磁场和微生物对X80钢应力腐蚀开裂行为的影响

申雨欣, 王丹, 郭大成, 谢飞, 王雨欣

表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 37-47.

PDF(28150 KB)
PDF(28150 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (14) : 37-47. DOI: 10.16490/j.cnki.issn.1001-3660.2025.14.004
腐蚀与防护

磁场和微生物对X80钢应力腐蚀开裂行为的影响

  • 申雨欣1, 王丹1, 郭大成2, 谢飞1,*, 王雨欣1
作者信息 +

Effect of Magnetic Fields and Microorganisms on Stress Corrosion Cracking Behavior of X80 Steel

  • SHEN Yuxin1, WANG Dan1, GUO Dacheng2, XIE Fei1,*, WANG Yuxin1
Author information +
文章历史 +

摘要

目的 探究磁场(Magnetic Field, MF)和硫酸盐还原菌(Sulfate reducing bacteria, SRB)对X80钢应力腐蚀开裂行为的影响。方法 将X80钢拉伸试样浸泡在接种SRB的培养基中分别1、4、7、10、14 d以形成生物膜,随后分别在无磁场和100 mT垂直磁场的环境下进行慢应变速率拉伸试验,并利用扫描电子显微镜进行断口形貌观察。结果 慢应变速率拉伸数据表明,试样在SRB溶液中的断裂应变和结合能大幅减小;磁场单独作用于无菌溶液中表现出更弱的应力腐蚀趋势而施加磁场在接种SRB溶液中变为增强趋势。表征分析也观察到SRB组试件主断口主要由解理性台阶组成,侧表面出现多条裂纹;磁场单独作用于无菌溶液中试件主断口有大量韧窝,侧表面平整、无裂纹;同等天数下SRB+MF组试件的脆性断裂加重,主断口解理性台阶更多更深且侧表面裂纹较SRB组也更深。结论 在无菌环境下,MF阻碍了腐蚀性离子迁移到电极表面,从而抑制腐蚀过程。而在有菌环境下,磁场使SRB在X80钢表面的黏附情况发生改变,使试件表面的生物膜分布更为聚集,导致局部浓度差进而加速了点蚀。X80钢试件在MF、SRB、应力三者协同作用下的腐蚀速率显著增加。

Abstract

The stress corrosion cracking (SCC) behavior of X80 pipeline steel buried in sea mud is often influenced by magnetic fields and sulfate reducing bacteria (SRB). By immersion experiments, electrochemical experiments, and characterization analysis, the influence of stresses and magnetic fields on the film formation law and the corrosion mechanism of SRB was studied, and the effects of SRB and magnetic fields on stress corrosion cracking of X80 steel under different stresses were further explored, providing a theoretical basis for pipeline protection in complex environments. The research results indicate that in a sterile environment, after applying a magnetic field, the Lorentz force enhances the transport process of substances in the solution, leading to the accumulation of nutrients in the solution on the steel surface, thereby hindering the corrosion of corrosive ions on the electrode surface. The magnetic field gradient force can attract particles such as oxygen and ferric chloride to the outside of the defect, and attract hydroxyl ions to the inside of the defect to form an oxide film with iron, thereby weakening the corrosion inside the defect and reducing the sensitivity of the metal to SCC. MF hinders the migration of corrosive ions to the electrode surface, thereby inhibiting the corrosion process. In a bacterial environment, the magnetic field changes the adhesion of SRB on the surface of X80 steel, making the distribution of the biofilm on the surface of the specimen more uneven, which leads to galvanic corrosion, where the biofilm is covered by the anode and surrounded by the cathode. With the densification of the biofilm, a complete biofilm prevents oxygen and corrosive anions (Cl-) from coming into contact with the steel surface, but leads to a local oxygen deficient environment on the steel surface, accelerating the cathodic depolarization process of SRB. Under the combined action of stress and SRB, pitting corrosion pits appear on the specimens. SRB significantly enhances the SCC sensitivity of X80 pipeline steel in simulated sea mud solution. The SCC sensitivity in SRB inoculation solution is several times higher than that in sterile solution, reaching 42%. The role of SRB in assisting pitting corrosion and promoting hydrogen infiltration into steel accelerates the initiation and propagation of cracks. SCC crack initiation usually starts within the pit. Once the crack is formed, magnetic field forces will also be generated inside the crack under the action of an external magnetic field. The magnetic field provides a carrier for the extracellular electron transfer process of SRB by attracting paramagnetic Fe3O4, thereby accelerating corrosion and causing the expansion of pitting corrosion pits. The expanded pitting will be subject to the action of the magnetic field and SRB again. In this cycle, SRB and the magnetic field will intensify the stress corrosion of steel. The corrosion rate of X80 steel specimens significantly increases under the synergistic effect of the three factors.

关键词

磁场 / 硫酸盐还原菌 / X80钢 / 应力腐蚀开裂 / 生物

Key words

magnetic field / sulfate reducing bacteria / X80 steel / stress corrosion cracking / organism

引用本文

导出引用
申雨欣, 王丹, 郭大成, 谢飞, 王雨欣. 磁场和微生物对X80钢应力腐蚀开裂行为的影响[J]. 表面技术. 2025, 54(14): 37-47 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.004
SHEN Yuxin, WANG Dan, GUO Dacheng, XIE Fei, WANG Yuxin. Effect of Magnetic Fields and Microorganisms on Stress Corrosion Cracking Behavior of X80 Steel[J]. Surface Technology. 2025, 54(14): 37-47 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.14.004
中图分类号: TG172   

参考文献

[1] 田丰, 白秀琴, 贺小燕, 等. 海洋环境下金属材料微生物腐蚀研究进展[J]. 表面技术, 2018, 47(8): 182-196.
TIAN F, BAI X Q, HE X Y, et al.Research Progress on Microbiological Induced Corrosion of Metallic Materials under Ocean Environment[J]. Surface Technology, 2018, 47(8): 182-196.
[2] 陈旭, 梁平, 李晓刚, 等. 管线钢应力腐蚀开裂的影响因素[J]. 装备环境工程, 2007, 4(3): 21-26.
CHEN X, LIANG P, LI X G, et al.Factors Influencing Stress Corrosion Cracking of Pipeline Steels[J]. Equipment Environmental Engineering, 2007, 4(3): 21-26.
[3] 刘丹, 杨纯田, 周恩泽, 等. 海洋用金属材料的微生物腐蚀研究进展[J]. 表面技术, 2019, 48(7): 166-174.
LIU D, YANG C T, ZHOU E Z, et al.Progress in Microbiologically Influenced Corrosion of Metallic Materials in Marine Environment[J]. Surface Technology, 2019, 48(7): 166-174.
[4] LUO X W, BIAN B, ZHANG K, et al.Investigation of Hydrogen Embrittlement in 12Cr2Mo1R(H) Steel[J]. Journal of Materials Research, 2018, 33(20): 3501-3511.
[5] 刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述[J]. 表面技术, 2020, 49(3): 1-13.
LIU C S, LI Z Z, CHEN C F.Stress Corrosion Cracking of Stainless Steel[J]. Surface Technology, 2020, 49(3): 1-13.
[6] 李佳蔓, 王丹, 姜锦涛, 等. X70管线钢在南海环境下的腐蚀行为研究[J]. 辽宁石油化工大学学报, 2022, 42(6): 49-55.
LI J M, WANG D, JIANG J T, et al.Corrosion Behavior of X70 Steel in South China Sea Environment[J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 49-55.
[7] LV M Y, CHEN X C, LI Z X, et al.Effect of Sulfate-Reducing Bacteria on Hydrogen Permeation and Stress Corrosion Cracking Behavior of 980 High-Strength Steel in Seawater[J]. Journal of Materials Science & Technology, 2021, 92: 109-119.
[8] WU M, GONG K, XIE F, et al.Effect of Strain Rate on Stress Corrosion Cracking of X100 Pipeline Steel in Environments with Sulfate-Reducing Bacteria[J]. Materials Testing, 2018, 60(3): 229-237.
[9] WANG D, LI T J, XIE F, et al.Effect of Magnetic Field on the Electrochemical Corrosion Behavior of X80 Pipeline Steel[J]. Construction and Building Materials, 2022, 350: 128897.
[10] LIU H W, XU D K, ZHENG B J, et al.A Synergistic Acceleration of Corrosion of Q235 Carbon Steel between Magnetization and Extracellular Polymeric Substances[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 456-464.
[11] ZHENG B J, LI K J, LIU H F, et al.Effects of Magnetic Fields on Microbiologically Influenced Corrosion of 304 Stainless Steel[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 48-54.
[12] YETIM A F, KOVACı H, YILDIZ F, et al.The Effect of Post Aging on Wear Properties of a Plasma Nitrided Ferromagnetic Steel under DC Magnetic Field[J]. Wear, 2015, 332: 988-994.
[13] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
MA G, GU Y H, ZHAO J.Research Progress on Sulfate-Reducing Bacteria Induced Corrosion of Steels[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(3): 289-297.
[14] XIE F, LI J H, ZOU T, et al.Stress Corrosion Cracking Behavior Induced by Sulfate-Reducing Bacteria and Cathodic Protection on X80 Pipeline Steel[J]. Construction and Building Materials, 2021, 308: 125093.
[15] WU T Q, YAN M C, ZENG D C, et al.Stress Corrosion Cracking of X80 Steel in the Presence of Sulfate-Reducing Bacteria[J]. Journal of Materials Science & Technology, 2015, 31(4): 413-422.
[16] JIANG Y F, ZHANG B, WANG D Y, et al.Hydrogen-Assisted Fracture Features of a High Strength Ferrite-Pearlite Steel[J]. Journal of Materials Science & Technology, 2019, 35(6): 1081-1087.
[17] WANG Y X, HE J Y, XIE F, et al.The Synergistic Effect of Parallel Magnetic Field and Sulfate-Reducing Bacteria on Stress Corrosion Cracking of Buried X80 Pipeline Steel[J]. Engineering Failure Analysis, 2023, 154: 107644.
[18] ZHAO P C, SHUAI J, LV Z Y, et al.Strain Response of API 5L X80 Pipeline Subjected to Indentation[J]. Applied Ocean Research, 2020, 94: 101991.
[19] YANG Y L, CHENG T X, ZHOU G D.Effect of Sulfate- Reducing Bacteria on the Production of Iron Sulfides[J]. Geomicrobiology Journal, 2023, 40(3): 247-254.
[20] 熊福平, 王军磊, AHMED Abbas Fadhil, 等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展[J]. 腐蚀科学与防护技术, 2018, 30(3): 213-221.
XIONG F P, WANG J L, FADHIL A, et al.Research Progress of Sulfate-Reducing Bacteria Induced SCC[J]. Corrosion Science and Protection Technology, 2018, 30(3): 213-221.
[21] 李文涛, 林晶. 微生物膜下Q235钢腐蚀行为的表面分析[J]. 装备环境工程, 2007, 4(6): 19-22.
LI W T, LIN J.Surface Analysis of Q235 Steel Corrosion Behavior under Biofilms[J]. Equipment Environmental Engineering, 2007, 4(6): 19-22.
[22] TORRES-ISLAS A, GONZÁLEZ-RODRÍGUEZ J G. Effect of Electrochemical Potential and Solution Concentration on the SCC Behaviour of X-70 Pipeline Steel in NaHCO3[J]. International Journal of Electrochemical Science, 2009, 4(5): 640-653.
[23] CUI Z Y, LIU Z Y, WANG L W, et al.Effect of Plastic Deformation on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Steel in Near-Neutral pH Environment[J]. Materials Science and Engineering: A, 2016, 677: 259-273.
[24] MIRESMAEILI R, LIU L J, KANAYAMA H.A Possible Explanation for the Contradictory Results of Hydrogen Effects on Macroscopic Deformation[J]. International Journal of Pressure Vessels and Piping, 2012, 99: 34-43.
[25] YANLIANG H.Corrosion Failure of Marine Steel in Sea- Mud Containing Sulfate Reducing Bacteria[J]. Materials and Corrosion, 2004, 55(2): 124-127.
[26] 陈碧, 秦双, 陈蕾, 等. 静磁场对硫酸盐还原菌生物膜形成过程的影响[J]. 腐蚀科学与防护技术, 2014, 26(6): 499-504.
CHEN B, QIN S, CHEN L, et al.Influence of Static Magnetic Field on Formation of SRB Biofilm[J]. Corrosion Science and Protection Technology, 2014, 26(6): 499-504.
[27] LI X J, ZHANG M, YUAN B Y, et al.Effects of the Magnetic Field on the Corrosion Dissolution of the 304 SS|FeCl3 System[J]. Electrochimica Acta, 2016, 222: 619-626.
[28] LI J H, XIE F, WANG D, et al.Effect of Magnetic Field on Stress Corrosion Cracking Induced by Sulfate-Reducing Bacteria[J]. Construction and Building Materials, 2021, 303: 124521.
[29] WAN H X, SONG D D, CAI Y, et al.The AC Corrosion and SCC Mechanism of X80 Pipeline Steel in Near- Neutral pH Solution[J]. Engineering Failure Analysis, 2020, 118: 104904.
[30] HE J Y, XIE F, WANG D, et al.Stress Corrosion Cracking Behavior of Buried Oil and Gas Pipeline Steel under the Coexistence of Magnetic Field and Sulfate-Reducing Bacteria[J]. Petroleum Science, 2024, 21(2): 1320-1332.
[31] 张燊, 郭娜, 董耀华, 等. 海洋微生物胞外分泌物(EPS)对船用结构钢腐蚀行为的影响[J]. 装备环境工程, 2018, 15(1): 86-95.
ZHANG S, GUO N, DONG Y H, et al.Influences of Marine Microorganisms Mucilage Secretion(EPS) on Corrosion Behavior of Marine Structure Steels[J]. Equipment Environmental Engineering, 2018, 15(1): 86-95.
[32] PERMEH S, LAU K, TANSEL B, et al.Surface Conditions for Microcosm Development and Proliferation of SRB on Steel with Cathodic Corrosion Protection[J]. Construction and Building Materials, 2020, 243: 118209.
[33] GU W J, WARNER D H.Dissolution at a Ductile Crack Tip[J]. Physical Review Letters, 2021, 127(14): 146001.
[34] 李雨, 关蕾, 王冠, 等. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
LI Y, GUAN L, WANG G, et al.Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(3): 215-226.
[35] 吕美英, 李振欣, 杜敏, 等. 微生物腐蚀中生物膜的生成、作用与演变[J]. 表面技术, 2019, 48(11): 59-68.
LYU M Y, LI Z X, DU M, et al.Formation, Function and Evolution of Biofilm in Microbiologically Influenced Corrosion[J]. Surface Technology, 2019, 48(11): 59-68.
[36] GUO M F, XIE F, WANG D, et al.Effect of Magnetite Nanoparticle Size and Concentration on Microbiologically Influenced Corrosion of X70 Steel by Desulfovibrio Vulgaris[J]. Electrochimica Acta, 2025, 523: 145992.
[37] WANG D, YANG C T, SALEH M A, et al.Conductive Magnetite Nanoparticles Considerably Accelerated Carbon Steel Corrosion by Electroactive Desulfovibrio Vulgaris Biofilm[J]. Corrosion Science, 2022, 205: 110440.
[38] SUN D X, WU M, XIE F.Effect of Sulfate-Reducing Bacteria and Cathodic Potential on Stress Corrosion Cracking of X70 Steel in Sea-Mud Simulated Solution[J]. Materials Science and Engineering: A, 2018, 721: 135-144.
[39] WU T Q, YAN M C, ZENG D C, et al.Hydrogen Permeation of X80 Steel with Superficial Stress in the Presence of Sulfate-Reducing Bacteria[J]. Corrosion Science, 2015, 91: 86-94.

基金

国家自然科学基金(52402428)

PDF(28150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/