N2/Ar流量比对TiZrN/TiN纳米多层薄膜微观结构和性能的影响

魏永强, 张华森, 张晓晓, 顾艳阳, 刘畅, 吕怿东, 韦春贝, 钟素娟

表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 92-104.

PDF(4833 KB)
PDF(4833 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 92-104. DOI: 10.16490/j.cnki.issn.1001-3660.2025.14.009
腐蚀与防护

N2/Ar流量比对TiZrN/TiN纳米多层薄膜微观结构和性能的影响

  • 魏永强1,*, 张华森1, 张晓晓1, 顾艳阳1, 刘畅1, 吕怿东1, 韦春贝2, 钟素娟3
作者信息 +

Effects of N2/Ar Flow Ratio on the Microstructure and Properties of TiZrN/TiN Nano-multilayer Films

  • WEI Yongqiang1,*, ZHANG Huasen1, ZHANG Xiaoxiao1, GU Yanyang1, LIU Chang1, LYU Yidong1, WEI Chunbei2, ZHONG Sujuan3
Author information +
文章历史 +

摘要

目的 通过改变N2/Ar流量比,研究TiZrN/TiN纳米多层薄膜微观结构和性能的变化规律。方法 采用电弧离子镀(Arc Ion Plating,AIP)和高功率脉冲磁控溅射(High Power Pulsed Magnetron Sputtering,HiPIMS)复合方法,通过调节N2/Ar流量比,分别在M2高速钢和单晶硅片(100)上制备TiZrN/TiN纳米多层薄膜。研究N2/Ar流量比对TiZrN/TiN纳米多层薄膜形貌结构、元素成分、相结构、纳米硬度、膜基结合力、摩擦磨损性能和耐腐蚀性能的影响。结果 在N2/Ar流量比为35/65时,薄膜表面粗糙度最低达到0.298 μm;在N2/Ar流量比为40/60时,薄膜总厚度最高达574 nm;TiZrN/TiN纳米多层薄膜均以(111)晶面为择优取向,硬度在22.95~27.15 GPa。在N2/Ar流量比为25/75时,TiZrN/TiN纳米多层薄膜离子轰击作用最强,Zr/(Ti+Zr)的值较大(0.088),硬度和弹性模量最高分别达到27.15 GPa和271.14 GPa。在N2/Ar流量比为25/75和30/70时,TiZrN/TiN纳米多层薄膜的膜基结合力最好,达到HF1等级。TiZrN/TiN纳米多层薄膜稳定摩擦系数均在0.8左右,磨损率先增大后减小。N2/Ar流量比为25/75时,TiZrN/TiN纳米多层薄膜的自腐蚀电位和自腐蚀电流密度分别为-0.546 V和1.167 μA/cm²,薄膜对M2高速钢基体的保护率最高达到87.9%。结论 采用电弧离子镀和高功率脉冲磁控溅射复合方法,大幅改善了薄膜表面质量;N2/Ar流量比可改变离子轰击强度的强弱,随着N2/Ar流量比的增加,沉积离子轰击强度逐渐减弱,薄膜硬度和耐腐蚀性能逐渐下降;在N2/Ar流量比为25/75时,薄膜综合性能最优。

Abstract

The work aims to investigate the changes of the microstructure and properties of TiZrN/TiN nano-multilayer films by varying the N2/Ar flow ratio. TiZrN/TiN nano-multilayer films were deposited on M2 high-speed steel and single-crystal Si(100) substrates by a hybrid deposition technique of arc ion plating (AIP) and high-power impulse magnetron sputtering (HiPIMS), with controlled modulation of the N2/Ar flow ratio during growth. The effects of the N2/Ar flow ratio on the morphology, elemental composition, phase structure, nanohardness, adhesion strength, tribological properties, and corrosion resistance of TiZrN/TiN nano-multilayer films were analyzed systematically. As the N2/Ar flow ratio increased from 25/75 to 35/65, the surface roughness of TiZrN/TiN nano-multilayer films initially increased and then decreased, with the minimum value of 0.298 μm at a N2/Ar flow ratio of 35/65. As the flow ratio further increased to 40/60, the surface roughness reached a maximum of 0.387 μm, while the surface roughness decreased to 0.318 μm as the N2/Ar flow ratio increased to 45/55. The thickness of the film initially increased before subsequently decreasing. As the N2/Ar flow ratio increased 40/60, the film reached to a maximum thickness of 574 nm. All the TiZrN/TiN nano-multilayer films exhibited a preferential orientation along the (111) crystal plane. The hardness of these films ranged from 22.95 GPa to 27.15 GPa, which was more than 2.5 times that of M2 high-speed steel (9 GPa). At the N2/Ar flow ratio of 25/75, the ion bombardment effect on the TiZrN/TiN nano-multilayer films was the most significant, corresponding to a relatively high Zr/(Ti+Zr) ratio of 0.088, which induced the hardness and the elastic modulus to 27.15 GPa and 271.14 GPa, respectively. At the N2/Ar flow ratio of 45/55, the ion bombardment effect was the weakest and the Zr/(Ti+Zr) ratio decreased to a minimum of 0.058, which weakened the solid solution strengthening. The hardness and elastic modulus reached to the lowest values 22.95 GPa and 250.74 GPa, respectively. The adhesion of the TiZrN/TiN nano-multilayer films was optimal at N2/Ar flow ratios of 25/75 and 30/70, achieving the highest level of HF1. All the stable coefficients of friction of TiZrN/TiN nano-multilayer films reached an average value ~0.8, while the wear rate increased at the initial stage, followed by a decrease with the increasing N2/Ar flow ratio. At the N2/Ar flow ratio of 25/75, the self-corrosion potential and self-corrosion current density of the TiZrN/TiN nano-multilayer films were -0.546 V and 1.167 μA/cm², respectively. The protective efficiency of the TiZrN/TiN nano-multilayer films for the M2 high-speed steel substrate reached a maximum of 87.9%. At the N2/Ar flow ratio of 45/55, the self-corrosion potential of the TiZrN/TiN nano-multilayer films decreased to a minimum of -0.56 V, the self-corrosion current density increased to a maximum 2.011 μA/cm², and the protective efficiency for the substrate declined to a minimum of 79.15%, which indicated that the corrosion resistance weakened. The hybrid deposition technique of arc ion plating and high-power pulsed magnetron sputtering can be used to significantly improve the surface quality of the TiZrN/TiN nano-multilayer films. The N2/Ar flow ratio can affect the intensity of ion bombardment. With the increasing N2/Ar flow ratio, the intensity of ion bombardment gradually decreases, which results in a corresponding decline in film hardness and corrosion resistance. At the N2/Ar flow ratio of 25/75, the TiZrN/TiN nano-multilayer films demonstrate optimal comprehensive performance. These results provide experimental guidance and potential applications for the further optimization of hybrid deposition technique and enhancement of film performance.

关键词

高功率脉冲磁控溅射 / 电弧离子镀 / TiZrN/TiN纳米多层薄膜 / N2/Ar流量比 / 纳米硬度 / 耐磨性

Key words

high power pulsed magnetron sputtering / arc ion plating / TiZrN/TiN nano-multilayer films / N2/Ar flow ratio / nanohardness / wear resistance

引用本文

导出引用
魏永强, 张华森, 张晓晓, 顾艳阳, 刘畅, 吕怿东, 韦春贝, 钟素娟. N2/Ar流量比对TiZrN/TiN纳米多层薄膜微观结构和性能的影响[J]. 表面技术. 2025, 54(14): 92-104 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.009
WEI Yongqiang, ZHANG Huasen, ZHANG Xiaoxiao, GU Yanyang, LIU Chang, LYU Yidong, WEI Chunbei, ZHONG Sujuan. Effects of N2/Ar Flow Ratio on the Microstructure and Properties of TiZrN/TiN Nano-multilayer Films[J]. Surface Technology. 2025, 54(14): 92-104 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.009
中图分类号: TG174   

参考文献

[1] ZHANG L, SHAO M H, WANG Z W, et al.Comparison of Tribological Properties of Nitrided Ti-N Modified Layer and Deposited TiN Coatings on TA2 Pure Titanium[J]. Tribology International, 2022, 174: 107712.
[2] LORENTZON M, MEINDLHUMER M, PALISAITIS J, et al.Toughness Enhancement in TiN/Zr0.37Al0.63N1.09 Multilayer Films[J]. Acta Materialia, 2024, 273: 119979.
[3] XUE L Y, HU X G, XI Y T, et al.Effect of N2 Partial Pressure on ZrN Coating Orientation and Tribocorrosion Behavior and Mechanism[J]. Ceramics International, 2024, 50(13): 24847-24863.
[4] LIU J K, XIE Y Q, JIANG X D, et al.Improving the Oxidation Resistance of NiCrAlY-Coated Superalloy by Zr/ZrN Diffusion Barrier[J]. Surface and Coatings Technology, 2024, 476: 130255.
[5] LIU Y K, YANG Y, LIU X G, et al.Tribocorrosion of CrN Coatings on Different Steel Substrates[J]. Surface and Coatings Technology, 2024, 484: 130829.
[6] CHIU K A, FU C W, FANG Y S, et al.Heteroepitaxial Growth and Microwave Plasma Annealing of DC Reactive Sputtering Deposited TiZrN Film on Si (100)[J]. Surface and Coatings Technology, 2020, 394: 125873.
[7] LI T, ZHANG H Y, WANG Y, et al.TiCr Transition Layer Promoting the Growth of High-Stability TiCrN Coating for Titanium Bipolar Plate[J]. Surface and Coatings Technology, 2022, 451: 129026.
[8] 刘源, 丁继成, 许雨翔, 等. 电弧离子镀和高功率脉冲磁控溅射AlTiN涂层及其切削性能研究[J]. 表面技术, 2022, 51(2): 57-65.
LIU Y, DING J C, XU Y X, et al.Preparation and Cutting Performance of AlTiN Coatings by Arc Ion Plating and High Power Pulsed Magnetron Sputtering[J]. Surface Technology, 2022, 51(2): 57-65.
[9] LIAO L Y, WAN Q, WANG H B, et al.Irradiation Enhanced Corrosion Resistance of CrN/TiSiN Multilayers Synthesized by Cathodic Arc Ion Plating[J]. Materials Today Communications, 2023, 35: 106155.
[10] WAN Q, WEI Q W, LUO Y, et al.Irradiation-Decelerated Corrosion Behavior of CrN/TiSiN Multilayer Coating in Liquid Pb-Bi Eutectic Alloy[J]. Ceramics International, 2024, 50(16): 28209-28219.
[11] ZHANG Y L, CHEN F, ZHANG Y, et al.Corrosion and Tribocorrosion Behaviors of Ternary TiZrN Coating on 304 Stainless Steel Prepared by HiPIMS[J]. Materials Today Communications, 2022, 31: 103258.
[12] SALHI F, AISSANI L, FELLAH M, et al.Experimental Investigation of Structural, Wetting, Mechanical and Tribological Properties of TiZrN Thin Films Deposited by Magnetron Sputtering[J]. Surfaces and Interfaces, 2021, 27: 101519.
[13] TU R, JIANG M Q, YANG M, et al.Effects of Gradient Structure and Modulation Period on Mechanical Performance and Thermal Stress of TiN/TiSiN Multilayer Hard Coatings[J]. Materials Science and Engineering: A, 2023, 866: 144696.
[14] MAKSAKOVA O V, ZHANYSSOV S, PLOTNIKOV S V, et al.Microstructure and Tribomechanical Properties of Multilayer TiZrN/TiSiN Composite Coatings with Nanoscale Architecture by Cathodic-Arc Evaporation[J]. Journal of Materials Science, 2021, 56(8): 5067-5081.
[15] BERESNEV V M, LYTOVCHENKO S V, et al. Adhesion Strength of TiZrN/TiSiN Nanocomposite Coatings on a Steel Substrate with Transition Layer[J]. Journal of Nano- and Electronic Physics, 2020, 12(4): 4030-1-04030-6.
[16] ZHANG J, PENG L J, WANG X Y, et al.Effects of Zr/(Zr+Ti) Molar Ratio on the Phase Structure and Hardness of TixZr1-xN Films[J]. Coatings, 2021, 11(11): 1342.
[17] 刘凡, 林诗翔, 张明权, 等. 基于磁控溅射的氮化物薄膜摩擦与腐蚀性能研究[J]. 热加工工艺, 2024, 53(10): 16-21.
LIU F, LIN S X, ZHANG M Q, et al.Study on Friction and Corrosion Properties of Nitride Films Based on Magnetron Sputterin[J]. Hot Working Technology, 2024, 53(10): 16-21.
[18] LIN Y T, LIU W C, KUO C C.Elevated-temperature Dry Sliding Wear Behaviors of Dual-Cathode HiPIMS TiN and TiZrN Films[J]. Emerging Materials Research, 2025, 14(1): 98-106.
[19] KOUZNETSOV V, MACÁK K, SCHNEIDER J M, et al. A Novel Pulsed Magnetron Sputter Technique Utilizing very High Target Power Densities[J]. Surface and Coatings Technology, 1999, 122(2/3): 290-293.
[20] CHRISTIE D J.Target Material Pathways Model for High Power Pulsed Magnetron Sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(2): 330-335.
[21] BAKOGLIDIS K D, SCHMIDT S, GRECZYNSKI G, et al.Improved Adhesion of Carbon Nitride Coatings on Steel Substrates Using Metal HiPIMS Pretreatments[J]. Surface and Coatings Technology, 2016, 302: 454-462.
[22] MOUCHE P A, KOYANAGI T, PATEL D, et al.Adhesion, Structure, and Mechanical Properties of Cr HiPIMS and Cathodic Arc Deposited Coatings on SiC[J]. Surface and Coatings Technology, 2021, 410: 126939.
[23] CHANG C L, HO C T, CHEN P H, et al.Synergetic Effect for Improved Deposition of Titanium Nitride Films[J]. Surface and Coatings Technology, 2018, 350: 1098-1104.
[24] GENG D S, XU Y X, WANG Q M.Hybrid Deposition of Cr-O/Al-O Hard Coatings Combining Cathodic Arc Evaporation and High Power Impulse Magnetron Sputtering[J]. Surface and Coatings Technology, 2023, 456: 129235.
[25] 畅为航, 蔡海潮, 薛玉君, 等. 氮氩流量比对磁控溅射CrAgCeN涂层摩擦学性能的影响[J]. 表面技术, 2022, 51(8): 262-271.
CHANG W H, CAI H C, XUE Y J, et al.Effect of Nitrogen-to-Argon Flow Ratio on Properties of CrAgCeN Coating by Magnetron Sputtering[J]. Surface Technology, 2022, 51(8): 262-271.
[26] MA A M, LIU D X, ZHANG X H, et al.Solid Particle Erosion Behavior and Failure Mechanism of TiZrN Coatings for Ti-6Al-4V Alloy[J]. Surface and Coatings Technology, 2021, 426: 127701.
[27] SONG Y T, WANG L G, SHANG L L, et al.Temperature- Dependent Tribological Behavior of CrAlN/TiSiN Tool Coating Sliding Against 7A09 Al Alloy and GCr15 Bearing Steel[J]. Tribology International, 2023, 177: 107942.
[28] 张启沛, 钟喜春, 杨怡帆, 等. 多弧离子镀TiN薄膜颜色性能的研究[J]. 真空科学与技术学报, 2014, 34(7): 694-699.
ZHANG Q P, ZHONG X C, YANG Y F, et al.Synthesis and Color Performance of Multi-Arc Ion Plated TiN Coatings[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(7): 694-699.
[29] ROQUINY P, BODART F, TERWAGNE G.Colour Control of Titanium Nitride Coatings Produced by Reactive Magnetron Sputtering at Temperature less than 100 ℃[J]. Surface and Coatings Technology, 1999, 116: 278-283.
[30] 王振玉, 徐胜, 张栋, 等. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响[J]. 金属学报, 2014, 50(5): 540-546.
WANG Z Y, XU S, ZHANG D, et al.Influence of N2 Flow Rate on Structures and Mechanical Properties of TiSiN Coatings Prepared by HIPIMS Method[J]. Acta Metallurgica Sinica, 2014, 50(5): 540-546.
[31] HOVSEPIAN P, POPOV D.Cathode Poisoning during Reactive Arc Evaporation of Titanium in Nitrogen Atmosphere[J]. Vacuum, 1994, 45(5): 603-607.
[32] 严鹏, 杜继红, 李争显, 等. 电弧离子镀中真空电弧稳定性控制方法[J]. 真空, 2015, 52(6): 38-41.
YAN P, DU J H, LI Z X, et al.Stabilization of Vacuum Arc during Deposition by Arc Ion Plating[J]. Vacuum, 2015, 52(6): 38-41.
[33] 王铁钢, 郭玉垚, 唐宽瑜, 等. N2流量比对复合磁控溅射Zr-B-N薄膜结构和性能的影响[J]. 表面技术, 2018, 47(11): 210-217.
WANG T G, GUO Y Y, TANG K Y, et al.Influence of Nitrogen Flow on Structure and Performance of the Zr-B-N Films Prepared by Hybrid Magnetron Sputtering Techniques[J]. Surface Technology, 2018, 47(11): 210-217.
[34] GHAILANE A, OLUWATOSIN A O, LARHLIMI H, et al.Titanium Nitride, TiXN(1-X), Coatings Deposited by HiPIMS for Corrosion Resistance and Wear Protection Properties[J]. Applied Surface Science, 2022, 574: 151635.
[35] XU Y, LI G D, LI G, et al.Effect of Bias Voltage on the Growth of Super-Hard (AlCrTiVZr)N High-Entropy Alloy Nitride Films Synthesized by High Power Impulse Magnetron Sputtering[J]. Applied Surface Science, 2021, 564: 150417.
[36] LIU H, YANG F C, TSAI Y J, et al.Effect of Modulation Structure on the Microstructural and Mechanical Properties of TiAlSiN/CrN Thin Films Prepared by High Power Impulse Magnetron Sputtering[J]. Surface and Coatings Technology, 2019, 358: 577-585.
[37] LI B S, WANG T G, DING J C, et al.Influence of N2/Ar Flow Ratio on Microstructure and Properties of the AlCrSiN Coatings Deposited by High-Power Impulse Magnetron Sputtering[J]. Coatings, 2018, 8(1): 3.
[38] VIDAKIS N, ANTONIADIS A, BILALIS N.The VDI 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds[J]. Journal of Materials Processing Technology, 2003, 143: 481-485.
[39] 李柏松, 王铁钢, 侯翔, 等. N2/Ar流量比对HiPIMS技术制备AlCrSiN刀具涂层膜基结合力的影响[J]. 装备制造技术, 2017(12): 67-69.
LI B S, WANG T G, HOU X, et al.Influence of N2/Ar Flow Ratio on the Adhesive Strenth of AlCrSiN Coatings Prepared by HIPIMS Techniques[J]. Equipment Manufacturing Technology, 2017(12): 67-69.
[40] ZHAO Y H, HU L, LIN G Q, et al.Deposition, Microstructure and Hardness of TiN/(Ti, Al)N Multilayer Films[J]. International Journal of Refractory Metals and Hard Materials, 2012, 32: 27-32.
[41] 张而耕, 付巧慧, 梁丹丹, 等. 硬质TiAlCN多层膜的微观结构设计与摩擦磨损性能研究[J]. 表面技术, 2024, 53(23): 143-152.
ZHANG E G, FU Q H, LIANG D D, et al.Microstructural Design and Tribological Properties of TiAlCN Multilayer Films[J]. Surface Technology, 2024, 53(23): 143-152.
[42] WEI Y Q, ZONG X Y, JIANG Z Q, et al.Characterization and Mechanical Properties of TiN/TiAlN Multilayer Coatings with Different Modulation Periods[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5): 1677-1683.
[43] 何恒基, 赵莎, 刘春海, 等. 磁控溅射制备AlTiCrNiTa/(AlTiCrNiTa)N多层涂层的力学性能及微结构分析[J]. 功能材料, 2023, 54(3): 3231-3236.
HE H J, ZHAO S, LIU C H, et al.Mechanical Properties and Microstructure Analysis of AlTiCrNiTa/(AlTiCrNiTa)N Multilayer Coatings Prepared by Magnetron Sputtering[J]. Journal of Functional Materials, 2023, 54(3): 3231-3236.
[44] 成靖文, 范洪远, 田颖萍. 氮气流量对反应磁控溅射TiN薄膜微结构与力学性能的影响[J]. 硬质合金, 2012, 29(4): 203-207.
CHENG J W, FAN H Y, TIAN Y P.Fluence of Nitrogen Flux on Microstructure and Mechanical Properties of TiN Films Deposited by Reactive Magnetron Sputtering[J]. Cemented Carbide, 2012, 29(4): 203-207.
[45] LIN Y W, LU C W, YU G P, et al.Structure and Properties of Nanocrystalline (TiZr)xN1-xThin Films Deposited by DC Unbalanced Magnetron Sputtering[J]. Journal of Nanomaterials, 2016, 2016: 2982184.
[46] 吴忠振, 田修波, 段伟赞, 等. 高功率脉冲磁控溅射ZrN纳米薄膜制备及性能研究[J]. 材料研究学报, 2010, 24(6): 561-566.
WU Z Z, TIAN X B, DUAN W Z, et al.Fabrication and Surface Properties of ZrN Films by High Power Pulsed Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2010, 24(6): 561-566.
[47] 党文伟, 赵金龙, 李晓升. 多弧离子镀沉积TiCrN薄膜在中性盐雾环境下的腐蚀行为[J]. 电镀与精饰, 2022, 44(11): 64-68.
DANG W W, ZHAO J L, LI X S.Corrosion Behavior of TiCrN Film Deposited by Multi-Arc Ion Plating in Neutral Salt Spray Environment[J]. Plating and Finishing, 2022, 44(11): 64-68.
[48] HSU C H, LIN C Y, CHEN J X.Wear and Corrosion Performance of Ti-6Al-4V Alloy Arc-Coated TiN/CrN Nano-Multilayer Film[J]. Metals, 2023, 13(5): 907.
[49] 魏永强, 顾艳阳, 范梦圆, 等. 脉冲偏压占空比对TiCrN薄膜微观结构和性能的影响规律[J]. 中国表面工程, 2023, 36(6): 57-67.
WEI Y Q, GU Y Y, FAN M Y, et al.Effects of Pulsed Bias Duty Cycle on the Microstructure and Properties of TiCrN Films[J]. China Surface Engineering, 2023, 36(6): 57-67.
[50] ZHU S, QIN Y F, MEI H.Influence of Arc Current on SurfaceProperties and Corrosion Resistance of AlCrN Coatings Deposited by Multi-Arc Ion Plating[J]. International Journal of Electrochemical Science, 2020, 15(6): 5352-5361.

基金

国家自然科学基金(51401182); 中国国家留学基金项目(CSC202108410274); 河南省自然科学基金项目(242300420053); 河南省高层次人才国际化培养资助项目; 新型钎焊材料与技术国家重点实验室开放课题项目(SKLABFMT-2023-09); 郑州航空工业管理学院科研团队(23ZHTD01010); 青年科研基金支持计划专项资助(24ZHQN01010); 重点重大项目成果培育与转化专项资助项目

PDF(4833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/