目的 研究不同超声滚压参数下2024-T3铝合金表面完整性的变化规律,并研究超声滚压处理对其疲劳性能的影响规律,为提升航空铝合金构件的表面完整性和疲劳强度提供依据。方法 使用超声滚压设备对铝合金试样进行强化处理,通过旋转弯曲疲劳性能试验,分析不同工艺参数下铝合金试样超声滚压处理前后的表面粗糙度、表层微观组织、表面硬度、硬化层深度和残余应力,并研究铝合金超声滚压处理的强化改性机理。结果 经超声滚压后,试样的表面粗糙度均远低于原始试样,其最低粗糙度达到0.197 μm,降幅达到85.6%;表面硬度最高达到192.47HV,与原始试样相比提高了57.6%。经超声滚压后,试样表层发生了明显的塑性流变和晶粒细化现象,未滚压原始晶粒的平均尺寸为36.68 μm,而经超声滚压后表层晶粒的平均尺寸为10.28 μm。经超声滚压后铝合金试样的疲劳强度从130 MPa提高至180 MPa,提高幅度约为38.5%。在相同应力水平下,试样的疲劳寿命比原始试样提高7倍,原始试样的裂纹源位于试样表面,而经超声滚压后试样的疲劳源萌生于次表层。结论 随着超声滚压静压力的增大,试样的表面粗糙度先减小后增大,但均远低于原始试样。试样的表面硬度、硬化层深度、残余压应力均随着静压力的增大而增大。经过超声滚压后,铝合金试样的疲劳强度大幅提高。
Abstract
Aviation manufacturing industry is a unique branch of the manufacturing industry. Its technical level and production capacity can represent the highest manufacturing level and technical strength of a country. It plays a vital role in the modernization of national economy and national defense. 2024 aluminum alloy is widely used in structural components of aircraft due to its low density and high strength. If fatigue failure occurs, it will seriously affect the flight safety of aircraft. As a new type of surface strengthening technology, ultrasonic rolling technology has gradually attracted people's attention because of its advantages of high processing efficiency and good surface quality. In this paper, the variation of surface integrity of 2024-T3 aluminum alloy under different ultrasonic rolling parameters is studied, and the influence of ultrasonic rolling treatment on its fatigue property is studied, to provide a basis for improving the surface integrity and fatigue strength of aviation aluminum alloy components. Firstly, the aluminum alloy samples are strengthened by ultrasonic rolling equipment. The treated aluminum alloy samples are observed and measured by LEICA DCM3D microscope, SUPRA55 field emission scanning electron microscope and i-XRD X-ray stress tester. The surface roughness, surface microstructure, surface hardness, hardened layer depth and residual stress of aluminum alloy samples before and after ultrasonic rolling treatment under different process parameters are analyzed, and a rotary bending fatigue property test is carried out. The influence of ultrasonic rolling treatment on the fatigue life of the samples is compared and analyzed, and the strengthening and modification mechanism of aluminum alloy ultrasonic rolling treatment is studied. The results show that the surface roughness of the samples after ultrasonic rolling is much lower than that of the original samples, and the lowest roughness reaches 0.197 μm, with a decrease of 85.6%. The surface hardness of the sample after ultrasonic rolling treatment is up to 192.47HV, which is 57.6% higher than that of the original sample. After ultrasonic rolling, the surface metal of the sample has obvious plastic rheology and grain refinement. The average grain size of the original sample without ultrasonic rolling is 36.68 μm, while the average grain size of the strict surface layer after ultrasonic rolling is 10.28 μm. After ultrasonic rolling, the fatigue strength of aluminum alloy samples increased from 130 MPa to 180 MPa, with an increase of 38.5%. At the same stress level, the fatigue life of the ultrasonic rolling treated sample is 7 times higher than that of the original sample. It can be seen from the fracture analysis of the sample that the crack source of the original sample is located on the surface of the sample, while the fatigue source of the sample after ultrasonic rolling is originated from the subsurface. After ultrasonic rolling treatment, the roughness of the sample is greatly reduced, and the surface hardness, hardened layer depth and residual compressive stress of the sample are greatly increased. The combined effect of these aspects greatly improves the fatigue strength of the aluminum alloy sample after ultrasonic rolling.
关键词
2024-T3铝合金 /
超声滚压处理 /
粗糙度 /
硬度 /
微观组织 /
疲劳强度
Key words
2024-T3 aluminum alloy /
ultrasonic rolling process /
roughness /
hardness /
microstructure /
fatigue strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 乔景振, 张笑闻, 张环月, 等. 喷丸强化与固溶强化复合处理对2024铝合金耐蚀性能的影响[J]. 金属热处理, 2024, 49(6): 69-76.
QIAO J Z, ZHANG X W, ZHANG H Y, et al.Effects of Shot Peen Strengthening and Solution Strengthening Combined Treatment on Corrosion Resistance of 2024 Aluminum Alloy[J]. Heat Treatment of Metals, 2024, 49(6): 69-76.
[2] 陈福明. 航空铝合金硫酸阳极氧化高性能封闭工艺研究[D]. 南昌: 南昌航空大学, 2023: 5-20.
CHEN F M.Study on High Performance Sealing Process of Sulfuric Acid Anodic Oxidation of Aviation Aluminum Alloy[D]. Nanchang: Nanchang Hangkong University, 2023: 5-20.
[3] 黄绎, 李跃, 吴春春, 等. 2024铝合金表面SiO2陶瓷涂层制备及其耐腐蚀行为[J]. 材料科学与工程学报, 2022, 40(6): 915-922.
HUANG Y, LI Y, WU C C, et al.Preparation of SiO2 Ceramic Coatings on 2024 Aluminum Alloy Substrate and Study on Their Anticorrosive Behavior[J]. Journal of Materials Science and Engineering, 2022, 40(6): 915-922.
[4] 李锋, 王明涛, 白雪飘, 等. 喷丸成形2024铝合金整体带筋壁板变形规律研究[J]. 精密成形工程, 2022, 14(9): 18-23.
LI F, WANG M T, BAI X P, et al.Deformation Law of 2024 Aluminum Alloy Stiffened Integral Panel by Shot Peen Forming[J]. Journal of Netshape Forming Engineering, 2022, 14(9): 18-23.
[5] 王义林, 刘勇, 耿会程, 等. 高强铝合金热冲压成形技术研究进展[J]. 航空制造技术, 2019, 62(16): 22-35.
WANG Y L, LIU Y, GENG H C, et al.Research Progresses of Hot Stamping Technology for High Strength Aluminum Alloy Sheet[J]. Aeronautical Manufacturing Technology, 2019, 62(16): 22-35.
[6] 贺柏涵, 周文龙, 程旭, 等. 7A65铝合金喷丸强化表面完整性及疲劳性能[J]. 精密成形工程, 2023, 15(6): 1-10.
HE B H, ZHOU W L, CHENG X, et al.Surface Integrity and Fatigue Properties of Shot Peening Strengthened 7A65 Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(6): 1-10.
[7] 徐戊矫, 龚利华, 王玉松, 等. 强化固溶对7050铝合金组织与性能的影响[J]. 金属热处理, 2015, 40(4): 57-61.
XU W J, GONG L H, WANG Y S, et al.Effect of Strengthening-Solid-Solution on Microstructure and Properties of 7050 Aluminum Alloy[J]. Heat Treatment of Metals, 2015, 40(4): 57-61.
[8] 李鹏, 刘道新, 关艳英, 等. 喷丸强化对新型7055- T7751铝合金疲劳性能的影响[J]. 机械工程材料, 2015, 39(1): 86-89.
LI P, LIU D X, GUAN Y Y, et al.Effects of Shot Peening on Fatigue Property of New Aluminum Alloy 7055- T7751[J]. Materials for Mechanical Engineering, 2015, 39(1): 86-89.
[9] 陈瑞芳, 桑毅, 武敬伟, 等. 7050铝合金激光冲击强化的试验和数值模拟[J]. 江苏大学学报(自然科学版), 2009, 30(2): 113-117.
CHEN R F, SANG Y, WU J W, et al.Experiment and Numerical Simulation of Laser Shock Processing in 7050 Aluminum Alloy[J]. Journal of Jiangsu University (Natural Science Edition), 2009, 30(2): 113-117.
[10] 孟宪凯, 赵曜民, 周建忠, 等. 激光-超声复合喷丸强化2024铝合金表面性能研究[J]. 中国激光, 2022, 49(16): 53-61.
MENG X K, ZHAO Y M, ZHOU J Z, et al.Surface Properties of 2024 Aluminum Alloy Strengthened by Laser Ultrasonic Composite Shock Peening[J]. Chinese Journal of Lasers, 2022, 49(16): 53-61.
[11] 耿其东, 李春燕, 洪捐. 超声冲击对7075铝合金残余应力及微观组织的影响[J]. 科学技术与工程, 2020, 20(8): 3017-3023.
GENG Q D, LI C Y, HONG J.Effect of Constant-Current Source Ultrasonic Impact Strengthening on Microstructure and Residual Stress of 7075 Aluminum Alloy[J]. Science Technology and Engineering, 2020, 20(8): 3017-3023.
[12] RICHTER B, CHEN S X, MORROW J D, et al.Pulsed Laser Remelting of A384 Aluminum, Part II: Modeling of Surface Homogenization and Topographical Effects[J]. Journal of Manufacturing Processes, 2018, 32: 230-240.
[13] 孔令晨, 冯胜强, 董天顺, 等. A356铝合金表面Al-25Si等离子喷涂层的组织和耐磨性能研究[J]. 轻合金加工技术, 2021, 49(4): 54-59.
KONG L C, FENG S Q, DONG T S, et al.Structure and Wear Resistance of Al-25Si Plasma Sprayed Coatings on A356 Aluminum Alloy Surface[J]. Light Alloy Fabrication Technology, 2021, 49(4): 54-59.
[14] SATHYAJITH S, KALAINATHAN S, SWAROOP S.Laser Peening without Coating on Aluminum Alloy Al-6061-T6 Using Low Energy Nd: YAG Laser[J]. Optics & Laser Technology, 2013, 45: 389-394.
[15] 高心寰, 潘金芝, 陈春焕, 等. GCr15SiMn轴承钢超声滚压表层组织及性能分析[J]. 表面技术, 2022, 51(3): 262-270.
GAO X H, PAN J Z, CHEN C H, et al.Analysis of Surface Microstructures and Properties of GCr15SiMn Bearing Steel Processed by Ultrasonic Rolling Technology[J]. Surface Technology, 2022, 51(3): 262-270.
[16] UEDA T, MITAMURA N.Mechanism of Dent Initiated Flaking and Bearing Life Enhancement Technology under Contaminated Lubrication Condition. Part II: Effect of Rolling Element Surface Roughness on Flaking Resulting from Dents, and Life Enhancement Technology of Rolling Bearings under Contaminated Lubrication Condition[J]. Tribology International, 2009, 42(11/12): 1832-1837.
[17] 安容升, 程志, 潘金芝, 等. GCr15SiMn贝氏体轴承钢超声滚压表层组织与性能[J]. 表面技术, 2023, 52(10): 430-438.
AN R S, CHENG Z, PAN J Z, et al.Effect of Ultrasonic Rolling Process on Surface Microstructures and Properties of GCr15SiMn Bainitic Bearing Steel[J]. Surface Technology, 2023, 52(10): 430-438.
[18] 郑建新, 罗傲梅, 刘传绍. 超声表面强化技术的研究进展[J]. 制造技术与机床, 2012(10): 32-36.
ZHENG J X, LUO A M, LIU C S.Development of Ultrasonic Surface Enhancement Technique[J]. Manufacturing Technology & Machine Tool, 2012(10): 32-36.
[19] 扈丁超, 谭娜, 郭天师, 等. 激光熔覆工艺参数对AlSi10Mg涂层气孔及性能的影响[J]. 焊接技术, 2024, 53(2): 86-90.
HU D C, TAN N, GUO T S, et al.Effect of Laser Cladding Process Parameters on Porosity and Properties of AlSi10Mg Coating[J]. Welding Technology, 2024, 53(2): 86-90.
[20] 王震林, 戴为, 齐雨航, 等. 铝合金电弧增材与激光冲击强化复合制造组织与性能[J]. 焊接, 2024(2): 18-25.
WANG Z L, DAI W, QI Y H, et al.Microstructure and Properties of Aluminum Alloy by Wire and Arc Additive and Laser Shock Peening Hybrid Manufacturing[J]. Welding & Joining, 2024(2): 18-25.
[21] 王荣, 姜红飞, 魏德强, 等. 铝合金喷涂Y2O3和Ni混合粉扫描电子束表面合金化的研究[J]. 热加工工艺, 2023, 52(24): 146-151.
WANG R, JIANG H F, WEI D Q, et al.Study on Surface Alloying of Scanning Electron Beam with Aluminum Alloy Sprayed Y2O3 and Ni Mixed Powder[J]. Hot Working Technology, 2023, 52(24): 146-151.
[22] 王艳, 侯飞. 高层建筑用铝合金板材疲劳寿命分析[J]. 兵器材料科学与工程, 2022, 45(2): 124-128.
WANG Y, HOU F.Fatigue Life Analysis of Aluminum Alloy Sheet Used in High-Rise Building[J]. Ordnance Material Science and Engineering, 2022, 45(2): 124-128.
[23] 徐汝锋, 周永鑫, 杨慎亮, 等. 机械加工表面完整性影响试件疲劳性能的研究现状[J]. 航空制造技术, 2019, 62(14): 96-102.
XU R F, ZHOU Y X, YANG S L, et al.Research Status of Influence Mechanism of Surface Integrity on Fatigue Behavior of Workpieces[J]. Aeronautical Manufacturing Technology, 2019, 62(14): 96-102.
[24] LAI F Q, QU S G, LEWIS R, et al.The Influence of Ultrasonic Surface Rolling on the Fatigue and Wear Properties of 23-8N Engine Valve Steel[J]. International Journal of Fatigue, 2019, 125: 299-313.
[25] ARUN PRAKASH N, GNANAMOORTHY R, KAMARAJ M.Microstructural Evolution and Mechanical Properties of Oil Jet Peened Aluminium Alloy, AA6063-T6[J]. Materials & Design, 2010, 31(9): 4066-4075.
基金
航空科学基金(20200036064001)