in the columnar crystals of τ5 phases occurred firstly at interfacial alloy layer, forming micro-cracks with high density texture characteristics, which was conducive to the adsorption of colloidal corrosion products with better corrosion resistance. Through the microstructure control of the coating, the formability and corrosion resistance of hot-dip aluminum-zinc-silicon coated steel plate would be realized together.

关键词

热镀铝锌硅镀层 / 显微组织 / τ5 / 硬度 / 弯曲 / 裂纹

Key words

hot-dip Al-Zn-Si coating / microstructure / τ5 phase / hardness / bending / crack

引用本文

导出引用
黄全新, 王银军, 张杰. 热镀铝锌硅镀层的显微组织及弯曲对镀层裂纹形成的影响[J]. 表面技术. 2025, 54(14): 105-115 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.010
HUANG Quanxin, Wang Yinjun, ZHANG Jie. Effect of Microstructure and Bending on the Formation of Cracks in Hot-dip Al-Zn-Si Coating[J]. Surface Technology. 2025, 54(14): 105-115 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.010
中图分类号: TG146.2   

参考文献

[1] WILLIS D J.Developments in Hot Dipped Metallic Coated Steel Processing[J]. Materials Forum, 2005, 29(1): 9-16.
[2] 张启富, 刘邦津, 黄建中. 现代钢带连续热镀锌[M]. 北京: 冶金工业出版社, 2007: 609-611.
ZHANG Q F, LIU B J, HUANG J Z.Modern Continuous Hot Dip Galvanizing of Steel Sheets[M]. Beijing: Metallurgical Industry Press, 2007: 609-611.
[3] 张静玉, 刘庆峰, 刘茜. 耐蚀锌基合金镀层的研究现状和趋势[J]. 材料科学与工程学报, 2009, 27(4): 644-648.
ZHANG J Y, LIU Q F, LIU Q.Trends and Development of Research on Anti-Corrosion Zinc-Based Alloy Coatings[J]. Journal of Materials Science and Engineering, 2009, 27(4): 644-648.
[4] 崔桂彬, 鞠新华, 任群, 等. 热浸镀铝锌板镀层微观组织结构表征[J]. 表面技术, 2021, 50(4): 361-368.
CUI G B, JU X H, REN Q, et al.Characterization of Microstructure of Hot Dip Al-Zn Plated Coating[J]. Surface Technology, 2021, 50(4): 361-368.
[5] 郭太雄, 刘常升, 刘春富. 工艺条件对热浸镀铝锌合金镀层锌花尺寸的影响[J]. 材料保护, 2015, 48(12): 32-36.
GUO T X, LIU C S, LIU C F.Influence of Process Conditions on Spangle Size of Hot-Dip 55% Al-Zn Alloy Coating Steel Sheet[J]. Materials Protection, 2015, 48(12): 32-36.
[6] 王银军, 张杰, 徐勇, 等. 添加Ti对连续热镀铝锌熔池锌渣形成的影响[J]. 兵器材料科学与工程, 2019, 42(6): 13-17.
WANG Y J, ZHANG J, XU Y, et al.Influence of Adding Ti on Formation of Zinc Slag in Continuous Hot Dip Galvanizing Al-Zn Molten Bath[J]. Ordnance Material Science and Engineering, 2019, 42(6): 13-17.
[7] 王银军, 张杰, 徐勇, 等. Ti对连续热镀铝锌熔池悬浮渣形成的影响[J]. 表面技术, 2020, 49(1): 304-310.
WANG Y J, ZHANG J, XU Y, et al.Effects of Ti on Formation of Suspending Dross in Continuous Hot Dip Galvanizing Al-Zn Molten Bath[J]. Surface Technology, 2020, 49(1): 304-310.
[8] GUO T X, LIU C S, RAN C R, et al.Effects of Spangle Size on Performances of Hot-Dip 55%Al-Zn Alloy Coating[J]. International Journal of Electrochemical Science, 2018, 13(10): 9505-9519.
[9] XU J, GU Q F, LI Q, et al.Influence of Ti and La Additions on the Formation of Intermetallic Compounds in the Al-Zn-Si Bath[J]. Metallurgical and Materials Transactions A, 2016, 47(12): 6542-6554.
[10] XU B J, PHELAN D, DIPPENAAR R.Role of Silicon in Solidification Microstructure in Hot-Dipped 55wt% Al- Zn-Si Coatings[J]. Materials Science and Engineering: A, 2008, 473(1/2): 76-80.
[11] CHEN R Y, WILLIS D J.The Behavior of Silicon in the Solidification of Zn-55Al-1.6Si Coating on Steel[J]. Metallurgical and Materials Transactions A, 2005, 36(1): 117-128.
[12] WU G X, ZHANG J Y, REN Y L, et al.Investigation of Ti Addition Effects on the Thickness of 55pct Al-Zn- 1.6pct Si Coating by First-Principles Calculation[J]. Metallurgical and Materials Transactions A, 2012, 43(6): 2012-2017.
[13] REISS G, ISHMURZIN A, MUGRAUER C, et al.Thermo- Chemical Fluid Flow Simulation in Hot-Dip Galvanizing: The Evaluation of Dross Build-up Formation[J]. Metallurgical and Materials Transactions B, 2019, 50(2): 834-845.
[14] 李积鹏, 宁培栋, 刘小华, 等. 铝锌硅合金镀层的耐热性研究[J]. 电镀与精饰, 2023, 45(10): 21-27.
LI J P, NING P D, LIU X H, et al.Research on Heat Resistance of Aluminum-Zinc-Silicon Plating Sheet[J]. Plating and Finishing, 2023, 45(10): 21-27.
[15] 王若愚. 工艺参数对镀铝锌钢板点焊接头质量与组织的研究[J]. 电焊机, 2011, 41(5): 66-71.
WANG R Y.Study on Processing Parameters' Influence to the Quality and Microstructure of Spot-Welded Joint for the Al-Zn Alloy Coated Steel[J]. Electric Welding Machine, 2011, 41(5): 66-71.
[16] 丁志龙, 张杰, 江社明, 等. 铝锌硅镀层的冲压性能[J]. 材料保护, 2017, 50(5): 39-41.
DING Z L, ZHANG J, JIANG S M, et al.Research on Stamping Properties of Galvalume Coating[J]. Materials Protection, 2017, 50(5): 39-41.
[17] LIVATYALI H, DUGGAL N, AHMETOĞLU M A, et al. Investigation of Crack Formation on the Galvalume Coating of Roll Formed Roof Panels[J]. Journal of Materials Processing Technology, 2000, 98(1): 53-61.
[18] 张百勇, 柴立涛, 王滕, 等. 厚规格热镀锌板折弯开裂分析及改进措施[J]. 电镀与涂饰, 2022, 41(13): 948-952.
ZHANG B Y, CHAI L T, WANG T, et al.Cause Analysis and Improvement Measures for Bending Cracks Appeared on Thick Hot-Dip Zinc-Coated Plate[J]. Electroplating & Finishing, 2022, 41(13): 948-952.
[19] 陈立章, 唐兴昌, 骆永伟. 热镀铝锌硅钢板折弯开裂原因分析及工艺改进[J]. 甘肃冶金, 2021, 43(1): 44-46.
CHEN L Z, TANG X C, LUO Y W.Analysis of Reason for Bending and Cracking of Galvalume Plate and Improvement of Process[J]. Gansu Metallurgy, 2021, 43(1): 44-46.
[20] 林源, 袁训华, 郭大伟, 等. 热镀铝锌硅镀层钢板拉伸对其耐蚀性的影响[J]. 材料保护, 2013, 46(11): 13-16.
LIN Y, YUAN X H, GUO D W, et al.Effect of Drawing Deformation on Corrosion Resistance of Galvalume Steel Sheet[J]. Materials Protection, 2013, 46(11): 13-16.
[21] 张凯, 陈光南, 张坤. 塑性变形对热镀锌板耐蚀性的影响[J]. 材料保护, 2008, 41(7): 69-70.
ZHANG K, CHEN G N, ZHANG K.Effect of Plastic Deformation on Corrosion Resistance of Galvanized Steel Sheets[J]. Materials Protection, 2008, 41(7): 69-70.
[22] 李华飞, 郑家燊, 俞敦义. 热浸镀55%Al-Zn后钢的拉伸性能和耐蚀性能研究[J]. 机械工程材料, 2002, 26(3): 25-28.
LI H F, ZHENG J S, YU D Y.Tensile Properties and Corrosion Resistance of Hot-Dip 55%Al-Zn Alloy Coating Steel[J]. Materials for Mechanical Engineering, 2002, 26(3): 25-28.
[23] SELVERIAN J H, MARDER A R, NOTIS M R.The Effects of Silicon on the Reaction between Solid Iron and Liquid 55 Wt Pct Al-Zn Baths[J]. Metallurgical Transactions A, 1989, 20(3): 543-555.
[24] 赵满秀. 合金元素对热浸镀锌界面反应影响及相关相平衡研究[D]. 湘潭: 湘潭大学, 2012.
ZHAO M X.Effect of Alloying Elements on Interfacial Reaction of Hot Dip Galvanizing and Study on Related Phase Equilibrium[D]. Xiangtan: Xiangtan University, 2012.
[25] 黄全新, 王银军. 凝固冷却速率对55Al-Zn-1.6Si合金镀层组织和力学性能的影响[J]. 机械工程材料, 2023, 47(12): 39-44.
HUANG Q X, WANG Y J.Effect of Solidification Cooling Rate on Microstructure and Mechanical Properties of 55Al-Zn-1.6Si Alloy Coating[J]. Materials for Mechanical Engineering, 2023, 47(12): 39-44.
[26] 于家英, 王华, 郑伟森, 等. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
YU J Y, WANG H, ZHENG W S, et al.Effect of the Interface Microstructure of Hot-Dip Galvanizing High- Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. Acta Metallurgica Sinica, 2020, 56(6): 863-873.

基金

甘肃省科技重大专项(22ZD6GB019)

PDF(14193 KB)

Accesses

Citation

Detail

段落导航
相关文章

/